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Abstract

The aim of this paper is to apply the lent particle method in order to prove existence
of density for solutions of sde’s driven by a Poisson measure. We claim that this
method, based on the theory of Dirichlet forms and the representation of a well-
chosen gradient, simplifies the proofs and permits an explicit expression of the carré
du champ matrix i.e. the Malliavin matrix.
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1 Introduction

This article is based on 2 recent works ([3, 4]) in which we introduce a new method called
the lent particle method and apply it to prove existence of density for Poisson functionals
including solutions of Poisson driven SDE’s. There is a huge literature on this subject and
particularly on Malliavin calculus on the Poisson space, we refer to [4] and the bibliography
at the end of this article for a non-exhaustive list of works on this subject. Roughly speak-
ing, to prove existence of density using Malliavin calculus on the Poisson space, either one
has to deal with finite difference operators either one has to derivate w.r.t. the times of the
jumps either one has to derivate w.r.t. the size of the jumps. Our method corresponds to
the last case and is based on the theory of Dirichlet forms and the fundamental property
(EID) satisfied by local Dirichlet forms. This approach simplifies the method and permits
to obtain explicit formulae for the gradient and the carré du champ. Here, we have chosen
to present the results without recalling all the technical hypotheses neither the proofs, we
just want to insist on the simplicity of the method, all the details may be found in [3, 4],
see also our first article in this volume.

2 The framework

We consider (X,X , ν,d, γ): a local symmetric Dirichlet structure which admits a carré du
champ operator i.e. (X,X , ν) is a measured space, ν is σ-finite and the bilinear form

e[f, g] =
1
2

∫
γ[f, g] dν,
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is a local Dirichlet form with domain d ⊂ L2(ν) and carré du champ operator γ.
We assume also technical conditions that we do not recall here (see [3]) and that (d, e)
satisfies (EID).
Let N be a Poisson random measure on [0,+∞[×X with intensity dt × ν(du) defined on
the probability space (Ω1,A1,P1) where Ω1 is the configuration space, A1 the σ-field
generated by N and P1 the law of N .
Following [3], we construct a Dirichlet structure on the upper space, that we denote by
(D, E). It is a Dirichlet form on L2(Ω1,P1). Before recalling its main properties, we give
an example of Dirichlet structure on the bottom space that we shall consider in the case of
Lévy processes.

2.1 Main example in Rd

Let (Yt)t > 0 be a d-dimensional Lévy process, with Lévy measure ν = kdx. Under standard
hypotheses, we have the following representation:

Yt =
∫ t

0

∫
Rd

uÑ(ds, du),

where Ñ is a compensated Poisson measure with intensity dt× kdx. In this case, the idea
is to introduce an ad-hoc Dirichlet structure on Rd

The following example gives a case of such a structure (d, e) which satisfies all the required
hypotheses and which is flexible enough to encompass many cases:

Lemma 1. Let r ∈ N∗, (X,X ) = (Rr,B(Rr)) and ν = kdx where k is non-negative and
Borelian. We are given ξ = (ξij)1 6 i,j 6 r an Rr×r-valued and symmetric Borel function.
We assume that there exist an open set O ⊂ Rr and a function ψ continuous on O and
null on Rr \O such that

1. k > 0 on O ν-a.e. and is locally bounded on O

2. ξ is locally bounded and locally elliptic on O.

3. k > ψ > 0 ν-a.e. on O.

4. for all i, j ∈ {1, · · · , r}, ξi,jψ belongs to H1
loc(O).

We denote by H the subspace of functions f ∈ L2(ν)∩L1(ν) such that the restriction of f
to O belongs to C∞c (O). Then, the bilinear form defined by

∀f, g ∈ H, e(f, g) =
r∑

i,j=1

∫
O
ξi,j(x)∂if(x)∂jg(x)ψ(x) dx

is closable in L2(ν). Its closure, (d, e), is a local Dirichlet form on L2(ν) which admits a
carré du champ γ.

∀f ∈ d, γ(f)(x) =
r∑

i,j=1

ξi,j(x)∂if(x)∂jf(x)
ψ(x)
k(x)

.
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Moreover, it satisfies property (EID) i.e. for any d and for any Rd-valued function U whose
components are in the domain of the form

U∗[(detγ[U,U t]) · ν]� λd

where det denotes the determinant and λd the Lebesgue measure on (Rd,B(Rd)).

Remark: In the case of a Lévy process, we shall apply this Lemma with ξ the identity
application. We shall often consider an open domain of the form O = {x ∈ Rd; |x| 6 ε}
which means that we "derivate" only w.r.t. small jumps and hypothesis 3. means that we
do not need to assume regularity on k but only that k dominates a regular function.

2.2 The upper Dirichlet structure

We now introduce the lent particle method in this context.
One of the main point of our method, is the representation of the gradient on the upper
structure (D, E). To this end we consider:

• (R,R, ρ): an auxiliary probability space s.t. L2(R,R, ρ) is infinite.

• D: a version of the gradient on d with values in the space

L2
0(R,R, ρ) = {g ∈ L2(R,R, ρ);

∫
R
g(r)ρ(dr) = 0},

we denote it by [.

• N � ρ the extended marked Poisson measure: it is a random Poisson measure on
[0,+∞[×X × R with compensator dt × ν × ρ defined on the product probability
space: (Ω1,A1,P1)× (RN,R⊗N, P⊗N).

Then, we introduce the creation operator (resp. annihilation operator) which consists in
adding (resp. removing if necessary) a jump at time t with size u:

ε+(t,u)(w1) = w11{(t,u)∈suppw1} + (w1 + ε(t,u)})1{(t,u)/∈suppw1}
ε−(t,u)(w1) = w11{(t,u)/∈suppw1} + (w1 − ε(t,u)})1{(t,u)∈suppw1}.

In a natural way, we extend these operators to the functionals by

ε+H(w1, t, u) = H(ε+(t,u)w1, t, u) ε−H(w1, t, u) = H(ε−(t,u)w1, t, u).

we denote by PN the measure PN = P1(dw)Nw(dt, du).
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Theorem 2. (D, E) is a local Dirichlet form which admits a carré du champ operator Γ.
(i) The Dirichlet form (D, E) admits a gradient operator that we denote by ] and given by
the following formula:

∀F ∈ D, F ] =
∫ +∞

0

∫
X×R

ε−((ε+F )[) dN � ρ ∈ L2(P× P̂). (1)

Formula (1) is justified by the following decomposition:

F ∈ D ε+−I7−→ ε+F−F ∈ D ε−((.)[)7−→ ε−((ε+F )[) ∈ L2
0(PN×ρ)

d(N�ρ)7−→ F ] ∈ L2(P×P̂)

where each operator is continuous on the range of the preceding one and where L2
0(PN × ρ)

is the closed set of elements G in L2(PN × ρ) such that
∫
RGdρ = 0 PN -a.e.

Moreover, we have for all F ∈ D

Γ[F ] = Ê(F ])2 =
∫ +∞

0

∫
X
ε−(γ[ε+F ]) dN, (2)

where Ê denotes the expectation with respect to probability P̂.
(ii) The upper Dirichlet structure (Ω1,A1,P1,D,Γ) satisfies (EID).

Remarks
(i) The ideas and the scheme of the proofs are given in [5], in this volume.
(ii) This Theorem gives a method for obtaining Γ[F ] for F ∈ D or F ∈ Dn, then with the
hypotheses giving (EID) it suffices to prove det Γ[F ] > 0 P-a.s. to assert that F has a
density on Rn.
(iii) We can interpret (1) in the following manner: to calculate the gradient of F , first add
a particle at time t with size u then derivate w.r.t. the size (i.e. calculate the gradient
w.r.t. the bottom structure); remove the particle and finally integrate w.r.t. to dN � ρ.
Let us mention some other interesting properties:

Proposition 3. If h ∈ L2(R+, dt) ⊗ d, then Ñ(h) =
∫ +∞
0

∫
X h(t, u)Ñ(ds, du) belongs to

D and

Γ[Ñ(h)] =
∫ +∞

0

∫
X
γ[h(t, ·)](u)N(dt, du). (3)

(
Ñ(h)

)]
=
∫ +∞

0

∫
X×R

h[(t, u, r)N � ρ(dt, du, dr). (4)

3 Application to SDE’s driven by a Poisson measure

3.1 The equation we study

We consider another probability space (Ω2,A2,P2) on which an Rn-valued semimartingale
Z = (Z1, · · · , Zn) is defined, n ∈ N∗. We adopt the following assumption on the bracket of
Z and on the total variation of its finite variation part. It is satisfied if both are dominated
by the Lebesgue measure uniformly:
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Assumption on Z: There exists a positive constant C such that for any square integrable
Rn-valued predictable process h:

∀t > 0, E[(
∫ t

0
hsdZs)2] 6 C2E[

∫ t

0
|hs|2ds]. (5)

We shall work on the product probability space: (Ω,A,P) = (Ω1 × Ω2,A1 ⊗A2,P1 × P2).
For simplicity, we fix a finite terminal time T > 0.
Let d ∈ N∗, we consider the following SDE:

Xt = x+
∫ t

0

∫
X
c(s,Xs− , u)Ñ(ds, du) +

∫ t

0
σ(s,Xs−)dZs (6)

where x ∈ Rd, c : R+×Rd×X → Rd and σ : R+×Rd → Rd×n satisfy the set of hypotheses
below denoted (R).

Hypotheses (R):
1. There exists η ∈ L2(X, ν) such that:
a) for all t ∈ [0, T ] and u ∈ X, c(t, ·, u) is differentiable with continuous derivative and

∀u ∈ X, sup
t∈[0,T ],x∈Rd

|Dxc(t, x, u)| 6 η(u),

b) ∀(t, u) ∈ [0, T ]× U, |c(t, 0, u)| 6 η(u),
c) for all t ∈ [0, T ] and x ∈ Rd, c(t, x, ·) ∈ d and

sup
t∈[0,T ],x∈Rd

γ[c(t, x, ·)](u) 6 η(u),

d) for all t ∈ [0, T ], all x ∈ Rd and u ∈ X, the matrix I +Dxc(t, x, u) is invertible and

sup
t∈[0,T ],x∈Rd

∣∣∣(I +Dxc(t, x, u))−1
∣∣∣ 6 η(u).

2. For all t ∈ [0, T ] , σ(t, ·) is differentiable with continuous derivative and

sup
t∈[0,T ],x∈Rd

|Dxσ(t, x)| < +∞.

3. As a consequence of hypotheses 1. and 2. above, it is well known that equation (6)
admits a unique solution X such that E[supt∈[0,T ] |Xt|2] < +∞. We suppose that for all
t ∈ [0, T ], the matrix (I+

∑n
j=1Dxσ·,j(t,Xt−)∆Zjt ) is invertible and its inverse is bounded

by a deterministic constant uniformly with respect to t ∈ [0, T ].

Remark: We have defined a Dirichlet structure (D, E) on L2(Ω1,P1). Now, we work on the
product space, Ω1 × Ω2. Using natural notations, we consider from now on that (D, E) is
a Dirichlet structure on L2(Ω,P). In fact, it is the product structure of (D, E) with the
trivial one on L2(Ω2,P2) (see [2] ). Of course, all the properties remain true. In other
words, we only differentiate w.r.t. the Poisson noise and not w.r.t. to the one introduced
by Z.
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3.2 Spaces of processes and functional calculus

We denote by P the predictable sigma-field on [0, T ]× Ω and we define the following sets
of processes:

• H : the set of real valued processes (Xt)t∈[0,T ], defined on (Ω,A,P), which belong to
L2([0, T ]× Ω).

• HP : the set of predictable processes in H.

• HD : the set of real valued processes (Ht)t∈[0,T ], which belong to L2([0, T ]; D) i.e.
such that

‖H‖2HD = E[
∫ T

0
|Ht|2dt] +

∫ T

0
E(Ht)dt < +∞.

• HD,P : the subvector space of predictable processes in HD.

• HD⊗d,P : the set of real valued processes H defined on [0, T ] × Ω × X which are
predictable and belong to L2([0, T ]; D⊗ d) i.e. such that

‖H‖2HD⊗d,P
= E[

∫ T

0

∫
X
|Ht|2ν(du)dt]+

∫ T

0

∫
X
E(Ht(·, u))ν(du)dt+E[

∫ T

0
e(Ht)dt] < +∞.

The main idea is to derivate equation (6), to do that we need some functional calculus. It
is given by the next Proposition that we prove by approximation:

Proposition 4. Let H ∈ HD⊗d,P and G ∈ HnD,P , then:

1. The process

∀t ∈ [0, T ], Xt =
∫ t

0

∫
X
H(s, w, u)Ñ(ds, du)

is a square integrable martingale which belongs to HD and such that the process X− =
(Xt−)t∈[0,T ] belongs to HD,P . The gradient operator satisfies for all t ∈ [0, T ]:

X]
t (w, ŵ) =

∫ t

0

∫
X
H](s, w, u, ŵ)dÑ(ds, du)+

∫ t

0

∫
X×R

H[(s, w, u, r)N�ρ(ds, du, dr).

(7)

2. The process

∀t ∈ [0, T ], Yt =
∫ t

0
G(s, w)dZs

is a square integrable semimartingale which belongs to HD, Y − = (Yt−)t∈[0,T ] belongs
to HD,P and

∀t ∈ [0, T ], Y ]
t (w, ŵ) =

∫ t

0
G](s, w, ŵ)dZs. (8)
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3.3 Computation of the Carré du champ matrix of the solution

Applying the standard functional calculus related to Dirichlet forms, the previous Propo-
sition and a Picard iteration argument, we obtain:

Proposition 5. The equation (6) admits a unique solution X in HdD. Moreover, the
gradient of X satisfies:

X]
t =

∫ t

0

∫
U
Dxc(s,Xs−, u) ·X]

s−Ñ(ds, du)

+
∫ t

0

∫
X×R

c[(s,Xs−, u, r)N � ρ(ds, du, dr)

+
∫ t

0
Dxσ(s,Xs−) ·X]

s−dZs

Let us define the Rd×d-valued processes U by

dUs =
n∑
j=1

Dxσ.,j(s,Xs−)dZjs ,

and the derivative of the flow generated by X:

Kt = I +
∫ t

0

∫
X
Dxc(s,Xs−, u)Ks−Ñ(ds, du) +

∫ t

0
dUsKs−

Proposition 6. Under our hypotheses, for all t > 0, the matrix Kt is invertible and it
inverse K̄t = (Kt)−1 satisfies:

K̄t = I −
∫ t

0

∫
X
K̄s−(I +Dxc(s,Xs−, u))−1Dxc(s,Xs−, u)Ñ(ds, du)

−
∫ t

0
K̄s−dUs +

∑
s 6 t

K̄s−(∆Us)2(I + ∆Us)−1

+
∫ t

0
K̄sd < U c, U c >s .

We are now able to calculate the carré du champ matrix. This this the aim of the next
Theorem, to show how simple is the lent particle method we give a sketch of the proof.

Theorem 7. For all t ∈ [0, T ],

Γ[Xt] = Kt

∫ t

0

∫
X
K̄sγ[c(s,Xs−, ·)]K̄∗s N(ds, du)K∗t .

Proof. Let (α, u) ∈ [0, T ]×X. We put X(α,u)
t = ε+(α,u)Xt.

X
(α,u)
t = x+

∫ α

0

∫
X
c(s,X(α,u)

s− , u′)Ñ(ds, du′)

+
∫ α

0
σ(s,X(α,u)

s− )dZs + c(α,X(α,u)
α− , u)

+
∫

]α,t]

∫
X
c(s,X(α,u)

s− , u′)Ñ(ds, du′) +
∫

]α,t]
σ(s,X(α,u)

s− )dZs.
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Let us remark that X(α,u)
t = Xt if t < α so that, taking the gradient with respect to the

variable u, we obtain:

(X(α,u)
t )[ = (c(α,X(α,u)

α− , u))[

+
∫

]α,t]

∫
X
Dxc(s,X

(α,u)
s− , u′) · (X(α,u)

s− )[Ñ(ds, du′)

+
∫

]α,t]
Dxσ(s,X(α,u)

s− ) · (X(α,u)
s− )[dZs.

Let us now introduce the process K(α,u)
t = ε+(α,u)(Kt) which satisfies the following SDE:

K
(α,u)
t = I +

∫ t

0

∫
X
Dxc(s,X

(α,u)
s− , u′)K(α,u)

s− Ñ(ds, du′) +
∫ t

0
dU (α,u)

s K
(α,u)
s−

and its inverse K̄(α,u)
t = (K(α,u)

t )−1. Then, using the flow property, we have:

∀t > 0, (X(α,u)
t )[ = K

(α,u)
t K̄(α,u)

α (c(α,Xα− , u))[.

Now, we calculate the carré du champ and then we take back the particle:

∀t > 0, ε−(α,u)γ[(X(α,u)
t )] = KtK̄αγ[c(α,Xα− , ·)]K̄∗αK∗t

Finally integrating with respect to N we get

∀t > 0, Γ[Xt] = Kt

∫ t

0

∫
X
K̄sγ[c(s,Xs− , ·)](u)K̄∗sN(ds, du)K∗t .

3.4 First application: the regular case

An immediate consequence of the previous Theorem is:

Proposition 8. Assume that X is a topological space, that the intensity measure ds× ν of
N is such that ν has an infinite mass near some point u0 in X. If the matrix (s, y, u) →
γ[c(s, y, ·)](u) is continuous on a neighborhood of (0, x, u0) and invertible at (0, x, u0), then
the solution Xt of (6) has a density for all t ∈]0, T ].

3.5 Application to SDE’s driven by a Lévy process

Let Y be a Lévy process with values in Rd , independent of another variable X0.
We consider the following equation

Xt = X0 +
∫ t

0
a(Xs−, s) dYs, t > 0

where a : Rk × R+ → Rk×d is a given map.

Proposition 9. We assume that:
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1. The Lévy measure, ν, of Y satisfies hypotheses of the example given in Section 2.1
with ν(O) = +∞ and ξi,j(x) = xiδi,j. Then we may choose the operator γ to be

γ[f ] =
ψ(x)
k(x)

d∑
i=1

x2
i

d∑
i=1

(∂if)2 for f ∈ C∞0 (Rd)

2. a is C1 ∩ Lip with respect to the first variable uniformly in s and

sup
t,x
|(I +Dxa · u)−1(x, t)| 6 η(u),

where η ∈ L2(ν).

3. a is continuous with respect to the second variable at 0, and such that the matrix
aa∗(X0, 0) is invertible;

then for all t > 0 the law of Xt is absolutely continuous w.r.t. the Lebesgue measure.

Proof. We just give an idea of the proof in the case d = 1:

Let us recall that γ[f ] =
ψ(x)
k(x)

x2f ′2(x).

We have the representation: Yt =
∫ t
0

∫
R uÑ(ds, du), so that

Xt = X0 +
∫ t

0

∫
R
a(s,Xs−)u Ñ(ds, du).

The lent particle method yields:

Γ[Xt] = K2
t

∫ t

0

∫
X
K̄2
sa

2(s,Xs−)γ[j](u)N(ds, du)

where j is the identity application: γ[j](u) =
ψ(u)
k(u)

u2.

So

Γ[Xt] = K2
t

∫ t

0

∫
X
K̄2
sa

2(s,Xs−)
ψ(u)
k(u)

u2N(ds, du)

= K2
t

∑
α<t

K̄2
sa

2(s,Xs−)
ψ(∆Ys)
k(∆Ys)

∆Y 2
s ,

and it is easy to conclude.

Remarks:
(i) We refer to [4] for other examples and applications.
(ii) Let us finally remark that as easily seen, one can iterate the gradient and so obtain
criteria of regularity for the density of Poisson functionals such as solutions of SDE’s, this
is the object of a forthcoming paper.
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