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This presentation is based on work in:

D. Filipović, L. P. Hughston & A. Macrina (2010) Implied Density Models for
Asset Prices. (Working paper)
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Implied density

We consider the problem of how to model the price dynamics of an asset when
we are given option prices for a range of strikes and maturities as initial data.

Our approach will be to model the probability density process for the asset price.

We have a probability space (Ω,F ,Q) equipped with a Brownian filtration {Ft}.

A non-dividend-paying asset Ai of limited liability (Ai
t > 0,∀ t > 0) is chosen as

numeraire, and henceforth all prices Aj
t are expressed in units of the numeraire

asset Ai:

Aj
s = Ai

sEQ
[
Aj

t

Ai
t

∣∣∣∣Ft

]
. (1)

The measure Q has the property that the price processes of all
non-dividend-paying assets, when expressed in units of the selected numeraire,
are martingales.
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We refer to Q as the “martingale measure” associated with the numeraire.

Let {At} denote the price process of a generic non-dividend-paying asset,
expressed in units of the selected numeraire.

Then {At} is a Q-martingale, and the Q-dynamical equation of {At} is of the
form

dAt = σA
t dWt. (2)

Here {σA
t } is the {Ft}-adapted absolute volatility process, and {Wt} is a

(multi-dimensional) Brownian motion.

We fix a time T > 0, and introduce a continuous random variable AT .

We assume for 0 ≤ t < T the existence of an Ft-conditional Q-probability
density ftT (x) for the random value AT of the chosen asset at time T .

We assume, for all x ∈ R with the property that there exists an ω ∈ Ω such
that AT (ω) = x, that ftT (x) is defined and takes positive values.
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Let us write D for the domain of the conditional density.

We require that ftT (x), x ∈ D, should satisfy the following conditions:

1. For all bounded, measurable functions g(x), x ∈ D, it holds that∫

D
g(x)ftT (x)dx = EQ [g(XT ) | Ft] . (3)

2. For 0 ≤ s ≤ t < T and for each x ∈ D the process {ftT (x)} is a martingale:

EQ [ftT (x) | Fs] = fsT (x). (4)

The asset price At at time t can now be expressed in terms of

At =

∫

D
x ftT (x)dx, (5)

from which the martingale condition follows:

At = EQt [AT ] . (6)

Since the density process {ftT (x)} is a positive Q-martingale, for each x ∈ D
the associated dynamical equation takes the form

dftT (x) = ftT (x) σf
tT (x) dWt, (7)
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Here σf
tT (x) is the “relative” volatility of the density at x.

We require that the following normalization condition be satisfied:∫

D
ftT (x)dx = 1. (8)

The normalization condition is satisfied for all t ∈ [0, T ) if it holds in particular
at t = 0, and if

σf
tT (x) = σtT (x)−

∫

D
σtT (y)ftT (y)dy, (9)

for some process {σtT (x)}. This can be shown by considering

ftT (x) =
gtT (x)∫

D gtT (y)dy
, (10)

where it is assumed that

dgtT (x)

gtT (x)
= µtT (x)dt + σtT (x)dWt. (11)
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By use of (9), the dynamical equation of the density process {ftT (x)} takes the
form

dftT (x) = ftT (x)

[
σtT (x)−

∫

D
σtT (y)ftT (y)dy

]
dWt. (12)

We call this infinite-dimensional SDE, the master equation.

By a “model” for the density process {ftT (x)} we understand solutions of the
“master equation” (12) satisfying the normalization condition (8), along with:

1. The specification of the initial density f0T (x)

2. The specification of the volatility structure {σtT (x)} in the form of a
functional

σtT (x) = Φ[ftT (·), t, x]. (13)

The initial density f0T (x) can be determined by the specification of initial option
price data for the maturity T and for all strikes K ∈ D.
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Let CtT denote the price at time t of a T -maturity, K-strike call option, then:

CtT (K) = EQ[(AT −K)+ | Ft] =

∫

D
(x−K)+ftT (x)dx. (14)

In particular, we have:

C0T (K) = EQ[(AT −K)+] =

∫

D
(x−K)+f0T (x)dx. (15)

By the Breeden & Litzenberger (1978) device we see, in the present context, that

f0T (x) =
∂2 C0T (K)

∂K2
. (16)

In practice, one would like to specify Φ modulo enough parametric freedom to
allow the input of additional option price data.

What form this additional data might take depends on the nature of the market
under consideration and the class of valuation problems being undertaken.
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Integral form of the master equation

To proceed further, it is useful to derive an integral form of the master equation
that incorporates the initial condition explicitly.

The first step is to integrate the master equation (12) to obtain

ftT (x) = f0T (x) exp

[∫ t

0

[σsT (x)− 〈σsT 〉] dWs − 1
2

∫ t

0

[σsT (x)− 〈σsT 〉]2 ds

]
.

(17)

where the bracket notation is defined by

〈σtT 〉 =

∫

D
σtT (x)ftT (x)dx, (18)

By expanding the exponent we obtain the following expression:

ftT (x) = f0T (x)
exp

[∫ t

0 σsT (x) (dWs + 〈σsT 〉ds)− 1
2

∫ t

0 σsT
2(x)ds

]

exp
[∫ t

0 〈σsT 〉 (dWs + 〈σsT 〉ds)− 1
2

∫ t

0 〈σsT 〉2ds
] (19)
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Next we introduce a process {Zt}, defined by

Zt = Wt +

∫ t

0

〈σsT 〉ds, (20)

so that we can write

ftT (x) = f0T (x)
exp

[∫ t

0 σsT (x)dZs − 1
2

∫ t

0 σsT
2(x)ds

]

exp
[∫ t

0 〈σsT 〉dZs − 1
2

∫ t

0 〈σsT 〉2ds
] . (21)

We apply the normalization condition for the conditional density process to
obtain

exp

(∫ t

0

〈σsT 〉dZs − 1
2

∫ t

0

〈σsT 〉2ds

)

=

∫

D
f0T (x) exp

(∫ t

0

σsT (x)dZs − 1
2

∫ t

0

σsT
2(x)ds

)
dx. (22)
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As a consequence we have the following integral form for the master equation of
the conditional density process:

ftT (x) =
f0T (x) exp

(∫ t

0 σsT (x)dZs − 1
2

∫ t

0 σsT
2(x)ds

)

∫
D f0T (y) exp

(∫ t

0 σsT (y)dZs − 1
2

∫ t

0 σsT
2(y)ds

)
dy

. (23)

Of course, one has not “solved” the master equation yet, since {Zt} implicitly
involves the density process, via (18) and (20).

Nevertheless, we can use (23) as a starting point for obtaining solutions, as we
shall see next.
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Finite-time horizon density models

We consider the case in which the random variable AT has a priori probability
density f̄0T (x) given by

f̄0T (x)dx = Q [AT ∈ dx] . (24)

We define the conditional density ftT (x) by

ftT (x)dx = Q [AT ∈ dx | Ft] . (25)

In order for this definition to make sense we need to specify the filtration {Ft}.

We introduce a Brownian motion {Bt} that is taken to be independent of AT

and construct a process {ξtT}0≤t≤T given by

ξtT = σ AT t + βtT . (26)

Here σ is a constant and {βtT}0≤t≤T is a Brownian bridge constructed by

βtT = Bt − t

T
BT . (27)
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Next we assume that {Ft} is generated by {ξtT}:
Ft = σ

({ξsT}0≤s≤t

)
. (28)

Clearly {ξtT} is {Ft}-adapted, and AT is FT -measurable since AT = ξTT/σ T .
It is shown in Brody et al. (2007), (2008) that {ξtT} is an {Ft}-Markov process.

Proposition. Let the initial density f̄0T (x) be specified, and let the volatility
function σtT (x) be given by

σtT (x) = σ
T

T − t
x, (29)

for 0 ≤ t < T . Let the filtration {Ft} be defined by (28). Then the process
{Wt}0≤t<T defined by

Wt = ξtT −
∫ t

0

1

T − s
(σ T E [AT | ξst]− ξsT ) ds, (30)

is an {Ft}-Brownian motion and the process {ftT (x)} given by

ftT (x) =
f̄0T (x) exp

[
T

T−t

(
σξtTx− 1

2 σ2x2t
)]

∫
D f̄0T (y) exp

[
T

T−t

(
σξtTy − 1

2 σ2y2t
)]

dy
, (31)

satisfies the master equation (12) with the given initial condition.
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Proof. The fact that {Wt}0≤t≤T is an {Ft}-Brownian motion, is proven in
Brody et al. (2007), (2008) by making use of Lévy’s characterization theorem.

Next we calculate the conditional expectation E[AT | ξtT ] by use of the Bayes
formula. We have:

E [AT | ξtT ] =

∫

D
x ftT (x)dx, (32)

where the conditional density {ftT (x)} is given by

ftT (x) =
f̄0T ρ (ξtT |AT = x)∫

D f̄0T (y) ρ (ξtT |AT = y) dy
. (33)

Conditional on the value of AT , the random variable ξtT has a Gaussian density:

ρ (ξtT |AT = x) =

√
T

2π t(T − t)
exp

[
−1

2

T

t(T − t)
(ξtT − σtx)2

]
. (34)

Inserting the conditional density ρ (ξtT |AT = x) in (33), one obtains the
expression (31) for the density process {ftT (x)} after some simplifications.

Osaka University A. Macrina, King’s College London & Kyoto University



An Alternative to Stochastic Volatility Models - 15 - 16 February 2010

With this intermediate result at hand, we can write the process {Wt}0≤t≤T in
terms of the density {ftT (x)}:

Wt = ξtT −
∫ t

0

1

T − s

(
σT

∫

D
x fsT (x)dx− ξsT

)
ds. (35)

Next we show that the density process given by (31) satisfies the master
equation (12).

We recall that the master equation (12) can be written in the form

ftT (x) =
f0T (x) exp

(∫ t

0 σsT (x)dZs − 1
2

∫ t

0 σsT (x)2ds
)

∫
D f0T (x) exp

(∫ t

0 σsT (x)dZs − 1
2

∫ t

0 σsT (x)2ds
)

dx
, (36)

where

Zt = Wt +

∫ t

0

∫

D
σsT (x)fsT (x)dx ds. (37)

We show now that (36) reduces to (31) if we insert (35) into (37), and use

σtT (x) = σ
T

T − t
x. (38)
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For the process {Zt} given in (37) we obtain,

Zt = ξtT +

∫ t

0

ξsT

T − s
ds. (39)

By inserting this expression for {Zt} in the integral form of the master equation
(36), and thereafter integrating the exponent

∫ t

0

σsT (x)dZs − 1
2

∫ t

0

σsT (x)2ds, (40)

we obtain the expression (31) for the density process {ftT (x)}. That is:

ftT (x) =
f̄0T (x) exp

[
T

T−t

(
σξtTx− 1

2 σ2x2t
)]

∫
D f̄0T (y) exp

[
T

T−t

(
σξtTy − 1

2 σ2y2t
)]

dy
. (41)

¤
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Bachelier model on a finite-time horizon

We consider the Bachelier asset price model, characterised by

At = γWt, (42)

over all times up to T . The process {Wt} is an {Ft}-adapted Brownian motion
and γ is a constant.

The conditional density process {fB
tT (x)} of the Bachelier asset price process is

given by

fB
tT (x) =

exp
[
−1

2
1

γ2(T−t)
(x− γWt)

2
]

∫∞
−∞ exp

[
−1

2
1

γ2(T−t)
(y − γWt)2

]
dy

. (43)

It turns out that the Bachelier asset price model in finite time is a special case of
the family of models presented above.
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Let the initial density f̄0T (x) be given by

f̄0T (x) =
σ
√

T√
2π

exp
(−1

2 σ2 Tx2
)
, (44)

and let the volatility function σtT (x) be given by

σtT (x) = σ
T

T − t
x, (45)

where σ = 1/(γT ).

Then the density process {ftT (x)} defined by

ftT (x) =
f̄0T (x) exp

[
T

T−t

(
σξtTx− 1

2 σ2x2t
)]

∫
D f̄0T (y) exp

[
T

T−t

(
σξtTy − 1

2 σ2y2t
)]

dy
, (46)

reduces to the expression for the process {fB
tT (x)} given in (43).
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Infinite-time horizon density models

In this part of the presentation we generalise the results shown so far in two
ways.

(1) We extend the time horizon to infinity.

(2) The volatility function for the SDE of the conditional density process shall be
defined in terms of a general deterministic function v(t, x) of two variables.
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Conjecture. Let f̄0(x) : R→ R+ be a density function. A filtered probability
space (Ω,F , {Ft},Q) can be constructed along with

(i) an F∞-measurable random variable X∞ with density f̄0(x),
(ii) an {Ft}-adapted density process {ft(x)},
(iii) an {Ft}-adapted Brownian motion {Wt}

such that (a) for some function γ(t) on [0,∞), (b) for some function g(x) that
is invertible onto R, and (c) for some suitably integrable function v(t, x) on
[0,∞)× R with the property that

lim
t→∞

γ(t)

∫ t

0

v(s, x)ds = g(x), (47)

the following hold for all t ∈ [0,∞):

Q [X∞ ∈ dx | Ft] = ft(x)dx, (48)

and

ft(x) = f̄0(x) +

∫ t

0

fs(x)

[
v(s, x)−

∫ ∞

−∞
v(s, y)fs(y)dy

]
dWs. (49)
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Proposition. Let f̄0(x) : R→ R+ be a density function. Let γ(t) be a function
on [0,∞) such that limt→∞

√
t γ(t) = 0. Let the function g(x) be invertible

onto R. Let the function v(t, x) on [0,∞)× R satisfy (47). Let {Bt} be a
Brownian motion and let X∞ be an independent random variable with density
f̄0(x). Let {Ft} denote the filtration generated by the process {It} defined by

It = Bt +

∫ t

0

v(s,X∞)ds. (50)

Let the {Ft}-adapted density process {ft(x)} be defined by

ft(x) =
f̄0(x) exp

[∫ t

0 v(s, x)dIs − 1
2

∫ t

0 v2(s, x)ds
]

∫∞
−∞ f̄0(y) exp

[∫ t

0 v(s, y)dIs − 1
2

∫ t

0 v2(s, y)ds
]

dy
. (51)

Then (a) the random variable X∞ is F∞-measurable, (b) the process {Wt}
defined by

Wt = It −
∫ t

0

EQ [v(s,X∞) | Fs] ds (52)

is an {Ft}-adapted Brownian motion, and (c) equations (56) and (49) are
satisfied.
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Proof: We consider the filtration {Gt} defined by Gt = σ ({Bs}0≤s≤t, X∞) and
notice that Gt ⊃ Ft.

We introduce a ({Gt},Q)-martingale {Mt} defined by

Mt = exp

[
−

∫ t

0

v(s,X∞)dBs − 1
2

∫ t

0

v2(s,X∞)ds

]
. (53)

The martingale {Mt} can be used to go from Q to a new measure B.

We observe that dIt = dBt + v(t,X∞)dt.

It follows that {It} is a ({Gt},B)-Brownian motion. It can be shown that It is
B-independent of X∞ for any t.

We also note that the process {M−1
t } is a ({Gt},B)-martingale.

Let H ∈ B where B is the space of bounded functions on R.

Then the generalized Bayes formula states that

EQ [H(X∞)| Ft] =
EB

[
M−1

t H(X∞) | Ft

]

EB
[
M−1

t | Ft

] . (54)
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Making use of the fact that X∞ is B-independent of It for any t ∈ [0,∞), we
obtain

EQ [H(X∞) | Ft] =

∫∞
−∞ f̄0(x)H(x) exp

(∫ t

0 v(s, x)dIs − 1
2

∫ t

0 v2(s, x)ds
)

dx

∫∞
−∞ f̄0(y) exp

(∫ t

0 v(s, y)dIs − 1
2

∫ t

0 v2(s, y)ds
)

dy
.

(55)
In particular, by setting H(X∞) = 1(X∞ ≤ x), we deduce that

Q [X∞ ∈ dx | Ft] = ft(x)dx (56)

is satisfied, where

ft(x) =
f̄0(x) exp

[∫ t

0 v(s, x)dIs − 1
2

∫ t

0 v2(s, x)ds
]

∫∞
−∞ f̄0(y) exp

[∫ t

0 v(s, y)dIs − 1
2

∫ t

0 v2(s, y)ds
]

dy
. (57)

The proof of the proposition continuous with showing (i) that (57) satisfies the
master equation (49), (ii) that the process {Wt} is an ({Ft},Q)-Brownian
motion, and (iii) that X∞ is F∞-measurable.
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Relation to finite-time density models

We recall that under B the information process {It} is a Brownian motion over
the interval t ∈ [0, T ), and that the filtration {Ft} is generated by {It}.
We can construct a B-Brownian bridge by use of the B-Brownian motion {It} as
follows: On [0, T ) we set

ξtT = (T − t)

∫ t

0

1

T − s
dIs. (58)

Next we recall that

It = Bt +

∫ t

0

v(s,X∞)ds, (59)

where here the volatility function v(t, x) need only be defined on [0, T )× R.
Then we have:

ξtT = (T − t)

∫ t

0

dBs

T − s
+ (T − t)

∫ t

0

1

T − s
v(s,X∞) ds. (60)

The first integral defines a ({Gt},Q)-Brownian bridge process over the interval
[0, T ) which we denote {βtT}.
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For the volatility function v(t, x) we set

v(t, x) = σ
T

T − t
x. (61)

This leads to

ξtT = σ X∞ (T − t)T

∫ t

0

1

(T − s)2
ds + βtT , (62)

and therefore further to
ξtT = σ X∞ t + βtT . (63)

Since {Ft} is generated by {It}, so it is equivalently by {ξtT}.
Due to the special form of the volatility function (61), the random variable X∞
becomes FT -measurable.

Hence we see that the role of AT appearing in the definition (26) of the process
{ξtT},

ξtT = σ AT t + βtT , (64)

is taken over by X∞ in (63). Thus the relation between infinite-time horizon and
finite-time horizon density models is established.
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