Objective and Background	Claims	Summary and Remarks

Multi-step estimation procedure for stable Ornstein-Uhlenbeck processes

Hiroki Masuda

Institute of Mathematics for Industry Kyushu University

"Stochastic processes and their statistics in Finance" Okinawa, October 27, 2013

Objective and Background	Claims		Summary and Remarks
0000000	000000	000	00000

Objective and Background

2 Claims

3 Simulation

4 Summary and Remarks

Objective and Background	Claims		Summary and Remarks	
0000000				
Put simply				

- Parametric estimation
- of the stable Ornstein-Uhlenbeck processes
- based on discrete-time but high-frequency infill sampling.

 $\{P_{ heta} := \mathcal{L}(X) : \theta \in \Theta\}$

Objective and Background		Claims		Summary and Remarks
0000000				
	<u> </u>		7	

Symmetric β -stable Lévy process J

$$E[\exp(iuJ_t)]=\exp\{-t|u|^eta\}\sim S_eta(1), \quad eta\in (0,2).$$

• Characterized by the Lévy density:

•
$$g(z)=rac{1}{2}\sigma^{eta}\left\{rac{1}{eta}\Gamma(1-eta)\cosrac{eta\pi}{2}
ight\}^{-1}|z|^{-eta-1}$$
, $z
eq 0$

- $P(J_1 \in dy) = \phi_{\beta}(y)dy$:
 - Positive density: $orall y \in \mathbb{R}, \ \phi_eta(y) > 0$
 - ϕ_eta is smooth in $(y,eta)\in\mathbb{R} imes(0,2)$
- Selfsimilarity: $J_t \stackrel{d}{=} t^{1/\beta} J_1$
- Lack of finite variance: $E(|J_t|^q) < \infty$ iff $q \in (-1, \beta)$.

Objective and Background	Claims 000000	Summary and Remarks
	Goal	

$$dX_t = -\lambda X_t dt + \sigma dJ_t, \qquad X_0 = x_0, \ (X_{t_j})_{j=0}^n$$

Local Asymptotic Mixed Normality (LAMN) for $\lambda \in \mathbb{R}$

Local quadratic approximation of the likelihood ratio $(r_n \rightarrow \infty)$:

$$\lograc{P_{\lambda+u/r_n}}{P_\lambda}(X_{t_1},\ldots,X_{t_n})=\Delta_n(T)u-rac{1}{2}\Gamma_0(T)u^2+o_p(1),$$

clarifying the ideal asymptotic phenomenon in estimation of λ :

- Optimal rate of convergence;
- Minimal asymptotic variance;
- Efficiency (in test) of the score statistics $\Delta_n(T)$.

Objective and Background	Claims 000000	Summary and Remarks
	Goal	

$$dX_t = -\lambda X_t dt + \sigma dJ_t, \qquad X_0 = x_0, \ (X_{t_j})_{j=0}^n$$

Local Asymptotic Mixed Normality (LAMN) for $\lambda \in \mathbb{R}$

Local quadratic approximation of the likelihood ratio $(r_n \rightarrow \infty)$:

$$\lograc{P_{\lambda+u/r_n}}{P_\lambda}(X_{t_1},\ldots,X_{t_n})=\Delta_n(T)u-rac{1}{2}\Gamma_0(T)u^2+o_p(1),$$

clarifying the ideal asymptotic phenomenon in estimation of λ :

- Optimal rate of convergence;
- Minimal asymptotic variance;
- Efficiency (in test) of the score statistics $\Delta_n(T)$.

Practical estimators for the unknown parameters

MLE is not quite convenient...so resort to something else.

Hiroki Masuda (Kyushu University)

Objective and Background	Claims	Summary and Remarks
0000000		

Remark: Case of Gaussian OU process

 $dX_t = -\lambda X_t dt + \sigma dw_t$

• LAN or LAMN available for λ only under

$$T_n := nh_n \to \infty$$

- Ergodic $(\lambda > 0) \Rightarrow$ LAN (Local Asymptotic Normality).
- Non-ergodic ($\lambda < 0$) \Rightarrow LAMN (Local Asymptotic Mixed Normality).
- Unit-root ($\lambda = 0$): Locally Asymptotically Brownian Functional.

Our question

Case of the β -stable driven case for $\beta < 2...?$

Objective and Background	Claims	Summary and Remarks
0000000		

Remark: Case of Gaussian OU process

 $dX_t = -\lambda X_t dt + \sigma dw_t$

• LAN or LAMN available for λ only under

$$T_n := nh_n \to \infty$$

- Ergodic $(\lambda > 0) \Rightarrow$ LAN (Local Asymptotic Normality).
- Non-ergodic ($\lambda < 0$) \Rightarrow LAMN (Local Asymptotic Mixed Normality).
- Unit-root ($\lambda = 0$): Locally Asymptotically Brownian Functional.

Our question

Case of the β -stable driven case for $\beta < 2...?$

Answer

Entirely different phenomena

Hiroki Masuda (Kyushu University)

Objective and Background	Claims	Summary and Remarks
00000000		

Remark: How about the Least-Squares Estimator...?

• The LSE
$$ilde{\lambda}_n := \operatorname*{arginf}_{\lambda>0} \sum_{j=1}^n (X_{t_j} - X_{t_{j-1}} + \lambda X_{t_{j-1}} h)^2.$$

Objective and Background	Claims		Summary and Remarks
00000000	000000	000	00000

Remark: How about the Least-Squares Estimator...?

• The LSE
$$ilde{\lambda}_n := rgin_{oldsymbol{\lambda}>0} \sum_{j=1}^n (X_{t_j} - X_{t_{j-1}} + \lambda X_{t_{j-1}} h)^2.$$

• Explicit asymptotic hebavior, cf. Hu and Long (2009):

$$\left(rac{T_n}{\log n}
ight)^{1/eta} (ilde{\lambda}_n-\lambda_0) o^d rac{S'_eta}{S''_{eta/2}}$$

- Ergodicity is essential.
- $T=T_n
 ightarrow\infty$ inevitable.
- Construction of a confidence interval may not be straightforward.

	Claims	Simulation	Summary and Remarks		
Transition probability					

• For any
$$0 \le s \le t$$
,

$$X_t = e^{-\lambda(t-s)}X_s + \sigma \int_s^t e^{-\lambda(t-u)}dJ_u.$$

• Stable-integral property:

$$\mathcal{L}\left(\int_{t_{j-1}}^{t_j}e^{-\lambda(t_j-u)}dJ_u
ight)=S_eta(\kappa_h(\lambda)),$$

where

$$\kappa_h(\lambda) := \left\{rac{1-\exp(-\lambda h)}{\lambdaeta}
ight\}^{1/eta} \sim h^{1/eta}$$

• For each $j \leq n$:

$$\mathcal{L}(X_{t_j}|X_{t_{j-1}}=x)=\delta_{x\exp(-\lambda h)}*S_eta(\sigma\kappa_h(heta))$$

Objective and Background	Claims	Summary and Remarks
0000000		

The likelihood function in question

Loglikelihood (w.r.t. λ)

$$\ell_n(\lambda) = \sum_{j=1}^n \log\left\{rac{1}{\sigma\kappa_h(\lambda)}\phi_eta(\epsilon_j(\lambda))
ight\}$$

where

$$\epsilon_j(\lambda) := rac{1}{\sigma \kappa_h(\lambda)} \left(X_{t_j} - e^{-\lambda h} X_{t_{j-1}}
ight) \stackrel{P_\lambda}{\sim} S_eta(1)$$

• For $k \in \mathbb{N}$,

$$egin{aligned} &\partial^k_\lambda\ell_n(\lambda) = \sum_{j=1}^n ig\{ -\partial^k_\lambda\log\kappa_h(\lambda) + \partial^k_\lambda\log\phi_eta(\epsilon_j(\lambda))ig\} \ &= o(1) + \sum_{j=1}^n \partial^k_\lambda\log\phi_eta(\epsilon_j(\lambda)), \quad n o \infty. \end{aligned}$$

1

Objective and Background	Claims	Summary and Remarks

Objective and Background

2 Claims

3 Simulation

4 Summary and Remarks

		1/0 1/0	
0000000	00000	000	00000
Objective and Background	Claims		Summary and Remarks

Stochastic expansion: $r_n := n^{1/\beta - 1/2}$ -rate localization

$$\ell_n\left(\lambda+rac{u}{r_n}
ight)-\ell_n(\lambda)=rac{u}{r_n}\partial_\lambda\ell_n(\lambda)-rac{1}{2}\left(-rac{u^2}{r_n^2}\partial_\lambda^2\ell_n(\lambda)
ight)+R_n(u)$$

1 Stable convergence in law of the martingale term

$$\exists \mathsf{r.v.} \ \Delta_0, \quad (r_n^{-1}\partial_\lambda \ell_n(\lambda), F_n) \xrightarrow{\mathcal{L}} (\Delta_0, F_0) \quad \text{for any} \ F_n \xrightarrow{p} F_0.$$

② Law of large numbers for the quadratic term

$$\exists \text{positive r.v. } \Gamma_0, \quad -r_n^{-2}\partial_\lambda^2 \ell_n(\lambda) \xrightarrow{p} \Gamma_0.$$

Solution Negligibility of the remainder term

$$orall u, \quad R_n(u) = O_p(n^{-1/2}) \xrightarrow{p} 0$$

Objective and Background 00000000	Claims ○●○○○○	Summary and Remarks

Main claim: LAMN for $\lambda \in \mathbb{R}$ when T is fixed

•
$$dX_t = -\lambda X_t dt + \sigma dJ_t, \quad \lambda \in \mathbb{R}$$
, $(X_{jT/n})_{j=0}^n$, $r_n = n^{1/eta - 1/2}$

Theorem (LAMN)

$$orall u\in\mathbb{R}, \quad \ell_n\left(\lambda+rac{u}{r_n}
ight)-\ell_n(\lambda)=\Delta_n(T)u-rac{1}{2}\Gamma_0(T)u^2+o_p(1)$$

• $\Delta_n(T) \xrightarrow{\mathcal{L}_s} \Delta_0(T) \sim \Gamma_0(T)^{-1/2} \eta$ with $\eta \sim N(0,1) \perp J$.

•
$$\Gamma_0(T) := \left\{ \sigma^{-2} \int \left(\frac{\partial \phi_\beta(y)}{\phi_\beta(y)} \right)^2 \phi_\beta(y) dy \right\} T^{1-2/\beta} \int_0^T X_t^2 dt.$$

Objective and Background	Claims	Summary and Remarks
	00000	

Some consequences and messages

$$orall u \in \mathbb{R}, \quad \ell_n\left(\lambda + rac{u}{r_n}
ight) - \ell_n(\lambda) = \Delta_n(T)u - rac{1}{2}\Gamma_0(T)u^2 + o_p(1)$$

• An efficient $\hat{\lambda}_n$ should fulfil that

$$n^{1/eta-1/2}(\hat{\lambda}_n-\lambda) \xrightarrow{\mathcal{L}} MN\left(0,\sigma^2 C(eta)T^{2/eta-1}\left(\int_0^T X_t^2 dt
ight)^{-1}
ight)$$

the asymptotic Mixed Normality;

- Getting useless as $\beta \rightarrow 2$ (should be!),
- Asymptotic random variance is λ -free, but λ affects $\mathcal{L}(\Gamma_0(T)^{-1})$.
- No unit-root type problem (cf. Szimayer and Maller (2004));
 - Unified asymptotics, whatever λ_0 is, unlike AR time series models.
- Quantitative distributional theory for each fixed *T*.

Objective and Backgro 00000000		Claims ○○○○○○○		imulation 000		d Remarks
					4	

Remark: Rate-optimal estimator of $\lambda \in \mathbb{R}^{-1}$

•
$$dX_t = -\lambda X_t dt + \sigma dJ_t, \quad (X_{t_j})_{j=0}^n$$
, $t_j = jT/n$

LAD (Least Absolute Deviation) estimator

$$\hat{\lambda}_n \leftarrow \operatorname*{argmin}_{\lambda} \sum_{j=1}^n \left| X_{t_j} - e^{-\lambda T/n} X_{t_{j-1}} \right|$$

$$n^{1/eta-1/2}(\hat{\lambda}_n-\lambda) \stackrel{\mathcal{L}}{ o} v_0^{-1/2}\eta$$

where $\eta \sim \mathcal{N}(0, I_2) \! \perp \!\!\!\perp (X_0, Z)$ and

$$v_0:=4\sigma^{-2}\phi_eta(0)^2T^{1-2/eta}\!\int_0^TX_t^2dt.$$

¹Applicable to more general locally stable OU processes, M (2013).

Objective and Background Cla	laims		Summary and Remarks
00000000 00	000000	000	00000

• Relative efficiency LAD/MLE²:

$$4\phi_eta(0)^2\left\{\int\left(rac{\partial\phi_eta(y)}{\phi_eta(y)}
ight)^2\phi_eta(y)dy
ight\}^{-1}$$

²Matsui and Takemura (2006) for the plot

Objective and Background	Claims	Summary and Remarks
	00000	
		 2

Remark: Simple estimators of β and σ^{-3}

•
$$\Delta_j X := X_{jT/n} - X_{(j-1)T/n}, p \in (0, \beta/2), \beta \in (2/3, 2).$$

• $V'_n(p) := \sum_{j=2}^n |\Delta_j X - \Delta_{j-1} X|^p$

• $V_n''(p) := \sum_{j=4}^n |\Delta_j X - \Delta_{j-1} X + \Delta_{j-2} X - \Delta_{j-3} X|^p$

³Application of Todorov (2013).

Objective and Background	Claims		Summary and Remarks
	000000		
		· · · · · · · · · · · · · · · · · · ·	3

Remark: Simple estimators of β and σ^{3}

•
$$\Delta_j X := X_{jT/n} - X_{(j-1)T/n}$$
, $p \in (0, \beta/2)$, $\beta \in (2/3, 2)$.
• $V'_n(p) := \sum_{j=2}^n |\Delta_j X - \Delta_{j-1} X|^p$

•
$$V_n''(p) := \sum_{j=4}^n |\Delta_j X - \Delta_{j-1} X + \Delta_{j-2} X - \Delta_{j-3} X|^p$$

• \sqrt{n} -asymptotically normal estimators:

$$egin{split} \hat{eta}_n &:= p \log(2) / \log\{V_n''(p) / V_n'(p)\}, \ \hat{\sigma}_n &:= T^{-1/\hat{eta}_n} \left\{ C(p, \hat{eta}_n) n^{p/\hat{eta}_n - 1} V_n'(p)
ight\}^{1/p}. \end{split}$$

³Application of Todorov (2013).

Objective and Background	Claims	Simulation	Summary and Remarks

Objective and Background

3 Simulation

4 Summary and Remarks

Setup:

- $dX_t = -\lambda X_t dt + \sigma dJ_t$ with $\mathcal{L}(J_1) = \mathcal{S}_{\beta}(1)$ and $X_0 = 0$.
- $T \leftarrow 5$ and n = 1000, with 1000 MC-iterations.
- $(\lambda, \beta, \sigma) \leftarrow (0, 1, 0.5), \ (-1, 1, 0.5), \ (1, 1.5, 0.5).$

Objective and Background	Claims	Simulation	Summary and Remarks
00000000	000000	••••	

 $(\lambda, \beta, \sigma) \leftarrow (0, 1, 0.5)$: Stable Lévy process

Theoretical Quantiles

LAD estimator QQ plot

- LSE also shown for comparison.
- QQ plot of randomly-normed LAD estimator $n^{1/eta-1/2} \sqrt{\int_0^T X_t^2 dt (\hat{\lambda}_n \lambda)}$

Objective and Background	Claims 000000	Simulation ○●○	Summary and Remarks
	. (1 1 0 P). NI	

 $(\lambda, \beta, \sigma) \leftarrow (-1, 1, 0.5)$: Non-ergodic case

LAD estimator QQ plot

Theoretical Quantiles

- LSE also shown for comparison.
- QQ plot of randomly-normed LAD estimator $n^{1/eta-1/2} \sqrt{\int_0^T X_t^2 dt (\hat{\lambda}_n \lambda)}$

Objective and Background	Claims	Simulation	Summary and Remarks
		000	
	$(\lambda, \beta, \sigma) \leftarrow (1, 1)$.5, 0.5): Ergodic cas	e

Theoretical Quantiles

- LSE also shown for comparison.
- QQ plot of randomly-normed LAD estimator $n^{1/eta-1/2}\sqrt{\int_0^T X_t^2 dt}(\hat{\lambda}_n-\lambda)$

Objective and Background	Claims		Summary and Remarks
0000000	000000	000	00000

Objective and Background

2 Claims

3 Simulation

4 Summary and Remarks

Objective and Background	Claims		Summary and Remarks
			00000
Remark: Case of $T - T \rightarrow \infty$?			

• Faster but intractable convergence expected:

$$n^{1/eta}h^{1-1/eta}(\hat{\lambda}_n-\lambda) \xrightarrow{\mathcal{L}}$$
 Non-trivial law

• Local quadratic approximation no longer true:

$$rac{1}{\{n^{1/eta}h^{1-1/eta}\}^k}\partial_\lambda^k\ell_n(\lambda)=O_p(1),\qquad k\in\mathbb{Z}_+.$$

• Caused by the fact, e.g. Davis et al. (1992):

$$\left(rac{1}{n^{1/eta}}
ight)^k\sum_{j=1}^n X^k_{t_{j-1}}=O_p(1),\qquad k\in\mathbb{Z}_+.$$

Objective and Background	Claims	Summary and Remarks
		0000

Remark: Optimality for more parameters?

$$dX_t = (\gamma - \lambda X_t)dt + \sigma dJ_t$$

•
$$\mathcal{L}(J_1)=S_eta(1)$$
, $eta\in(0,2)$.

• $(X_{t_j})_{j=0}^n$ with $t_j = jT/n$ for fixed T > 0.

Objective and Background	Claims	Summary and Remarks
		00000

Remark: Optimality for more parameters?

$$dX_t = (\gamma - \lambda X_t)dt + \sigma dJ_t$$

•
$$\mathcal{L}(J_1) = S_{\beta}(1), \ \beta \in (0,2).$$

•
$$(X_{t_j})_{j=0}^n$$
 with $t_j = jT/n$ for fixed $T > 0$.

$$\left(n^{1/eta-1/2},\;n^{1/eta-1/2},\;\sqrt{n}
ight)$$

Objective and Background	Claims	Summary and Remarks
		00000

Remark: Optimality for more parameters?

$$dX_t = (\gamma - \lambda X_t)dt + \sigma dJ_t$$

•
$$\mathcal{L}(J_1)=S_eta(1)$$
, $eta\in(0,2)$.

• $(X_{t_j})_{j=0}^n$ with $t_j = jT/n$ for fixed T > 0.

$$\left(n^{1/eta-1/2},\;n^{1/eta-1/2},\;\sqrt{n}
ight)$$

∂ θ = (λ, γ, σ, β) ∈ ℝ × ℝ × (0, ∞) × (0, 2)⇒ Constantly singular Fisher information...

$$\left(n^{1/eta - 1/2}, \; n^{1/eta - 1/2}, \; \sqrt{n}, \; \sqrt{n} \log n
ight)$$

• Ait-Sahalia and Jacod (2008), M (2009); stable-Lévy process case.

Objective and Background 00000000	Claims 000000	Summary and Remarks

Final remark: More general nonlinear SDE?

• Estimation of $\theta := (\alpha, \gamma)$ in

 $dX_t = a(X_t, \alpha)dt + c(X_{t-}, \gamma)dJ_t$

when observing $(X_{h_n}, X_{2h_n}, \ldots, X_{nh_n})$, h = 1/n.

⁴Presented at Dynstoch meeting 2012 Paris.

Objective and Background	Claims	Summary and Remarks
		00000

Final remark: More general nonlinear SDE?

• Estimation of $\theta := (\alpha, \gamma)$ in

$$dX_t = a(X_t, \alpha)dt + c(X_{t-}, \gamma)dJ_t$$

when observing $(X_{h_n}, X_{2h_n}, \ldots, X_{nh_n})$, h = 1/n.

 \Rightarrow The non-Gaussian stable quasi-likelihood ⁴:

$$\hat{\theta}_n \in \operatorname*{argmax}_{\theta \in \Theta} \sum_{j=1}^n \log \left\{ \frac{1}{h^{1/\beta} c(X_{t_{j-1}}, \gamma)} \phi_\beta \left(\frac{\Delta_j X - ha(X_{t_{j-1}}, \alpha)}{h^{1/\beta} c(X_{t_{j-1}}, \gamma)} \right) \right\}.$$

• Todorov's index estimator $\hat{\beta}_n$ still usable.

⁴Presented at Dynstoch meeting 2012 Paris.

Objective and Background	Claims		Summary and Remarks
0000000	000000	000	00000

• Asymptotic mixed normality valid, M (2013):

$$\left(egin{array}{c} \sqrt{n}h_n^{1-1/eta}(\hat{lpha}_n-lpha_0) \ \sqrt{n}(\hat{\gamma}_n-\gamma_0) \end{array}
ight) \Rightarrow MN\left(0, {
m diag}[U(heta_0)^{-1}, V(heta_0)^{-1}]
ight)$$

where

$$egin{aligned} U(heta_0) &= \int_0^1 rac{\{\partial_lpha a(X_t,lpha_0)\}^{\otimes 2}}{c(X_t,\gamma_0)^2} dt \cdot \int rac{\partial \phi_eta(y)^2}{\phi_eta(y)} dy, \ V(heta_0) &= \int_0^1 rac{\{\partial_\gamma c(X_t,\gamma_0)\}^{\otimes 2}}{c(X_t,\gamma_0)^2} dt \cdot \int rac{\{\phi_eta(y)+y\partial \phi_eta(y)\}^2}{\phi_eta(y)} dy, \end{aligned}$$

Objective and Background	Claims		Summary and Remarks
0000000	000000	000	00000

• Asymptotic mixed normality valid, M (2013):

$$\begin{pmatrix} \sqrt{n}h_n^{1-1/\beta}(\hat{\alpha}_n - \alpha_0) \\ \\ \sqrt{n}(\hat{\gamma}_n - \gamma_0) \end{pmatrix} \Rightarrow MN\left(0, \mathsf{diag}[U(\theta_0)^{-1}, V(\theta_0)^{-1}]\right)$$

where

$$egin{aligned} U(heta_0) &= \int_0^1 rac{\{\partial_lpha a(X_t,lpha_0)\}^{\otimes 2}}{c(X_t,\gamma_0)^2} dt \cdot \int rac{\partial \phi_eta(y)^2}{\phi_eta(y)} dy, \ V(heta_0) &= \int_0^1 rac{\{\partial_\gamma c(X_t,\gamma_0)\}^{\otimes 2}}{c(X_t,\gamma_0)^2} dt \cdot \int rac{\{\phi_eta(y)+y\partial \phi_eta(y)\}^2}{\phi_eta(y)} dy, \end{aligned}$$

Conjecture (ongoing study; not derived yet)

LAMN holds true: the stable QMLE is asymptotically optimal.

Hiroki Masuda (Kyushu University)

Objective 00000	and Background 000	Claims 000000		Summary and Remarks
	Some references			
	Aït-Sahalia, Y. and Jacod, J. Econometrica 76, 727–761.	(2008), Fisher's information	on for discretely sampled Lé	vy processes.
	Davis, R. A., Knight, K. and variance. Stochastic Process.	Liu, J. (1992), <i>M</i> -estimat Appl. 40, 145–180.	ion for autoregressions with	infinite
	Hu, Y. and Long, H. (2009), α -stable motions. Stochastic	Least squares estimator fo Processes Appl. 119, 2465	r Ornstein-Uhlenbeck proce i–2480.	sses driven by
	Masuda, H. (2009), Joint est	imation of discretely obser	ved stable Lévy processes w	vith symmetric

Masuda, H. (2009), Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density. J. Japan Statist. Soc. 39, 49–75.

Masuda, H. (2013), On optimal estimation of stable OU processes: infill asymptotics. In preparation.

Masuda, H. (2013), Laplace quasi-likelihood for locally stable OU processes. In preparation.

Masuda, H. (2013), Local stable contrast functions for estimating discretely observed jump SDEs. In preparation.

Matsui, M. and Takemura, A. (2006), Some improvements in numerical evaluation of symmetric stable density and its derivatives. Comm. Statist. Theory Methods 35, 149–172.

Szimayer, A. and Maller, R. (2004), Testing for Mean Reversion in Processes of Ornstein-Uhlenbeck Type. Statist. Infer. for Stoch. Processes 7, 95–133.

Todorov, V. (2013), Power variation from second order differences for pure jump semimartingales. Stoch. Process Appl. 123, 2829–2850.