Stoch. Proc. and their Statistics in Finance

Okinawa, Japan

Simulation of Diffusion Bridges with Application to Statistical Inference for SDEs

Michael Sørensen University of Copenhagen http://www.math.ku.dk/~michael

Joint work with Fernando Baltazar-Larios and Mogens Bladt, Universidad Nacional Autonoma de Mexico and Samuel Finch, University of Copenhagen

Discrete time sampling of SDE

 $dX_t = b(X_t; \alpha)dt + \sigma(X_t; \beta)dW_t \qquad \theta = (\alpha, \beta) \in \Theta \subseteq \mathbb{R}^p$

Data: $X_{t_0}, X_{t_1}, ..., X_{t_n}$

Discrete time sampling of SDE

 $dX_t = b(X_t; \alpha)dt + \sigma(X_t; \beta)dW_t \qquad \theta = (\alpha, \beta) \in \Theta \subseteq \mathbb{R}^p$

Data: $X_{t_0}, X_{t_1}, ..., X_{t_n}$

Likelihood-function:

$$L_n(\theta) = \prod_{i=1}^n p(\Delta, X_{t_{i-1}}, X_{t_i}; \theta),$$

 $y \mapsto p(\Delta, x, y; \theta)$ is the transition density, i.e. probability density function of the conditional distribution of $X_{t+\Delta}$ given that $X_t = x$

• Approximate p by the density of $N(x + b(x; \theta)\Delta, \sigma(x; \theta)\Delta)$

Gaussian pseudo-likelihood function:

Dorogovcev (1976), Prakasa Rao (1988), Florens-Zmirou (1989), Yoshida (1992), Chan et al. (1992), Kloeden et al. (1996), Kessler (1997), Sørensen & Uchida (2003), Uchida & Yoshida (2012)

• Approximate p by the density of $N(x + b(x; \theta)\Delta, \sigma(x; \theta)\Delta)$

Gaussian pseudo-likelihood function:

Dorogovcev (1976), Prakasa Rao (1988), Florens-Zmirou (1989), Yoshida (1992), Chan et al. (1992), Kloeden et al. (1996), Kessler (1997), Sørensen & Uchida (2003), Uchida & Yoshida (2012)

• Approximate p by a Gaussian density obtained by local linearization: Ozaki (1985), Shojo and Ozaki (1998)

• Approximate p by the density of $N(x + b(x; \theta)\Delta, \sigma(x; \theta)\Delta)$

Gaussian pseudo-likelihood function:

Dorogovcev (1976), Prakasa Rao (1988), Florens-Zmirou (1989), Yoshida (1992), Chan et al. (1992), Kloeden et al. (1996), Kessler (1997), Sørensen & Uchida (2003), Uchida & Yoshida (2012)

• Approximate p by a Gaussian density obtained by local linearization: Ozaki (1985), Shojo and Ozaki (1998)

• Approximate p by the density of $N(F(x; \theta), \Phi(x; \theta))$, where

 $F(x;\theta) = E_{\theta}(X_{\Delta}|X_0 = x)$ and $\Phi(x;\theta) = \operatorname{Var}_{\theta}(X_{\Delta}|X_0 = x).$

Quadratic martingale estimating functions:

Bibby & Sørensen (1995, 1996), Jacobsen (2002)

• Approximate p by solving the Fokker-Planck equation / the forward Kolmogorov equation numerically:

Lo (1988), Poulsen (1999), Hurn, Jeisman & Lindsay (2007)

• Approximate p by solving the Fokker-Planck equation / the forward Kolmogorov equation numerically:

Lo (1988), Poulsen (1999), Hurn, Jeisman & Lindsay (2007)

• Approximate p by expansions in powers of Δ :

Aït-Sahalia (2002, 2008), Li (2012)

• Approximate p by solving the Fokker-Planck equation / the forward Kolmogorov equation numerically:

Lo (1988), Poulsen (1999), Hurn, Jeisman & Lindsay (2007)

• Approximate p by expansions in powers of Δ :

Aït-Sahalia (2002, 2008), Li (2012)

• Approximate p by eigenfunction expansions:

Forman & Sørensen (2008)

• Approximate p by Monte Carlo methods, where the diffusion is simulated a large number of times:

Pedersen (1995), Brandt & Santa Clara (2002), Durham & Gallant (2002)

• Approximate p by Monte Carlo methods, where the diffusion is simulated a large number of times:

Pedersen (1995), Brandt & Santa Clara (2002), Durham & Gallant (2002)

• Approximate *p* by Markov chain Monte Carlo methods:

Elerian, Chib & Shephard (2001), Eraker (2001), Roberts & Stramer (2001), Golightly & Wilkinson (2005), Beskos, Papaspiliopoulos, Roberts & Fearnhead (2006), Delyon & Hu (2006), Lin, Chen & Mykland (2010)

• Approximate p by Monte Carlo methods, where the diffusion is simulated a large number of times:

Pedersen (1995), Brandt & Santa Clara (2002), Durham & Gallant (2002)

• Approximate *p* by Markov chain Monte Carlo methods:

Elerian, Chib & Shephard (2001), Eraker (2001), Roberts & Stramer (2001), Golightly & Wilkinson (2005), Beskos, Papaspiliopoulos, Roberts & Fearnhead (2006), Delyon & Hu (2006), Lin, Chen & Mykland (2010)

• Stochastic EM-algorithm:

Beskos, Papaspiliopoulos, Roberts, and Fearnhead (2006), Bladt and Sørensen (2012)

The EM-algorithm

Observation: X_{obs}

The likelihood function for X_{obs} is intractable or unknown

Suppose we can augment X_{obs} by some missing data X_{mis} such that the full (but partly unobserved) data set

$$Y = (X_{\text{obs}}, X_{\text{mis}})$$

has a tractable likelihood function

$$L(\theta) = p(Y; \theta) \qquad \theta \in \Theta$$

$$Q(\theta, \theta') = E_{\theta'}(\log p(Y; \theta) \,|\, X_{\text{obs}})$$

The EM-algorithm

EM-algorithm:

- 1. Chooce a $\hat{\theta}_0 \in \Theta$, i := 0
- 2. (E-step) Calculate $Q(\theta, \hat{\theta}_i) = E_{\hat{\theta}_i}(\log p(Y; \theta) | X_{obs})$ for all $\theta \in \Theta$
- 3. (M-step) Find a maximum $\hat{\theta}_{i+1}$ of $\theta \mapsto Q(\theta, \hat{\theta}_i)$
- 4. i:=i+1 go to 2

Under weak regularity conditions, the sequence $\hat{\theta}_i$ will converge in probability to a local maximum of the likelihood function for X_{obs}

Dempster, Laird & Rubin (1977)

McLachlan & Krishnan (1997)

EM-algorithm for a diffusion model

 $dV_t = b(V_t; \alpha)dt + \sigma(V_t; \beta)dW_t \qquad \theta = (\alpha, \beta) \in \Theta \subseteq \mathbb{R}^p$

Data: $V_{t_0}, \dots, V_{t_n}, \quad 0 = t_0 < \dots < t_n.$

$$X_{\mathsf{obs}} = (V_{t_0}, \cdots, V_{t_n})$$

With which X_{mis} should we augment the observations to get a useful full data set

$$Y = (X_{\text{obs}}, X_{\text{mis}})?$$

EM-algorithm for a diffusion model

 $dV_t = b(V_t; \alpha)dt + \sigma(V_t; \beta)dW_t \qquad \theta = (\alpha, \beta) \in \Theta \subseteq \mathbb{R}^p$

Data: $V_{t_0}, \dots, V_{t_n}, \quad 0 = t_0 < \dots < t_n.$

$$X_{\mathsf{obs}} = (V_{t_0}, \cdots, V_{t_n})$$

With which X_{mis} should we augment the observations to get a useful full data set

$$Y = (X_{\text{obs}}, X_{\text{mis}})?$$

$$\eta_{\beta}(v) = \int_{v^*}^{v} \frac{1}{\sigma(u;\beta)} du, \qquad X_t = \eta_{\beta}(V_t)$$

 $dX_t = a_{\theta}(X_t)dt + dW_t, \qquad a_{\theta}(x) = \frac{b(\eta_{\beta}^{-1}(x);\alpha)}{\sigma(\eta_{\beta}^{-1}(x);\beta)} - \frac{1}{2}\sigma'(\eta_{\beta}^{-1}(x;\beta))$

The missing data

$$X_{\mathsf{mis}} = (\dot{X}^1, \dots, \dot{X}^n)$$

$$\dot{X}_{t}^{i} = X_{t}^{*i} - \frac{t_{i} - t}{\Delta_{i}} \eta_{\beta}(V_{t_{i-1}}) - \frac{t - t_{i-1}}{\Delta_{i}} \eta_{\beta}(V_{t_{i}}) \qquad t \in [t_{i-1}, t_{i}]$$

 X^{*i} is a diffusion bridge that solves $dX_t = a_{\theta}(X_t)dt + dW_t$ in $[t_{i-1}, t_i]$ starting at $X_{t_{i-1}} = \eta_{\beta}(V_{t_{i-1}})$ and ending at $X_{t_i} = \eta_{\beta}(V_{t_i})$

 X^{*1}, \ldots, X^{*n} are independent (given the data)

Define the operator

$$g_{\beta,i}(X)_t = X_t + \frac{t_i - t}{\Delta_i} \eta_\beta(V_{t_{i-1}}) + \frac{t - t_{i-1}}{\Delta_i} \eta_\beta(V_{t_i}) \qquad t \in [t_{i-1}, t_i]$$

Then

$$g_{\beta,i}(\dot{X}^i) = X^{*i}$$

Full likelihood

The full likelihood, i.e. the density of $(V_{t_0}, \dots, V_{t_n}, \dot{X}^1, \dots, \dot{X}^n)$ w.r.t. $\lambda^n \times \mathbf{W}^{(0,0,t_1)} \times \mathbf{W}^{(0,0,t_2-t_1)} \times \dots \times \mathbf{W}^{(0,0,t_n-t_{n-1})}$:

$$\exp\left(H_{\theta}(\eta_{\theta}(V_{t_{n}})) - H_{\theta}(\eta_{\beta}(V_{0})) - \sum_{i=1}^{n} \left[\frac{1}{2\Delta_{i}}(\eta_{\beta}(V_{t_{i}}) - \eta_{\beta}(V_{t_{i-1}}))^{2} + \log(\sigma(V_{t_{i}};\beta)) + \int_{t_{i-1}}^{t_{i}} \frac{1}{2}(a_{\theta}^{2} + a_{\theta}')(g_{\beta,i}(\dot{X}^{i})_{s})ds\right]\right)$$

 $W^{(0,0,t)}$: probability measure on C([0,t]) induced by the standard Brownian bridge on [0,t] starting at 0 and ending at 0

$$H(x;\theta) = \int^x a_\theta(y) dy$$

Roberts and Stramer (2001)

E-step

$$Q(\theta, \theta') = H_{\theta}(\eta_{\beta}(V_{t_n})) - H_{\theta}(\eta_{\beta}(V_0)) - \sum_{i=1}^{n} \left[\frac{1}{2\Delta_i} (\eta_{\beta}(V_{t_i}) - \eta_{\beta}(V_{t_{i-1}}))^2 + \log(\sigma(V_{t_i}; \beta)) \right] \\ - \frac{1}{2} \sum_{i=1}^{n} E_{\theta'} \left(\int_{t_{i-1}}^{t_i} (a_{\theta}^2 + a_{\theta}') (g_{\beta,i}(\dot{X}^i)_s) ds \right)$$

 $dX_t = \alpha(X_t)dt + \sigma(X_t)dW_t$

A solution of in the interval $[t_1, t_2]$ such that $X_{t_1} = a$ and $X_{t_2} = b$ is called a (t_1, a, t_2, b) -bridge.

 $dX_t = \alpha(X_t)dt + \sigma(X_t)dW_t$

A solution of in the interval $[t_1, t_2]$ such that $X_{t_1} = a$ and $X_{t_2} = b$ is called a (t_1, a, t_2, b) -bridge.

• Metropolis-Hastings algorithm with a proposal distribution given by a process that is forced to go from a to b:

Roberts & Stramer (2001), Durham & Gallant (2002)

 $dX_t = \alpha(X_t)dt + \sigma(X_t)dW_t$

A solution of in the interval $[t_1, t_2]$ such that $X_{t_1} = a$ and $X_{t_2} = b$ is called a (t_1, a, t_2, b) -bridge.

• Metropolis-Hastings algorithm with a proposal distribution given by a process that is forced to go from a to b:

Roberts & Stramer (2001), Durham & Gallant (2002)

• Exact simulation of one-dimensional diffusion bridges: Beskos, Papaspiliopoulos & Roberts (2006, 2008)

 $dX_t = \alpha(X_t)dt + \sigma(X_t)dW_t$

A solution of in the interval $[t_1, t_2]$ such that $X_{t_1} = a$ and $X_{t_2} = b$ is called a (t_1, a, t_2, b) -bridge.

• Metropolis-Hastings algorithm with a proposal distribution given by a process that is forced to go from a to b:

Roberts & Stramer (2001), Durham & Gallant (2002)

Exact simulation of one-dimensional diffusion bridges:
 Beskos, Papaspiliopoulos & Roberts (2006, 2008)

 Straightforward diffusion bridge simulation using e.g. the Euler scheme: Bladt & Sørensen (2009, 2012)

$$dX_t^i = \alpha(X_t^i)dt + \sigma(X_t^i)dW_t^i, \ X_0^1 = a \text{ and } X_0^2 = b$$

 W^1 and W^2 independent standard Wiener processes

Define $\tau = \inf\{0 \le t \le \Delta | X_t^1 = X_{\Delta - t}^2\}$ (inf $\emptyset = +\infty$) and

$$Z_t = \begin{cases} X_t^1 & \text{ if } 0 \leq t \leq \tau \\ \\ X_{\Delta - t}^2 & \text{ if } \tau < t \leq \Delta. \end{cases}$$

$$dX_t^i = \alpha(X_t^i)dt + \sigma(X_t^i)dW_t^i, \quad X_0^1 = a \text{ and } X_0^2 = b, \text{ ergodic}$$

$$Z_t = \begin{cases} X_t^1 & \text{ if } 0 \leq t \leq \tau \\ \\ X_{\Delta - t}^2 & \text{ if } \tau < t \leq \Delta. \end{cases}$$

The distribution of $\{Z_t\}_{0 \le t \le \Delta}$, conditional on the event $\{\tau \le \Delta\}$, equals the distributions of a $(0, a, \Delta, b)$ -bridge conditional on the event that the bridge is hit by an independent diffusion with the same stochastic differential equation as X_t and initial distribution with density $p_{\Delta}(b, \cdot)$

Let us call such a diffusion a $p_{\Delta}(b)$ -diffusion

Two probabilities

 $(0, a, \Delta, b)$ -bridge

 $p(\Delta) = P(\tau > \Delta)$ (rejection probability)

 $\pi(\Delta)$ = the probability that a $(0,a,\Delta,b)\mbox{-bridge}$ is hit by an independent $p_{\Delta}(b)\mbox{-diffusion}$

Two probabilities

 $(0, a, \Delta, b)$ -bridge

 $p(\Delta) = P(\tau > \Delta)$ (rejection probability)

 $\pi(\Delta)$ = the probability that a $(0,a,\Delta,b)\mbox{-bridge}$ is hit by an independent $p_{\Delta}(b)\mbox{-diffusion}$

For ergodic diffusions:

 $p(\Delta) \to 0$ as $\Delta \to \infty$ $\pi(\Delta) \to 1$ as $\Delta \to \infty$

Two probabilities

 $(0, a, \Delta, b)$ -bridge

 $p(\Delta) = P(\tau > \Delta)$ (rejection probability)

 $\pi(\Delta)$ = the probability that a $(0,a,\Delta,b)\mbox{-bridge}$ is hit by an independent $p_{\Delta}(b)\mbox{-diffusion}$

For ergodic diffusions:

 $p(\Delta) \to 0$ as $\Delta \to \infty$ $\pi(\Delta) \to 1$ as $\Delta \to \infty$

For diffusions with a spectral gap, $\lambda > 0$ (geometrically ergodic):

$$p(\Delta) = O(e^{-\lambda\Delta/2})$$
 $1 - \pi(\Delta) = O(e^{-\lambda\Delta/2}).$

Hyperbolic diffusion bridge

$$dX_t = -\frac{X_t}{\sqrt{1 + X_t^2}}dt + dW_t$$

Barndorff-Nielsen (1978)

The exact EA1 algorithm of Beskos, Papaspiliopoulos and Roberts (2006) works for this diffusion

(0, 0, 1, 0)-hyperbolic diffusion bridge (t = 0.5, 25000 bridges)

Hyperbolic diffusion bridge

The CPU execution time to simulate 10,000 hyperbolic $(0, 0, \Delta, 0)$ -bridges

Ornstein-Uhlenbeck bridge

 $dX_t = -0.5X_t dt + dW_t$

(0, -3, 1, -2) O–U bridge (t = 0.5, 25000 bridges)

The density of the approximate diffusion bridge Z on the canonical space C_{Δ} (continuous functions defined on $[0, \Delta]$ with the usual σ -algebra):

$$f_a(x) = f_b(x)\pi_\Delta(x)/\pi_\Delta$$

 f_b is the density of a $(0, a, \Delta, b)$ -diffusion bridge

$$\pi_{\Delta}(x) = P(Y \in A_x) \qquad \pi_{\Delta} = P((X, Y) \in A)$$

where *X* and *Y* are independent *X* is a $(0, a, \Delta, b)$ -diffusion bridge *Y* is a $p_{\Delta}(b)$ -diffusion,

$$A_x = \{ y \in C_\Delta \, | \, \operatorname{gr}(y) \cap \operatorname{gr}(x) \neq \emptyset \} \qquad A = \{ (x, y) \in C_\Delta^2 \, | \, \operatorname{gr}(y) \cap \operatorname{gr}(x) \neq \emptyset \}$$

M-H algorithm: exact diffusion bridge

Simulate an initial approximate $(0, a, \Delta, b)$ -diffusion bridge, $X^{(0)}$, set k = 1.

- (1) Propose a new sample paths by simulating an approximate $(0, a, \Delta, b)$ -diffusion bridge $X^{(k)}$
- (2) Accept the proposed diffusion bridge with probability

$$\min\left(1, \frac{f_b(X^{(k)})f_a(X^{(k-1)})}{f_b(X^{(k-1)})f_a(X^{(k)})}\right) = \min\left(1, \frac{\pi_\Delta(X^{(k-1)})}{\pi_\Delta(X^{(k)})}\right)$$

Otherwise $X^{(k)} = X^{(k-1)}$

(3) Set k = k + 1 and GO TO (1)

M-H algorithm: exact diffusion bridge

Simulate an initial approximate $(0, a, \Delta, b)$ -diffusion bridge, $X^{(0)}$, set k = 1.

- (1) Propose a new sample paths by simulating an approximate $(0, a, \Delta, b)$ -diffusion bridge $X^{(k)}$
- (2) Accept the proposed diffusion bridge with probability

$$\min\left(1, \frac{f_b(X^{(k)})f_a(X^{(k-1)})}{f_b(X^{(k-1)})f_a(X^{(k)})}\right) = \min\left(1, \frac{\pi_\Delta(X^{(k-1)})}{\pi_\Delta(X^{(k)})}\right)$$

Otherwise $X^{(k)} = X^{(k-1)}$

(3) Set k = k + 1 and GO TO (1)

But we do not know $\pi_{\Delta}(x)$

Pseudo-marginal MH-algorithm

Andrieu and Robert (2009)

For a given $x \in C_{\Delta}$, define a random variable T as follows:

Simulate a sequence of independent $p_{\Delta}(b)$ -diffusions $Y^{(1)}, Y^{(2)}, \ldots$ until a sample path is obtained that intersects x. Define T by

$$T = \min\{i : Y^{(i)} \in A_x\}.$$

Then

$$E(T) = 1/\pi_{\Delta}(x).$$

If $\mathbf{T} = (T_1, \dots, T_N)$ is a vector of N independent draws of T, then an unbiased and consistent estimator of $1/\pi_{\Delta}(x)$ is

$$\hat{\rho}_{\Delta}(x;\mathbf{T}) = \frac{1}{N} \sum_{j=1}^{N} T_j.$$

M-H algorithm: exact diffusion bridge

Metropolis-Hastings Markov chain with state $(X^{(k)}, \mathbf{T}^{(k)})$.

Simulate an initial approximate $(0, a, \Delta, b)$ -diffusion bridge, $X^{(0)}$, N independent T-values, $\mathbf{T}^{(0)} = (T_1^{(0)}, \dots, T_N^{(0)})$ with $x = X^{(0)}$, and set k = 1.

- (1) Propose a new sample paths by simulating an approximate $(0, a, \Delta, b)$ -diffusion bridge $X^{(k)}$, and simulate N independent T-values, $\mathbf{T}^{(k)} = (T_1^{(k)}, \dots, T_N^{(k)})$ with $x = X^{(k)}$
- (2) Accept the proposed $(X^{(k)}, \mathbf{T}^{(k)})$ with probability

$$\min\left(1, \frac{\hat{\rho}_{\Delta}(X^{(k)}; \mathbf{T}^{(k)})}{\hat{\rho}_{\Delta}(X^{(k-1)}; \mathbf{T}^{(k-1)})}\right)$$

Otherwise $X^{(k)} = X^{(k-1)}$ and $\mathbf{T}^{(k)} = \mathbf{T}^{(k-1)}$

(3) Set k = k + 1 and GO TO (1)

Ornstein-Uhlenbeck bridge

(0, -3, 1, -2) O–U bridges ($\theta = 0.5, \sigma = 1.0, t = 0.5, 25000$ bridges)

Approximate simulation and exact MH-simulation (N=10, burn-in 5000)

Autocorrelations for the exact MH-algorithm

Autocorrelations for the exact MH-algorithm of the state at time 0.5 for simulated (0, -3, 1, -2) O–U bridges $(\theta = 0.5, \sigma = 1.0)$

Integrated diffusions

$$dX_t = b(X_t; \alpha)dt + \sigma(X_t; \beta)dW_t, \quad X_0 \sim \mu_{\alpha, \beta}$$

Data:

$$Y_i = \int_{t_{i-1}}^{t_i} X_s \, ds + Z_i, \quad i = 1, \dots, n$$

 $Z_i \sim N(0, \tau^2)$, independent

Bollersev and Wooldridge (1992)

Gloter (2000, 2006)

Ditlevsen and Sørensen (2004)

Comte, Genon-Catalot and Rozenholc (2008)

Forman and Sørensen (2008)

Baltazar-Larios and Sørensen (2010)

Sørensen (2011)

$$dX_t = b(X_t; \alpha)dt + \sigma(X_t; \beta)dW_t, \quad X_0 \sim \mu_{\alpha, \beta}$$

Data:

$$Y_i = \int_{t_{i-1}}^{t_i} X_s \, ds + Z_i, \quad i = 1, \dots, n$$

 $Z_i \sim N(0, \tau^2)$, independent

Likelihood conditional on the diffusion process:

$$\prod_{i=1}^{n} \varphi \left(Y_i; \int_{t_{i-1}}^{t_i} X_s \, ds, \ \tau^2 \right)$$

 φ Gaussian density function

Likelihood with full diffusion observation

$$dX_t = b(X_t; \alpha)dt + \sigma(X_t; \beta)dW_t, \quad X_0 \sim \mu_{\alpha, \beta}$$

Likelihood if we had observed X continuously in $[t_0, t_n]$:

$$U_t = h(X_t; \beta)$$
 $h(x; \beta) = \int^x \frac{1}{\sigma(y; \beta)} dy$

$$dU_t = c(U_t; \alpha, \beta)dt + dB_t,$$

$$c(x;\alpha,\beta) = \frac{b\left(h^{-1}(x;\beta);\alpha\right)}{\sigma\left(h^{-1}(x;\beta);\beta\right)} - \frac{1}{2}\sigma'\left(h^{-1}(x;\beta);\beta\right)$$

Likelihood with full diffusion observation

$$dX_t = b(X_t; \alpha)dt + \sigma(X_t; \beta)dW_t, \quad X_0 \sim \mu_{\alpha, \beta}$$

Likelihood if we had observed X continuously in $[t_0, t_n]$:

$$U_t = h(X_t; \beta)$$
 $h(x; \beta) = \int^x \frac{1}{\sigma(y; \beta)} dy$

$$dU_t = c(U_t; \alpha, \beta)dt + dB_t,$$

$$c(x;\alpha,\beta) = \frac{b\left(h^{-1}(x;\beta);\alpha\right)}{\sigma\left(h^{-1}(x;\beta);\beta\right)} - \frac{1}{2}\sigma'\left(h^{-1}(x;\beta);\beta\right)$$

$$Y_i = \int_{t_{i-1}}^{t_i} h^{-1}(U_s;\beta) \, ds + Z_i, \quad i = 1, \dots, n$$

Likelihood with full diffusion observation

$$\log L(\alpha, \beta, \tau^2) =$$

$$\sum_{i=1}^n \log \varphi \left(Y_i; \int_{t_{i-1}}^{t_i} h^{-1}(U_s; \beta) \, ds, \, \tau^2 \right)$$

$$+ a(U_{t_n}; \alpha, \beta) - a(U_{t_0}; \alpha, \beta) - \frac{1}{2} \int_{t_0}^{t_n} \left(c(U_t; \alpha, \beta)^2 + c'(U_t; \alpha, \beta) \right) dt$$

$$a(x; \alpha, \beta) = \int^x c(u; \alpha, \beta) du.$$

EM algorithm

 $\theta = (\alpha, \beta, \tau^2)$

- $\tilde{\theta}$ any value of the parameter vector
 - (1) (E–step) Generate sample paths of $X^{(k)}$, k = 1, ..., M conditional on $Y_1, ..., Y_n$ using the parameter value $\tilde{\theta}$, and calculate

$$g(\theta) = \frac{1}{M - M_0} \sum_{k=M_0+1}^{M} \log L\left(\theta; Y_1, \dots, Y_n, h(X_t^{(k)}; \tilde{\beta}), t \in [t_0, t_n]\right)$$

(for a suitable burn-in period M_0)

(2) (M–step) $\tilde{\theta} = \operatorname{argmax} g(\theta)$

(3) GO TO (1)

Conditional diffusion simulation

Chib, Pitt & Shephard (2006)

Simulate an unrestricted stationary sample path of X in $[t_0, t_n]$

Repeat the following

1) Randomly draw $\nu_2 < \cdots < \nu_{K+1}$ from the set $\{1, 2, \dots, n-1\}$ and set $\nu_1 = 0, \nu_{K+2} = n, \tau_j = t_{\nu_{j+1}}, j = 0, \dots, K+1$

2) In each interval $[\tau_{j-1}, \tau_j]$ update by simulating a diffusion bridge conditional on the values of the diffusion process at the times τ_{j-1} and τ_j obtained in the previous iteration and on $Y_{t_{\nu_j}}, Y_{t_{\nu_j}+1}, \ldots, Y_{t_{\nu_{j+1}}}$

Conditional bridge simulation

Simulate an initial $(\tau_{j-1}, v_{i0}, \tau_j, v_{i1})$ -diffusion bridge, $X^{(0)}$, and set k = 1.

- (1) Propose a new sample paths by sampling a $(\tau_{j-1}, v_{i0}, \tau_j, v_{i1})$ -diffusion bridge $X^{(k)}$
- (2) Accept the proposed diffusion bridge with probability

$$\min\left(1, \prod_{i=1}^{n_j} \frac{\varphi\left(Y_{\nu_j+i}; \int_{t_{i-1}}^{t_i} X_s^{(k)} ds, \tau^2\right)}{\varphi\left(Y_{\nu_j+i}; \int_{t_{i-1}}^{t_i} X_s^{(k-1)} ds, \tau^2\right)}\right)$$

Otherwise $X^{(k)} = X^{(k-1)}$

(3) Set k = k + 1 and GO TO (1)

Integrated O-U process: simulation study

 $dX_t = -\alpha X_t dt + \sigma dW_t$

- $\alpha = 0.1$ $\sigma = 0.5$ $\tau^2 = 1.25$
- Y_i , $t_i = i$, i = 1..., 1500
- $M = 10000, M_0 = 1000$

1000 simulated datasets

Average of parameter estimates:

λ	lpha	σ	$ au^2$
10	0.106	0.523	1.229
20	0.101	0.507	1.235
30	0.084	0.458	1.252

Integrated CIR process: simulation study

$$dX_t = (\alpha - \beta X_t)dt + \sigma \sqrt{X_t}dW_t$$

 $\alpha = 0.5 \quad \beta = 0.2 \quad \sigma = 0.5 \quad \tau^2 = 1.25$

 Y_i , $t_i = i$, i = 1..., 1500

 $M = 10000, M_0 = 1000$

1000 simulated datasets

Average of parameter estimates:

λ	α	eta	σ	$ au^2$
30	0.4802	0.2056	0.4787	1.2432
20	0.4727	0.2043	0.4698	1.2406
10	0.4587	0.1965	0.4609	1.2287

Multivariate diffusions

$$dX_t = \alpha(X_t)dt + \sigma(X_t)dW_t, \quad X'_{\Delta} = b$$

$$dX'_t = \alpha(X'_t)dt + \sigma(X'_t)dW'_t, \quad X'_0 = a$$

Multivariate diffusions

$$dX_t = \alpha(X_t)dt + \sigma(X_t)dW_t, \quad X'_{\Delta} = b$$

$$dX'_t = \alpha(X'_t)dt + \sigma(X'_t)dW'_t, \quad X'_0 = a$$

Lindvall & Rogers (1986), Chen & Li (1989)

$$dW'_t = [I - (1 - \gamma)\Pi(X_t, X'_t)] \, dW_t + \sqrt{1 - \gamma^2} u(X_t, X'_t) \, dU_t.$$

 $\gamma \in [-1,1)$, U is a univariate standard Wiener process independent of W

$$\Pi(x,x') = u(x,x')u(x,x')^T \qquad u(x,x') = \frac{\sigma(x')^{-1}(x-x')}{|\sigma(x')^{-1}(x-x')|}.$$

Assume that X is ergodic with invariant probability density function ν Time-reversed diffusion:

$$dX_t^* = \alpha^*(X_t^*)dt + \sigma(X_t^*)dW_t$$

$$\alpha_i^*(x) = -\alpha_i(x) + \nu(x)^{-1} \sum_{j=1}^p \partial_{x_j} \left(\nu(x) V(x)_{ij} \right), \quad i = 1, \dots, d,$$

 $V(x) = \sigma(x)\sigma(x)^T$

Provided that

$$\int_D \left| \sum_{j=1}^d \partial_{x_j} \left(\nu(x) V_{ij}(x) \right) \right| dx < \infty, \quad i = 1, \dots, d.$$

Multivariate Ornstein-Uhlenbeck process

$$dX_t = -BX_t dt + dW_t,$$

$$B = \left\{ \begin{array}{rrr} 1.5 & 1\\ 1 & 1.5 \end{array} \right\}$$

Ergodic and time-reversible with stationary distribution $N_2(0,\Gamma)$, where

$$\Gamma = \left\{ \begin{array}{cc} 0.6 & -0.4 \\ \\ -0.4 & 0.6 \end{array} \right\}$$

Simulation of Ornstein-Uhlenbeck

Bridge from (0,0) to (0,0), t = 0.5, 20000 bridges

QQ-plots of approximate bridge against exact bridge (1st and 2nd coordinate)

Simulation of Ornstein-Uhlenbeck

Bridge from (0,0) to (0,0), t = 0.5, 20000 bridges

QQ-plots of mcmc bridge against exact bridge (1st and 2nd coordinate)

Simulation of Ornstein-Uhlenbeck

Bridge from (0,0) to (0,0), t = 0.5, 20000 bridges

Level curves for empirical copula of approximate bridge and exact bridge

