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Discrete time sampling of SDE

dXt = b(Xt, Oé)dt + U(Xt,ﬁ)th 0 = (Oé,ﬁ) c © g IRp

Data: Xi,,Xy,,... Xy

n
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Discrete time sampling of SDE

dXt = b(Xt, Oé)dt + U(Xt,ﬁ)th 0 = (Oé,ﬁ) c © g IRp

Data: Xi,,Xy,,... Xy

n

Likelihood-function:

n

Ln(8) = ][ (A, X, , X050,

1=1

y — p(A, x,y;0) is the transition density, i.e. probability density function of
the conditional distribution of X;, A given that X; =«
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Likelihood inference

e Approximate p by the density of N(x + b(x;0)A, o(x;0)A)
Gaussian pseudo-likelihood function:

Dorogovcev (1976), Prakasa Rao (1988), Florens-Zmirou (1989), Yoshida
(1992), Chan et al. (1992), Kloeden et al. (1996), Kessler (1997),
Sarensen & Uchida (2003), Uchida & Yoshida (2012)
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Likelihood inference

e Approximate p by the density of N(x + b(x;0)A, o(x;0)A)
Gaussian pseudo-likelihood function:

Dorogovcev (1976), Prakasa Rao (1988), Florens-Zmirou (1989), Yoshida
(1992), Chan et al. (1992), Kloeden et al. (1996), Kessler (1997),
Sarensen & Uchida (2003), Uchida & Yoshida (2012)

e Approximate p by a Gaussian density obtained by local linearization:

Ozaki (1985), Shojo and Ozaki (1998)

e Approximate p by the density of N (F(z;6), ®(x;6)), where
F(x;0) = Eg(XaA|Xo=2) and &(x;0) = Varg(Xa|Xo = z).
Quadratic martingale estimating functions:

Bibby & Sarensen (1995, 1996), Jacobsen (2002)
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Likelihood inference

e Approximate p by solving the Fokker-Planck equation / the forward
Kolmogorov equation numerically:

Lo (1988), Poulsen (1999), Hurn, Jeisman & Lindsay (2007)
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Likelihood inference

e Approximate p by solving the Fokker-Planck equation / the forward
Kolmogorov equation numerically:

Lo (1988), Poulsen (1999), Hurn, Jeisman & Lindsay (2007)

e Approximate p by expansions in powers of A:

Ait-Sahalia (2002, 2008), Li (2012)

e Approximate p by eigenfunction expansions:

Forman & Sgrensen (2008)
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Likelihood inference

e Approximate p by Monte Carlo methods, where the diffusion is simulated
a large number of times:

Pedersen (1995), Brandt & Santa Clara (2002), Durham & Gallant (2002)
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Likelihood inference

e Approximate p by Monte Carlo methods, where the diffusion is simulated
a large number of times:

Pedersen (1995), Brandt & Santa Clara (2002), Durham & Gallant (2002)

e Approximate p by Markov chain Monte Carlo methods:

Elerian, Chib & Shephard (2001), Eraker (2001), Roberts & Stramer
(2001), Golightly & Wilkinson (2005), Beskos, Papaspiliopoulos, Roberts
& Fearnhead (2006), Delyon & Hu (2006), Lin, Chen & Mykland (2010)

e Stochastic EM-algorithm:

Beskos, Papaspiliopoulos, Roberts, and Fearnhead (2006), Bladt and
Sgrensen (2012)
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The EM-algorithm

Observation: X ps

The likelihood function for X ¢ is intractable or unknown

Suppose we can augment X, by some missing data X, such that the
full (but partly unobserved) data set

Y = <X0b87 Xmis)

has a tractable likelihood function
LO)=p(Y;0) 6c06

Q(0, 9/> = Eg:(logp(Y;0) | Xops)
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The EM-algorithm

EM-algorithm:

1. Chooce afy € ©,i:=0

2. (E-step) Calculate Q(0,6;) = E; (logp(Y;0) | Xops) for all 6 € ©
3. (M-step) Find a maximum 6;,1 of 6 — Q(0, 6;)

4.1:=i+1goto?2

Under weak regularity conditions, the sequence 6; will converge in
probability to a local maximum of the likelihood function for X

Dempster, Laird & Rubin (1977)

McLachlan & Krishnan (1997)
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EM-algorithm for a diffusion model

AV, = b(Visa)dt + o(Vi; B)dW, 0= (a, 8) € © CR”
Data: Vi, ---,V;,, O0=tg < - <t,.

XObS:(Vtov"'vV;ﬁ )

n

With which X,is should we augment the observations to get a useful full

data set
Y = (Xob37Xmis)?
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EM-algorithm for a diffusion model

AV, = b(Visa)dt + o(Vi; B)dW, 0= (a, 8) € © CR”
Data: Vi, ---,V;,, O0=tg < - <t,.

XObS:(Vtov"'vV;ﬁ )

n

With which X,is should we augment the observations to get a useful full

data set
Y = (Xob37Xmis)?

o) = [ s X (V)

AX, = ap(X)dt +dW,,  aglz) = ', 5005 @ )
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The missing data

Xmis — (XlaaXn)

Xy =X; — A nﬁ(‘/ti—l) — A nﬁ(‘/ti) t e [t’i—lvt’i]

X*"is a diffusion bridge that solves dX; = ag(X;)dt + dWy in [t;_1, ;]
starting at X;, , =ng(V4,_,) and ending at X;, = nz(V%,)

X*t ..., X*" are independent (given the data)

Define the operator

t; — T
95.:(X) = Xy +

A,

t—1;-1
A

775(‘/;5»@—1) + 775(‘/;51') VS [ti—lv ti]

Then N |
9p,:(X") = X™
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Full likelihood

The full likelihood, i.e. the density of (V;,,---, Vi , X', ..., X™) w.rt.
A" X W(O,O,t1) < W(0,0,tg—tl) N, W(O,O,tn—tn_l):

n

exXp <H9(779(‘/tn)) - HQ(”@(VO)) o Z [221 (nﬁ(‘/tz) - nﬁ(‘/ti—1))2

1=1

+og(o(Vis ) + [ 5lad+ a’9><gﬁ,¢<X@'>S>dsD

W (0:0:9): probability measure on C([0, t]) induced by the standard
Brownian bridge on [0, ¢] starting at 0 and ending at 0

H(z0) = / " ao(y)dy

Roberts and Stramer (2001)
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Diffusion bridge simulation

dXt = Oé(Xt>dt -+ O'(Xt)th

A solution of in the interval [t1, 5] such that X;, = a and X;, = b is called
d (tl, a, ta, b)-brldge
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Diffusion bridge simulation

dXt = Oé(Xt>dt -+ O'(Xt)th

A solution of in the interval [t1, 5] such that X;, = a and X;, = b is called
d (tl, a, ta, b)-brldge

e Metropolis-Hastings algorithm with a proposal distribution given by a
process that is forced to go from a to b:

Roberts & Stramer (2001), Durham & Gallant (2002)

e Exact simulation of one-dimensional diffusion bridges:
Beskos, Papaspiliopoulos & Roberts (2006, 2008)

e Straightforward diffusion bridge simulation using e.g. the Euler scheme:

Bladt & Sgrensen (2009, 2012)
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Diffusion bridge simulation

dX] = a(X})dt + o(X))dW!, X5 =a and X7 =b

W1 and W? independent standard Wiener processes

Define 7 = inf{0 <t < A|X} = X1_,} (inf @ = +o0) and

(X! fo<t<rt

| XA, fT<t<A
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Diffusion bridge simulation




Diffusion bridge simulation




Diffusion bridge simulation

dX! = a(X})dt + o(X))dW!, X;=a and X3 =b, ergodic

(X} fo<t<rt

| XZ_, it T <t <A

The distribution of {Z; }o<:<a, conditional on the event {r < A}, equals
the distributions of a (0, a, A, b)-bridge conditional on the event that the
bridge is hit by an independent diffusion with the same stochastic
differential equation as X; and initial distribution with density pa (b, -)

Let us call such a diffusion a pa (b)-diffusion
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Two probabilities

(0,a, A, b)-bridge
p(A) = P(t > A) (rejection probability)

w(A) = the probability that a (0, a, A, b)-bridge is hit by an independent
pa(b)-diffusion
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Two probabilities

(0,a, A, b)-bridge
p(A) = P(t > A) (rejection probability)

w(A) = the probability that a (0, a, A, b)-bridge is hit by an independent
pa(b)-diffusion

For ergodic diffusions:
p(A) — 0 as A — oo

T(A) — 1 as A — oo

For diffusions with a spectral gap, A > 0 (geometrically ergodic):

p(A) = O(e™2/?) 1 —7m(A) =0(e*/?).
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Hyperbolic diffusion bridge

Barndorff-Nielsen (1978)

The exact EA1 algorithm of Beskos, Papaspiliopoulos and Roberts (2006)
works for this diffusion

(0,0, 1,0)-hyperbolic diffusion bridge (¢t = 0.5, 25000 bridges)

5]

IIIIIIII
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Hyperbolic diffusion bridge

1 )
ELO,

o =
£ D¢

+—tn | al

D @
3 g

Approximate bridge simulation Beskos et al. (2006)

The CPU execution time to simulate 10,000 hyperbolic (0,0, A, 0)-bridges
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Ornstein-Uhlenbeck bridge

(0,—-3,1,—2) O-U bridge (¢t = 0.5, 25000 bridges)

Approximate bridge
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Diffusion bridge simulation

The density of the approximate diffusion bridge Z on the canonical space
C'a (continuous functions defined on [0, A] with the usual o-algebra):

fa(x) = fo(z)ma(z)/mA

fp is the density of a (0, a, A, b)-diffusion bridge
ma(x) = P(Y € A,) A = P((X,Y) € A)
where X and Y are independent

X isa (0,a,A,d)-diffusion bridge
Y is a pa(b)-diffusion,

Ay ={y € Calar(y)ngr(z) # 0} A= {(z,y) € CX | gr(y)ngr(z) # 0}
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M-H algorithm: exact diffusion bridge

Simulate an initial approximate (0, a, A, b)-diffusion bridge, X(©), setk = 1.

(1) Propose a new sample paths by simulating an approximate
(0,a, A, b)-diffusion bridge X (*)

(2) Accept the proposed diffusion bridge with probability

(RO (XED)N s (X D)
min (1’ fZ(X(’f—l))fa(X<k>)> - (1’ ma (X ) )

Otherwise X (*) = x(k—1)

(3) Set k =k +1and GO TO (1)

.= p.22/41



M-H algorithm: exact diffusion bridge

Simulate an initial approximate (0, a, A, b)-diffusion bridge, X(©), setk = 1.

(1) Propose a new sample paths by simulating an approximate
(0,a, A, b)-diffusion bridge X (*)

(2) Accept the proposed diffusion bridge with probability

(RO (XED)N s (X D)
min (1’ fZ(X(’f—l))fa(X<k>)> - (1’ ma (X ) )

Otherwise X (*) = x(k—1)

(3) Set k =k +1and GO TO (1)

But we do not know 7a ()
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Pseudo-marginal MH-algorithm

Andrieu and Robert (2009)
For a given = € Cxa, define a random variable 1" as follows:

Simulate a sequence of independent pa (b)-diffusions Y (), Y (2 until a
sample path is obtained that intersects x. Define T' by

T =min{i: Y € A,}.

Then
E(T)=1/ma(x).

If T = (1y,...,Tx) is a vector of N independent draws of T, then an
unbiased and consistent estimator of 1/7a(x) is

1 N
pa(z; T) = NZTJ-.
j=1

.~ p.23/41



M-H algorithm: exact diffusion bridge

Metropolis-Hastings Markov chain with state (X *), T(*)).

Simulate an initial approximate (0, a, A, b)-diffusion bridge, X (9, N
independent T-values, T® = (T ... 7!} with z = X, and setk = 1.

(1) Propose a new sample paths by simulating an approximate
(0,a, A, b)-diffusion bridge X (*), and simulate N independent
T-values, T®) = (T .. Ty with z = X®)

(2) Accept the proposed (X %), T(¥)) with probability

ﬁA(X(k)-T(k))
min | 1, — ’
( m(X““‘”;T(’“‘”))

Otherwise X(¥) = X (k=1) gnd T(k) = T(k-1)

(3) Set k =k +1and GO TO (1)
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Ornstein-Uhlenbeck bridge

(0,-3,1,—2) O-U bridges (0 = 0.5, 0 = 1.0, t = 0.5, 25000 bridges)

Approximate simulation and exact MH-simulation (N=10, burn-in 5000)
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Exact bridge Exact bridge
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Autocorrelations for the exact MH-algorithm

Autocorrelations for the exact MH-algorithm of the state at time 0.5 for
simulated (0, —3,1, —2) O-U bridges (¢ = 0.5, ¢ = 1.0)

ACF
0.6 0.8 1.0
I

0.4

0.2
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Integrated diffusions

dX; = b(Xt; Oé>dt T U(th 5)th, Xo ~ He, B

Data: t;
YZ-:/ X,ds+Z;, i=1,....n
ti—1

Z; ~ N(0,72%), independent

Bollersev and Wooldridge (1992)

Gloter (2000, 2006)

Ditlevsen and Sgrensen (2004)

Comte, Genon-Catalot and Rozenholc (2008)
Forman and Sgrensen (2008)
Baltazar-Larios and Sgrensen (2010)
Saerensen (2011)
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Likelihood inference

dX; = b(Xt; Oé>dt T U(Xt; 5)th, Xo ~ He, B

Data: t;
YZ-:/ X,ds+Z;, i=1,....n
ti—1

Z; ~ N(0,72%), independent

Likelihood conditional on the diffusion process:

n ts
[Lo(vi | Xods. 7
i=1 ti—1

¢ Gaussian density function
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Likelihood with full diffusion observation

dX; = b(Xt; Oé>dt T U(th 5)th, Xo ~ He, B

Likelihood if we had observed X continuously in [tg, t,,]:

U= h(XiB) )= [ o

dUt — C(Ut; Q, 6>dt -+ dBt,
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Likelihood with full diffusion observation

dX; = b(Xt; Oé>dt T U(th 5)th, Xo ~ He, B

Likelihood if we had observed X continuously in [tg, t,,]:

T
U= hXisB)  h@if) = [ sy
dUt = C(Ut; Q, 6>dt + dBt,
. (h_1(3735)3a) 25 (WY (- B):
el e f) (h=Y(x;8);8) 2 (W™ (@3 8); 8)
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Likelihood with full diffusion observation
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EM algorithm

0= (c,B3,7%)
9 any value of the parameter vector

(1) (E—step) Generate sample paths of X*) k. = 1,..., M conditional on

Yi,...,Y, using the parameter value 0, and calculate
1 (k)
0) — > o1 L(@;Y,...,Yn,hx’“;",t t,tn>
g(0) M—Mok_ +1Og 1 (X5 8),t € [to, t)

(for a suitable burn-in period M)
(2) (M—step) 6 = argmax g(6)

(3) GO TO (1)
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Conditional diffusion simulation

Chib, Pitt & Shephard (2006)
Simulate an unrestricted stationary sample path of X in [tg, ¢,,]

Repeat the following

1) Randomly draw v, < -+ - < vy fromthe set {1,2,...,n — 1} and set
1 =0, VK+2 =N, Tj :t,/j+1,j20,...,K+1

2) In each interval [;_1, 7;] update by simulating a diffusion bridge
conditional on the values of the diffusion process at the times 7,_; and 7;
obtained in the previous iteration and on Yt,,j , Ytyjﬂ, LY

i+l
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Conditional bridge simulation

Simulate an initial (7;_1,vio, 7, v;1)-diffusion bridge, X(®), and set k = 1.

(1) Propose a new sample paths by sampling a
(1j—1, vio, 74, v;1 )-diffusion bridge X (*)

(2) Accept the proposed diffusion bridge with probability

( e SO(YI/iji; ftii_ngk) ds, T2> )
min 1,H :

i1 (Y,,jﬂ.; ftiz‘_lxs(k—l) ds, 72>

Otherwise X (k) = x(k—1)

(3) Set k =k+1and GO TO (1)
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Integrated O-U process: simulation study

dXt — _O{Xtdt + Uth

a=01 c0=0.5 72 =1.25
Y,, t;=4, i=1....,1500
M = 10000, M, = 1000

1000 simulated datasets

Average of parameter estimates:

A Q o

,7_2

10 | 0.106 0.523

1.229

20 | 0.101 0.507

1.235

30 | 0.084 0.458

1.252
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Integrated CIR process: simulation study

dXt = (Oé — BXt)dt + o/ Xtth

a=05 =02 0c=05 72 =1.25
Y, t;=4i, i=1....,1500
M = 10000, My = 1000

1000 simulated datasets

Average of parameter estimates:
A o) I’ o 72
30 | 0.4802 0.2056 0.4787 1.2432
20 | 0.4727 0.2043 0.4698 1.2406
10 | 0.4587 0.1965 0.4609 1.2287
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Multivariate diffusions

dXt — C)Z(Xt)dt + O'(Xt)th, X/A =b

dX; = a(X))dt + o(X])dW,, X)=a

.~ p.36/41



Multivariate diffusions

dXt — C)Z(Xt)dt + O'(Xt)th, X/A =b
dX; = a(X))dt + o(X])dW,, X)=a

Lindvall & Rogers (1986), Chen &Li (1989)

dWy = [I — (1 = MII(Xe, X)) dWe + 1 — y2u(Xy, X{)dU.

v € [—1,1), U isaunivariate standard Wiener process independent of W

(z,2') = u(z, 2 )ulz, 2"’ u(x, ') =

.~ p.36/41



Multivariate diffusions

Assume that X is ergodic with invariant probability density function v

Time-reversed diffusion:

dX; = o*(X7)dt + o(X))dW,

Provided that

/D Zaxj (v(x)Vij(x))|de < oo, i=1,...,d.
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Multivariate Ornstein-Uhlenbeck process

dX, = —BX,dt + dW;.

Ergodic and time-reversible with stationary distribution N5 (0,1"), where

/

\

1.5 1
1 1.5
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Simulation of Ornstein-Uhlenbeck

Bridge from (0, 0) to (0,0), ¢t = 0.5, 20000 bridges

QQ-plots of approximate bridge against exact bridge (1st and 2nd

coordinate)

Dim1 p=(0,0)—>(0,0) pb=0.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

SSSSSS

-1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

Dim2 p=(0,0)->(0,0) pb=0.5
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Simulation of Ornstein-Uhlenbeck

Bridge from (0, 0) to (0,0), ¢t = 0.5, 20000 bridges

QQ-plots of memc bridge against exact bridge (1st and 2nd coordinate)

Dimension 1 Dimension 2
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T
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Simulation of Ornstein-Uhlenbeck

Bridge from (0, 0) to (0,0), ¢t = 0.5, 20000 bridges

Level curves for empirical copula of approximate bridge and exact bridge
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