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1. Introduction

"Market model”

Riskless asset:

(1.1) dsPt) = r(X)S%)dt, S°(0) = s°.

Risky assets:

1.9 { dsi(t) = S () {o! (X dt + SpE T of (X AW},
SY(0)=¢s" i=1,...m

Factors:

{ dXt = B(Xp)dt + A(X)dWr,
(1.3)

X(0) =z € R™,



Total wealth:

m . .
Vi= ) NiSi
i=0
N} : Number of the shares
hl = %f% . Portfolio proportion i=20,1,2,...,m.
ht = (hi, ..., A
dVy

Voo r(Xg)dt + h(t)* (a(Xt) — r(Xg)1)dt + h(t) o (Xt)dWr,

log Vr = log Vj

T 1 * * * ~ T *
+/O {—Ehsaa (Xs)hs—l—hSa(Xs)—I—T(Xs)}dt-l-/o hso(Xs)dWs,

a(z) = a(z) —r(x)l.



Problem at the level of the law of large number

L1og Vp(h) = #1og Vp(h)

= le {he — (00™)ra(X)Y oo {hy — (00™) " 1a(X) }dt

o [ 48060 (00" 100 +r(X0Yd+ - [ hio(Xaw;

hyt = (co*)~1a(X;) maximizes pathewise the growth rate of Vir(h)
on a long run and it is called " Kelly portfolio” (log utility portfolio)
or "numeéraire portfolio” . If X; is ergodic, then

lim % log Vir(hE) = é/{&(w)*(aa*)_l&(az) ¥ r(z)bm(dz)



While, we are interested in the large deviation estimate related
to downside risk minimization

1
inf P(=logVpr(h) <k Ne_TI(H), T — o0
it P( 109 Vi(h) < )

Kk . a given target growth rate

Problems e find the rate function I(k)

e asymptotically optimal strategy 7



While, we are interested in the large deviation estimate related
to downside risk minimization

| L ~T1(r)
inf P(=logVy(h) <k)~e Mo T — oo
inf P 0g Vi(h) < )

Kk . a given target growth rate

Problems e find the rate function I(k)

e asymptotically optimal strategy 7

cf. upside chance maximization

1
sup lim —IogP(—IogVT(h)>ﬁ;)_— inf_ sup {0k —x4(0)}
heHrT—oo 1 [k,00) 9€[0,6%)

Pham '03; Stettner '04; Hata-Sekine '05; Hata-Iida '06;
Sekine '06; Knispel '12;: Sekine '12 , etc,..



Results on downside risk minimization x(—o0) < k < x5(0—)

Jo(k) = liMp_o0 3 infyepry log P(310g Vi (h) < k)
(1.4)
= liM7_ o 7109 P(7 log Vp(RORT)) < i)
JO(H)) = —I(H}) = — inka(XE)(—OO),Ii] SUD9<0{91{' — Xo(e)}
= —{0(r)r — x0(0(r))},
(1.5) xo(0) ;= |lim 1 inflog E[e?'°9Vr(M)] ¢ < 0.

T—oo 1" h.

cf. Hata - N. - Sheu '10, AAP: N. '11 QF : Hata '11 APFM:;
N. '12 AAP ; Watanabe '13 SPA; Hata-Sekine '10 AMO



Complete market case:
Assume that the solution of the SDE

dX} = {a'(Xy) — —(ao*(Xm”} + Z ol(X)dw], X§=0
1=1
is given, and set X} =log S}, i =1,2,...,m
7 XZ

The solution to this SDE is regarded as " factors” and S} = s'e
satisfies the equation (1.2) of the dynamics of the security prices.
The " factors’ are governed by

dX; = B(Xy)dt + M(Xp)dWy, Xog=z € R™,
with B(z)f = alz)i — %(aa*)ii(x), Mz) = o ().

t
and security prices: SO(t) = s0¢lo T(XS)dS,

(1 2) dSi(t) — Si(t){ai(Xt)dt + Zk 1 J(Xt)th}
| S (0)==s' i=1,..m



2. Large deviation estimates for controlled semi-martingales

(2.1) dX; = B(Xp)dt + \N(Xp)dWy, Xo=z¢€ RY,

Wy : M- dim. 7, B.M., Xz): RN— N M, B(z): RN — RN

(2.2) J(k) := lim %igf log P (%FT(X,, h) < m> |

T'— o0
T T .
Fr(X,h) = [ f(Xoha)ds + | o(Xs, he)*dWs
hs: Fi - prog. m'ble, R™valued, m,N < M
1 k
f(z,h) = —Eh*S(w)h + h'g(z) +U(z), (x,h) =0d(x)h,

S(z) : RN — R™ @ R™, g(z): RN — R™, §(z): RN — RM @ R™,



Risk-sensitive control and its H-J-B equation

Consider averaging limit of the portfolio optimization

1
2.3 x(0) ;= lim — inf J(x;h;T), 6<O,
(2:3) R(O) = lim o inf (b T)
where
(2.4) J(2: h: T) = log E[e?tJo f(Xshs)ds+ fg o(Xshs)*dWs}y

and h ranges over the set A(T) of all admissible investment strate-
gies defined by

A(T) = {h;h:[0,T] x RN — R™; Borel, |h(t,z)| < C(1+ |z]),
h(t, X¢) is progressively m’ble}

Then, we shall see that (2.3) could be considered the dual problem
to our current problem (2.2).



Assumptions

A, (3, S, g, 6 are smooth and globally Lipschitz,
(2.3) U is smooth and bounded below

U ()|, |DU| < Mq|z|? + M>
(2.4) c0d*8(z) < S(z) < c16%5(z), ze€ RN, cg, ¢c1 >0
(2.5) csI < 8%6(x) < c5I, g, c5>0

(2.6) col€]? < EF AN ()€ < c3l€)%, o, c3 >0, £€R",
Fr(X h)—/Tf(X hs)d +/T (Xs, hs)*dW
T L) = 0 sy, Ns)as 0 2 Sy s S

Fa,h) =~ R S@h + hg(x) + UG), ol h) = (x)h,



Note that, when setting

Qg := S(x) —06"6(x), 6 <O,

Qp satisfies
(2.7) (co —0)6"6(x) < Qo(x) < (c1 —0)5" ()
and
(28) 0Q;1(x) <0 (6L, L (6*6(x)) "t < 6Q; ()
c1 — 0 co— 6
Moreover, we have
(2.9) 0 1<T4066Q, 6 <
co— 0

(o In the case of the above market model Qe_l = %_9(00*)_1)



Transformation to Risk-sensitive control

(2.10) va(0,2:T) = inf log E[e?tfo F(Xohs)dst[g o(Xohs)*dWs}y
h.e A(T)

Introduce a probability measue
Ph(AY = B[ Jo W8 (X)aWs= G [ hi6"8(Xo)hads .
Then, under the measure X; satisfies
dXy = {B(X1) + ON(Xhe}dt + AN(X)dW]', Xo==
with B. M. W} defined by

t
Wh = w, 9/0 5(Xs)hsds

and the value v«(0,x;T) is described as

h.e A(T)



The H-J-B equation :

\

O+ Ltr[AN*D2v] + 3(Dv)*AN*Do

+infu{[8 + OASK)* Dv + 0 (z, h) + & h*6*5(z)h} = O,
v(T,x) =0,

which is written as

(2.12)

where

O+ 1tr[AN*D?v] + B Dv + 5(Dv)*ANgA*Du

< +59*Qp tg + 60U =0,
v(T,z) =0,

\

By =B+0MQ; g, Ny=T405Q,'6" Qy==5— 055"



Note that

(2.7) (co—0)6"6(x) < Qo(x) < (c1 —0)5" ()

and that

(2.9) O _I<Ny=T14065Q, 16" <1
co— 0

e Under our assumptions we can see that H-J-B equation (2.12)
has a sufficiently smooth solution v(t, x) satisfying the nice gradient
estimates.

cf. Bensoussan-Frehse-N '98 AMO, N. '96, '03 SICON,



Then, we have the following verification theorem.

Proposition 1 Assume assumptions (2.3) - (2.6) and let v(t,x;T)
be a solution to (2.12). Then, setting

A(t,x) = Qy 1 (5* N Du(t,z) + g(a)),

) = pl0T) .= R(t, X}) is an optimal strategy:

0(0.2:T) = log E[e?Uo F(Xshs™)dst g o(XahS") Wy

Ity car) 109 E[eg{fépf(XS’hS)d8+f(3TSO(XS’hS)*dWS]



H-J-B equation of ergodic type

Now let us consider the infinite horizon counterpart of (2.12),
called H-J-B equation of ergodic type:

x(0) = StrIAN*D?w] + 85 Dw + 5(Dw)*ANyA* Dw

(2.13) +59*Qy tg + 0U.

Owing to Bensoussan-Frehse '92, Reine Angew. Math. and
Proposition 3.2 in N. '12 AAP we have the following proposition
concerning (2.13).



Proposition 2 ) Assume that

(2.14) lim_inf {g*(6*6) 1g(z) + U(x)} = oo

r—oo |£l7|2?“

besides assumptions (2.3) - (2.6). Then, we have a solution
(x(0),w) of (2.13) such that w(x) is bounded above. Moreover,
such a solution (x,w) is unique up to additive constants with
respect to w and satisfies the following estimate

(2.15) Vi(2)|? < Culz]? + C,

Furthermore, if we assume stronger assumption

1
c1— 6
than (2.14), then we have

(2.16) calz|? — c5 < g*(6*8) " Lg(x) + U(x)

(2.17) —cw|x|2 +dc, > w(x), cw, c,>0.



ii) Assume that

(2.18) B(x) z < —cﬁ|a:|2 + c/ﬁ, cg >0 ,clﬁ >0

besides assumptions (2.3) - (2.6). Then, there exists a positive
constant b, > 0 such that v, (z) := b«|x|? satisfies

F(¢b*)(w) — —00, as |33‘ — OQ,

where

1 1 0
F(y) = St D?$] 465 Do+ (D) ANgA" D+ —g* Qg g +0U

and we have a solution (x(0),w) to (2.13) such that
w — Yp(x) with 0 < b < by is bounded above. Moreover, such
solution is unique up to additive constants.



ii) can be reduced to i) when considering w — 1, in place of w

x(0) = Atr[AN*D2(w — )] + (Bp + ANgA* D) *D(w — )
+5(Dw — ) * ANA*D (w — ) + F (i),
cf. also Ichihara '11, SICON

e In what follows we shall proceed assuming the assumptions of
Proposition 2 i) with (2.16). We can develop parallel arguments
as well in the case of ii) of the proposition.



Large time asymptotics of the solution

Theorem 1 Under the assumptions of Proposition 2 i) with (2.16),
as'T — oo, v(0,2;T) — {w(x) + x(0)T} converges to a constant
coo € R uniformly on each compact set.

Corollary 1 Under the assumptions of Theorem 1 we have

T
im 20= D) g,
T'— o0

where (x(0),w(x)) is the solution to H-J-B equation of ergodic
type:

x(0) = StrAN*D?w] + B5Dw + 5(Dw)*ANyA* Dw
(2.13)
+59"Qy g + 60U,



e As for the proof of Theorem 1, cf. Ichihara and Sheu, '13 SIMA
. and also N. '12 preprint.

e A direct proof of Cor. 1 isseen in N. " 12 AAP.

Convexity

e The solution v(0,z;7T) to H-J-B equation (2.12) of parabolic
type chatacterize the value of another stochstic control problem,
which can be seen to be convex with respect to 6

e Owing to Corollary 1, we have also convexity of x(60).



Ergodicity and exponential integrability

x(0) = StrAN*D?w] + B5Dw + 5(Dw)*ANyA* Dw
(2.13)
+29*Qy g + 0U,
We can see that the diffusion process governed by
dX; = )\(Xt)th + {0Bg + )\Ng)\*D’w}(Xt)dt

with the generator

LW 1= %tr[A)\*DQ@b] + 85Dt + (Dw)*ANyA* Dy

turns out to be ergodic. Further, for each 61 < 6 < g there
exist positive constants £k > 0 and C > 0O independent of T and
0 € [01,00] such that

(2.19) E[Xr?) < ¢



Differentiability of H-J-B equation with respect to 6
We obtain
(EE)

' (0) = LYW + U + (A*Dw + 5(5%8) 1 )* (A*Dw + 6(5%8) " 1g),

where v’ = %%’ (cf. Lemma 6.4 in N. '12, AAP), after seeing that
Poisson equation :

(2.20) v(0) = L%u(z) + f(=)
has a unique solution (u,~v(0)) for f € F defined by
. |f ()| _
Fre=A{f €Ly, esssupweBcOK(aC ) < oo}, W= -—w

1 0
K(z: @) = 5(D@)>"A.7\f9/\>'<Dw - 59*%—19 — QU



and u € Fyg:

u(z)]

0o w(x)

2
Fz={ue W 7" esssup e, < oo}

When setting
- 1 * * o\ —1 *8N0 * * e\ —1
f(2) = U+ Z(V'Dw +58(576) " 9)"= >(XN"Dw + 6(578) " *g)

we have (EE)’.



Duality theorem

Theorem 2 Under the assumptions of Theorem 1, we have
for k € (x'(—00),x'(0-))

1 1
im = inf logP(=Fp(X,h)<w)=— _ inf  I(k)=—I
P T heA(ry O (T r(X,h) —'i) reteneyy T ) = )

rate function:  I(k) :=sup{0k — x(0)}
0<0

Moreover, for 0(k) such that x'(0(k)) =k € (x'(—00),x'(0—-)) take
a strategy Bt(e("’)’T). Then,

1 1
o l (0(£),T)y <« ) — _ i — _
Tllm log P ( Fr(X.,h ) <k k:E(X’I(n—f ] I(k) I(k)



Linear Gaussian case (can be independently discussed)
AMx) =)\, B8(x) = Bx + b;

S(x) =S, glea) =Ax+a, U(x) = %aj*Va: +m, 6(x) =9
A, B, S, A, V, 0 are constant matrices

b, a are constant vectors and m is a constant

6*¢ >0, S>0, V>0

In this case, the solution v(¢,z) to H-J-B equation (2.12) has an
explicit representation such that

ot ) = %w*P(t)a:- F () x4 1(2).

where



P(t) + KiP(t) + P(t) K1 + P()ANgA*P(t) + 0A*Q, t A+ 6V =0

K1 =B+ 0)Q, A

(1) + (K1 4+ ANgA*P(1))*q(t) + P()k1 + 0A*Q; Ta = 0

k1 =b+02Q, ta

: 1 1 0
() + §tr[>\>\*P(t)] + k1q(t) + Eq(t)*ANeA*CJ(t) + Ea*Qg_la +6m =20

with the terminal conditions P(T) =0, ¢q(T) =0, I(T) = 0.



If we assume that
(I) AX* >0, A*A >0,
or

(I) B is stable,
then we can see that as T" — oo,

1(t;T)

P(t;T) — P, q(t;T) — q, > x(6),

where P is the unique non-positive definite solution to the station-
ary Riccati equation:

Ki{P + PK1 + PANgA*P + 0A*Q, ' A+ 0V = 0

such that Kqi + )\Ng)\*F is stable, g is the one of the algebraic
equation:

(k1 + ANgAP)*g+ PK1 4+ 0A*Q; 'a = 0,



and x(0) is the constant given by
1 — 1 0
() = 5tr[,\/\*P] + kig+ EG*ANQA*G + Ea*Qe_la + Om.

Further, the pair of a function w(z) = 32*Px+g*z and a constant
x(0) turns out to be a solution to the H-J-B equation of ergodic
type. Differentiability of the solution to the H-J-B equation with
respect to 6 is also seen through independent arguments of the
above general case and thus, we can deduce the same statement
as Theorem 2 under assumption (I) or (II)



3. Robust estimates of the large deviation probability under
drift uncertainty

dPS| T craw—b [T csf2ds
dP |-
T

Wy :=W; — [§¢sds : B.M. under PS¢

(3.1) dXy = {B(Xe) + A(Xp) Gt + A(X)dWy .
(3.2)
T
J1(k) = Tli_)_moo%iirl\-fsgp log P¢ (%{FT(X,,h,) + g/O Cs|2ds) < /@) .

(+. an uncertainty parameter process, up > 0: certainty level of 3



We are going to see the following duality relationship

J1(k) = limp_ 7 infy, supe log PS (F{FPp(X, h) + 5 I3 1¢s|%ds} < k)

= —Supg<offx —x1(0)}.

x1(0) = _m %lnfsuplog EC[Fr(X )5 fo 1GsPds}y
T'—o0 G.
(33)  Pp(X.h) = [ f(Xeho)ds+ [ o(Xe, o) dW
' T\AH 10 ) - — 0 s, s )as 0 P\As, s S
1

f(x,h) .= —Eh*S(:U)h + h*g(x) + U(x), @(x,h) =3d6(x)h,



Formulation of the game

Lower value function:

T
ux(0,2;,T) 1= , iErR‘H ?22 log ES[/AFr(X.h)+5 fo 165Pds)y

Z={; ¢ = ¢, Xy) is prog. m'ble, [((t,z)| < C(1+|z]) }

(¢+: an uncertainty parameter process
Ay = {hg; hy = h(t, Xt,{) is prog. m'ble, h(t,z,¢) € H},

H : the totality of Borel functions h(t,z,¢) : [0,T] x RN x RM — R™

such that |A(t,z,{)| < C(1 + || + [¢]), 3C > 0.



Transformation to Risk sensitive stochastic differential game

C)h T 2 T
dP — 69 fo SO(XSahS)*dWsC_% fo ‘@(Xs,hs)‘QdS

aPe |5

t
Wéh = wé — 9/0 o(Xs, hs)ds

dX = MX)dW" 4+ (B(Xe) 4+ M Xe) ¢t 4 06(Xe)hy)dt

us (0, 2 T) 0{Fr(X h)+5 fo 1¢17ds)

i”fheAH Su pCEZ log EC [e

T
= infheAH SUDCEZ |Og ECah[ee fo 77(X87h87C8)]

n(z,h,¢) = f(z,h) + h*5(x)*¢ + £[¢)% + &|o(x)n|?
= —Sh*Qph+ h*(3¢+ g) + U + 4[¢|?



Lower Isaacs equation

(3.4)
Ou 4 Itr[AN*D?u] 4 B*Du + 5(Du)*AN*Du + H_(z, Du) = 0
u(T,xz) = 0,
H—(xap) — SUDCERM infhERm /\(x7p7 C7 h)

— —ﬁ(]\f@)\*p + 95@8—19)*R9"i(N9>\*p + 05Q, 1 9)]

+2(g + 5 Np)*Q, 1 (g + 5*N'p) + 0U,
N(z,p, ¢, h) = {C+ 056(x)h} XNx)*p + On(z,(, h)

1
Ny =1406Q, 6%, Ry,=1+ ;5%15*,



For a given solution uw to Lower Isaacs equation (3.4), {(t,z) and
h(t,z,¢) defined by

C(t, z) — —%RQ_,}L(NQ)\*D'UJ + 95@519)

A(t,z,¢) = Qpl(g+ 6*¢+ 8" *Du)
satisfy

h(t,z,¢) = arg min A(x, Du(t,z),(, h)
hER™
((t,z) = arg max A(z, Du(t,x), ¢, h(t,z,))
CERM

and

H_(x,Du) = SUDCGRMinfheRm/\(CU,Du(t,iB),C,h)

= A(z, Du(t,z), (t, ), h(t,z, (¢, x)))



Upper Isaacs equation

(3.5)
{ Ou 4 Itr[AN*D?u] 4 B*Du + 5(Du)*AN*Du + Hy (z, Du) = 0

u(T,z) =0,

infcprm SUP ¢ gM Nz, p,C, h)

H_|_(CIJ, p) =
INFhcpm SUP et [{C + 05(2)RYN(@)*p + On(a, &, )

= S{(g — D&Np - g}*Q. 11 {(G, — D& NP — g}
W

—ﬁp*)\)\*p + 60U



For a given solution u to Upper Isaacs equation (3.5), {(t,z) and
h(t,z,¢) defined by

C(t,z,h) = —%(A*Du—I—QCSh)

h(t,z) = —%Qe__ll((l — Op)6*N*Du — Oug)

7
satisfy
h(t,xz) = arg min A(x, Du(t,x),(t,x,h),h)
he R™m
C(t,x,h) = arg max A(z, Du(t,z),(, h)
CeERM
and

H, (x, Du) inf,cprm SUP ¢ gM N(x, Du(t,x),(, h)

A(x, Du(t,z), (t, x, h(t,x)), h(t,z))



Lemma 1 The Isaacs condition holds :

H_(ZC,p) — H+($7p)

and also
h(t,z,((t,z)) = h(t, z)

for given a solution u to (3.4).

Isaacs equation (3.4) can be written as

(

Ou 4 Ltr[AN*D2u] + B, Du

(3.6) < +5(Dw)*ANg A Du + 56*Qp g 4 60U = 0

uw(T,z) =0,

\

1 1 1 1 1
Bo, =084+ (0——-)NQ, "19, Ng,=((1——)N, 1, Qp,=0Q
M 0 9_% s O Q_E 0,1 9_%



Proposition 3 Under the assumptions (2.3) - (2.6) Isaacs equa-
tion (3.6) has a solution such that

u(t,z) < Ko

ou Ou 9%y n
s 5> dx;’ Ox;0x; , € LP(O, T Lloc(R ))

ou
at = —C
02u  02%u o3u O3u

n
o2t aCBZ‘((%’ 8:}0283:8%’ (’9:1:2833]875 < Lp(o T LZOC(R ))

D2 4 Lo=DUH) 94 | 0y < (DN 13, + INg 43, + DN,

+|DBy ulor + 180,413, + 16U |2, + [6DU |2,
+109*Qy 19l2r + |D(09*Qp ) l2r + 1)

S BT‘) t € [OaT)7



where, ¢ > 0 is an arbitrary positive constant, ¢ is a positive
constant depending on cg,c>,c,C,0 and n but not on r, and —C' is
the lower bound of U.

e Cf. Bensoussan-Frehse-N '98 AMQO, N. '96, '03 SICON,

Remark Uniqueness results in viscosity sense are seen in
F. Da Lio - O. Ley, SICON '06,



Saddle point
Let us set

J(C, h(C)) := log ESMO[ef fgn(Xsph(SaXs,Cs)7Cs)],
where

h(¢) = h(t,z, (), (€2Z.

Then, we can see that for the solution u(¢,z;T) to (3.4),

w(0,z; T) = J((, h(()),

where

(37) é: — é:(taXt)a E(é:) — B(ta Xt7 E(t7Xt))
Further, (¢, h({)) turns out to be a saddle point of the game:

J(¢h(€)) < I R(O) < J(CR(D))



and hence

~ e~ T
(G R(O) =, Inf suplog ESR[0 o 1Xshs6)] = 4,0, 2 T)

Thus, we have the following proposition.

Proposition 4 Let u(t,z;T) be a solution to (3.4). Then, under
the assumptions (2.3) -(2.6), the pair ({,h({)) of the strategies

defined by (3.7) satisfies ( € Z, h({) € Ay and attains the value
of the game:

u(0,z; T) = J((,h(()) = ux(0,z; T)

We further have the following proposition.

Proposition 5 h(t, X¢, (¢, X3)) = h(t, X¢).



H-J-B equation of ergodic type

Now let us consider the infinite horizon counterpart of (3.6), called
H-J-B equation of ergodic type:

x1(0) = StriAN*D2w] + 85, Dw + 2(Dw)*ANg , A*Dw

(3.8) B
+59"Qy 9 + 60U,

. 1 1 . 1 1 -1
Bo, =B+ (60— ;)A(SQQ_LQ, Ng, = (1 — @)NQ_%, Qo =@y 1
7 T



Proposition 6 i) Assume that

(3.9) lim_inf {g*(6*6) 1g(z) + U(x)} = oo

r—oo |£l7|2?“

besides assumptions (2.3) - (2.6). Then, we have a solution
(x(0),w) of (3.8) such that w(x) is bounded above. Moreover,
such a solution (x,w) is unique up to additive constants with
respect to w and satisfies the following estimate

(3.10) Vi (z)|? < Cuwlz|? + C,
Furthermore, if we assume stronger assumption

1
c1— 6

(3.11) calz|® — c5 < g*(6*8) " tg(x) + U(z)
than (3.9), then we have

(3.12) —cw|x|2 +dc, > w(x), cw, c,>0.



ii) Assume that

(3.13) B(x) z < —cﬁ|a:|2 + clﬁ, cg >0 ,c/ﬁ >0

besides assumptions (2.3) - (2.6). Then, there exists a positive
constant b, > 0 such that v, (z) := b«|x|? satisfies

F(¢b*><$) — —00, dsS |'CU| — 00,

where
1 1 0
F(y) = St D2¢]+5; D+ (D) ANg A" Dipt+—g" Qg ,9+0U

and we have a solution (x(0),w) to (3.8) such that
w — Yp(x) with 0 < b < by is bounded above. Moreover, such
solution is unique up to additive constants.



e [ hus, we have seen the situation is almost same as the non-
robust case and we can proceed assuming the assumptions of
Proposition 6 i) with (3.11). The case of ii) of the proposition
could be similarly discussed according to the above comment.

e Similarly to the non-robust case, we can develop parallel argu-
ments to obtain our duality theorem. Indeed,



e Under the assumptions of Proposition 6 i) with (3.11), as T —
oo, u(0,z;T) — {w(x) + x1(0)T} converges to a constant cooc € R
uniformly on each compact set.

e As its corollary, we have

w(0,z;T)

(3.14) Tlim = x1(0),

where (x1(0),w(x)) is the solution to H-J-B equation of ergodic
type:

x1(0) = StriAN*D2w] + 85, Dw + £(Dw)*ANg , A*Dw
+59" Qg .9 + 0U,

e Convexity of x1(0) is seen in a similar manner to the non- robust
case, Indeed,



e To see the convexity of the solution u(t,z) to the H-J-B equa-
tion of parabolic type with respect to 6 we introduce a classical
stochastic control problem

(3.15) ux(0,x;T) = sup E[ CD(XS,ZS)ds]
RSY/

with the controlled process X; governed by the stochastic differ-
ential equation

(3.16) dXt = MX)dWi + {G(Xy) + M(Xp) Ze}dt, Xo==
where

G(z) = B —N5(86%8) 1.

(2,210) = Silgyz* N, iz — 12276(5%8) g
W

+—2(19_M9,u)9*(5*5)_19 + 0U.



Its H-J-B equation turns out to be identical to the original H-J-B-
Isaacs equation for the risk-sensitive differential game. From the
convexity of ®(x, z; 0) and the verification theorem we can see that
w(0,z;T) is convex. Further, Owing to (3.14) above we see the
convexity of x(60)

e \We can see that

x(0) = lim7_,o #u(0,2; T)

M7 o0 % SUpP; E[fg (Y5, 25)ds]

— SUDZ, Ii_mT—>oo %E[foT CD(Y!S? ZS)dS]'

the generator of the optimal diffusion process for the problem on
infinite time horizon is seen to be

1
LW = Etr[)\X“Dsz] + 85, D¢ + (Dw)* ANy , A* D)

and we see that LY is ergodic.
The optimal diffusion is governed by:

dX¢ = MXp)dWi + {8y, + ANy , N Dw}(Xy)dt



e Further, under the assumptions of Theorem 1, for each 61 <60 <
0y there exist positive constants £ > 0 and C' > 0 independent of
T and 6 € [01,60p] such that

(3.17) E[F X1 < ¢
e Differentiability of H-J-B equation with respect to 6

can be seen similarly to the non robust case and we have

8ﬁau ON,

x71(0) = L% + (— g A Dw

*Dw + 5 (Dw)*A

_I_l * Q@,LL

g+ U,

_ Ow
where w' = 50 -



e Introduce a stochastic differential game
(3.18)

J(0,2;T) = infy, sup¢, ESMV[0{fd f(Xs, hs)ds + [5 o(Xs, hs)*dWs}
+4 13 1¢s%ds — 5 Jd |vs + 05(Xs)hs|?ds],

where X; is a solution to the stochastic differential equation

dX: = {B(Xe) + M(Xp) (¢t + v + 05 (Xp)he) Ydt + M (Xp)dWy, X = =z,

PSRV is 3 probability mesure:

PO (A) = BC[elo (s H08(XRs) dWS =4 [T 1vs405(X)holPds, o1

_ ¢
W, = WE — /O (Us 4 05(Xs)hs)ds.



Setting

=, (z, h,v: 0) = ——h*Qe(w)h+9h*(9(w)+C’)+9U(w)+ |<|2——| 2,
(3.18) is written as

_ T
J(O,z;T) = mfsupEChV[/ =1(Xs, hs, (s, vs; 0)ds].
N

The corresponding Isaacs equation:
Ou 4 Ltr[AN*D2u]
+sup¢ , infR[{8 + A(v + ¢ + 05h)}*Du + =1 (x, h, ¢, v; 6)] =0,

which is same as
Ou - Itr[AN*D?u] 4 B*Du + 5(Du)*AN*Du + H_(z, Du) = 0
u(T,z) = 0,



Ergodic type equation
x1(0) = Str[AN*D?uw]

+ SUDI/ERn,CGRM infhERm [{B + >\C + A(V + Qéh)}*Dw + El(CB? h7 Ca V)]

can be written as

where

1
LY = Etr[A)\*DQM + 85, D¢ + (Dw)*ANg ,\* Dy

ho= Qp (g4 6T+ "N Dw)

I\
|

— L Ry L(NgA Dw + 05Q; ) = —%Ne_%)\*Dw ~ %5@‘_1%9

v = AN'Dw



1 0 .
(319)  x1(8) = LYw — _(Dw)* ANy, A" Dw + 5g*Q@,}ﬂ + 0U

9Bg. 8N9 "

X1 (0) = LYw' + (g5 )*Dw + 3(Dw)* A5\ Dw

(3.20) o
+2g* 2999“ g+ U.

(3.19)" and (3.20) lead

x1(0) — 6x1(0) = LY (w — ew’>——|u+95h|2

and

1 _ 1
5|;7+95h|2:§{N 1/\*Dw+95Q 1gy{N,_ 1/\*Dw+95Q

T u

19}
o



Let us consider the worst case uncertainty {; = ((X;) with
C((z) = ——RQ M(NQA*Dw + 06Q, 1)
O

and take a probability measure P defined by
dP

| = (54+05R}(Xs) dWE—3 [T |5406h2(Xs)ds
dPS| -

Then, under the probability measure P, X; satisfies

dX: = {B(Xt) + M X)) (G + 7t + 05(Xe)he) Yt + N(Xp)dWe, X =z,

where

i} -t .,
W, =W - /O (Ds 4+ 06(Xs)hs)ds.

by = 0(Xy), he = h(Xy)



Duality theorem

Theorem 3 For k € (xj(—),x}(0-)), we have

. 1 (T
lim = inf suplog PS(Fr(X ., h —/ 24s < kT) = —1I
TjooThEAHCGZB g P>(Fr(X. .)+2 . |Cs|“ds < KT) 1(x)

I1(k) = sup{0k — x1(0)}
<0

Moreover, for (k) such that x}(0(k)) = k € (x}(—00),x5(0-))
take a strategy hU0K)) (¢, z. ). Then,

1 o0 ) T
JNim Z10g PAFR(X RN (X, 0+ 5 [ 1GRPds < wT) = —1(x)



Note that

iNfhen,, 109 PS(Fp(X., h(-, X, C)) + 4 1F182ds < wT)
< log PS(Fp(X.,ROED (X, 8)) + & [T 1Cs2ds < wT)
< supglog PS(Fp(X., AU (X C)) + 4 3 |¢s|%ds < wT)

= u(0,z;T) — kT

for 6 < 0.



e 11 IS considered as the certainty level of 3 since we have the
following estimate:

- 1
| T o= 0C)
ocC ,U/

C(z): the worst case uncertainty



Linear Gaussian case
B(x) =Bx+b, gx) =Axz+a, U(x)= %x*\/w + m,
A 0,5 A, B,V . const. matrices

1
uw(t,x) = Ew*P(t)x + q(t)*x +1(t), sol. to the Lower Isaacs eq.

2

P(t) — P(t)A 1ANP(t) + KIP(t) + P(t) Ky

\ _C*C 4+ 0V =0
P(T) =0

\

B+(9—l)A5Q 1A

K 1

C*C = —HA*QQ__A



\

Q(t) + (Kf — S5 2 P()AN,_10)q(t) + P(£)b

n

10 — MHMP(t))\(SQQ__lla, =0

9__ 1
7!

_9A*sQ L

q(T) =0

i(#) + StrN PO + 3(1 — 5,)a(OAN,_13*q(t)

7

la—l—é’m

n

+(+ (6 - DAQ, 1a> a(t) + 50Q,

I(T) =0



In this case, if we assume that
(i) B is stable,

or

(i) AX*>0, A*A >0

then,

Pt;T)—> P, T—oo qt;T)—q

P is a solution to the stationary equation:

1 — Ou_ _ o
- PPAN, NP+ KiP+ PK1 — C*C + 6V =0
H T
such that
1-0 _
Ky — EAN _1A\*P s stable

Op p



q is the solution to

(Ki — 25 MPAN, 13*)§+ Pb
7
—0A*5Q " a — =PEPASQ, a = 0.
f p

Further,
[(0;T)

- > x1(6)

x1(0) = SrDNVPI+ 5(1 - 5)aAN,_1A*q
W

+(b+ (6 - DAQ, 1a)*T+ Fa*Qy ta + m

W

e differentiability of P, g, x1(0) is seen in a similar way to Hata-
N.-Sheu.
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