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Continuous diffusion processes

I We consider a d-dimensional continuous diffusion process of the
form

Xt = X0 +

∫ t

0

asds +

∫ t

0

σsdWs , t ∈ [0, 1].

In this model
I σ is a Rd×d -valued volatility process
I a is a d-dimensional drift process
I W is a d-dimensional Brownian motion

I We observe high frequency data

X0,X∆n ,X2∆n , . . . ,X[1/∆n]∆n

with ∆n → 0.
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The statistical problem

I Let r denote the rank of the matrix c = σσ?, i.e.

rt = rank(ct), t ∈ [0, 1].

Our aim is to estimate/test the maximal rank of c during a given
trading day [0, 1]. Hence, our object of interest is given via

R = sup
t∈[0,1)

rt .

I We remark that the set {t ∈ [0, 1)| rt = R} has positive Lebesgue
measure if σ is a continuous process.

I Warning: The random variable R has no connection to the
integrated volatility matrix, i.e.

R 6= rank
(∫ 1

0

csds
)
.
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A perturbation method

We explain the basic idea on a non-random problem. Let A ∈ Rd×d be a
given positive semidefinite matrix with r = rank(A). We consider a
positive definite matrix B ∈ Rd×d and a number h↘ 0. By the
multilinearity of the determinant we obtain the identity

det(A + hB) = hd−rγA,B + O(hd−r+1)

with γA,B :=
∑

C∈MA,B
det(C ) and

MA,B := {C ∈ Rd×d : Ci = Ai or Ci = Bi , A and C share r joint columns},

where A = (A1, . . . ,Ad) and B = (B1, . . . ,Bd). When γA,B 6= 0, we
deduce that

det(A + 2hB)

det(A + hB)
→ 2d−r as h↘ 0.
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A simple example

Let A = (A1,A2,A3),B = (B1,B2,B3) ∈ R3×3 and r = rank(A) = 1.
Then it holds that

det(A + hB) = det(A1,A2,A3)︸ ︷︷ ︸
=0

+ h [det(A1,A2,B3) + det(A1,B2,A3) + det(B1,A2,A3)]︸ ︷︷ ︸
=0

+ h2 [det(A1,B2,B3) + det(B1,A2,B3) + det(B1,B2,A3)]︸ ︷︷ ︸
=γA,B

+ h3det(B1,B2,B3)︸ ︷︷ ︸
=O(h3)
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Some remarks

I Although our application of random perturbation method to
diffusion is new, there exist similar ideas in other fields. Let us
mention the following

I Functional analysis −→ Tikhonov regularization
I Statistical inverse problems
I Linear regression −→ ridge regression
I Signal-noise models

I When the matrix A is not directly observed, we cannot choose a
matrix B such that

γA,B 6= 0.

However, in the stochastic setting the choice B = (B1, . . . ,Bd), (Bi )
iid Nd(0, Id), independent of A, guarantees that γA,B 6= 0 almost
surely.
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The test statistic

I First, we introduce a random perturbation of the original diffusion
process

Z n
t = Xt +

√
∆n Ŵt ,

where Ŵ is a new Brownian motion independent of everything.

I The test statistic S(Z n,∆n) is defined via

S(Z n,∆n) =

[1/∆n]−d+1∑
i=1

det2
(

∆n
i Z

n/
√

∆n, . . . ,∆
n
i+d−1Z

n/
√

∆n

)
with ∆n

i Z
n = Z n

i∆n
− Z n

(i−1)∆n
.

I The test statistic ∆nS(X ,∆n) has been used in Jacod, Lejay and
Talay (2008) to test for the full rank.
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Assumptions

I In contrast to the usual asymptotic theory for high frequency data,
we require some stronger assumptions:

at = a0 +

∫ t

0

a(1)
s ds +

∫ t

0

a(2)
s dWs ,

σt = σ0 +

∫ t

0

σ(1)
s ds +

∫ t

0

σ(2)
s dWs .

I Furthermore, the process σ(2) ∈ Rd×d×d must be diffusions of the
same type as X , a and σ.
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An asymptotic decomposition

I We define for any 1 ≤ l ≤ d

αn
i,l = ∆−1/2

n σ(i−1)∆n
∆n

i+l−1W

βn
i,l = ∆−1/2

n ∆n
i+l−1Ŵ + a(i−1)∆n

+ ∆nσ
(2)
(i−1)∆n

∫ (i−l+1)∆n

(i−l)∆n

(Ws −W(i−l)∆n
)dWs

I With the notation αn
i = (αn

i,1, . . . , α
n
i,d), βn

i = (βn
i,1, . . . , β

n
i,d), we

deduce the asymptotic relation

(∆n
i Z

n/
√

∆n, . . . ,∆
n
i+d−1Z

n/
√

∆n) = αn
i︸︷︷︸

=A

+ ∆1/2
n βn

i︸ ︷︷ ︸
=hB

+OP(∆n).
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Consistency

Theorem: Under the aforementioned assumptions, we obtain the
following results.

(i) As n→∞

∆1+R−d
n

[1/∆n]−d+1∑
i=1

det2
(

∆n
i Z

n/
√

∆n, . . . ,∆
n
i+d−1Z

n/
√

∆n

)
P−→ S =

∫ 1

0

Γ(as , σs , σ
(2)
s )ds > 0.

(ii) In particular, we deduce that

Tn :=
S(Z n, 2∆n)

S(Z n,∆n)
P−→ 2d−R .
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Central limit theorem

Theorem: Under the aforementioned assumptions, we obtain the
following results.

(i) As n→∞

∆−1/2
n

(
∆1+R−d

n S(Z n,∆n)− S , (2∆n)1+R−dS(Z n, 2∆n)− S
)

dst−→ MN
(

0,

∫ 1

0

V (as , σs , σ
(2)
s )ds

)
.

(ii) In particular, we deduce that

∆−1/2
n

(
d − logTn

log 2
− R

)
dst−→ MN

(
0,

∫ 1

0

Σ(as , σs , σ
(2)
s )ds

)
,

where the asymptotic variance
∫ 1

0
Σ(as , σs , σ

(2)
s )ds can be

consistently estimated by Σn.
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Testing procedure

I Given a number R0 ∈ {0, . . . , d}, let us consider the following
null/alternative hypothesis

H0 : R = R0 vs. H1 : R 6= R0.

I Define the test statistic Rn by

Rn = d − logTn

log 2
.

I We obtain that (cα = α-quantile of N (0, 1))

PH0

(∣∣∣∆−1/2
n (Rn − R0)√

Σn

∣∣∣ > c1−α2

)
→ α,

PH1

(∣∣∣∆−1/2
n (Rn − R0)√

Σn

∣∣∣ > c1−α2

)
→ 1.
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Other applications
I The hypothesis testing

H0 : R = 0 vs. H1 : R > 0

corresponds to the test

H0 : X= integrated diffusion vs. H1 : X= diffusion

Integrated diffusions appear naturally in the engineering science. We
refer to the work of M. Sorensen and A. Gloter for statistical
methods.

I With some more work our method can be applied to the model
Y = (X , σ), where X is a one-dimensional diffusion with volatility σ.
Testing

H0 : R ≤ 1 vs. H1 : R = 2

is related to testing the local volatility assumption (see Podolskij and
Rosenbaum (2011)). These type of questions are also important in
the theory of financial bubbles developed by P. Protter.
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Simulation design

I We consider the model dXt = atdt + σtdWt with

σt = (1 + (2t − 1)2)

(
cos(tAπ/2) cos(tAπ/2)
sin(tAπ/2) sin(tAπ/2)

)
,

at = B

(
1 + sin(tAπ/2)
1 + cos(tAπ/2)

)

I The frequency is given as

∆n =
1

25000

I We perform 5000 replications to uncover the finite sample properties.
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Simulation results at level α = 0.05

B A 2d moment 4th moment R = 0 R = 1 R = 2
0 0 1.01 2.99 1.00 0.050 1.00
0 5 1.00 2.94 1.00 0.049 1.00
0 10 1.01 3.36 1.00 0.062 1.00
3 0 1.02 3.26 1.00 0.050 1.00
3 5 1.02 3.20 1.00 0.052 1.00
3 10 1.01 3.03 1.00 0.049 1.00

12 0 0.98 2.88 1.00 0.049 1.00
12 3 1.02 3.13 1.00 0.052 1.00
12 10 1.01 2.99 1.00 0.050 1.00
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Thank you!
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