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The Model

X ∈ Rd be solution to

dXt = b(Xt)dt +

q∑
j=1

σj(Xt)dW j
t , X0 = x ∈ Rd

where W = (W 1, . . . ,W q) is a q-dimensional Brownian
motion.

Functions b : Rd −→ Rd and σj : Rd −→ Rd , 1 ≤ j ≤ q,
satisfy condition

(Hb,σ) ∀x , y ∈ Rd |b(x)−b(y)|+
q∑

j=1

|σj(x)−σj(y)| ≤ Cb,σ|x−y |,
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Discretization error

Let X n be the Euler scheme with time step δ = T/n

dX n
t = b(Xηn(t))dt +

q∑
j=1

σj(Xηn(t))dW j
t , ηn(t) = [t/δ]δ.

under condition (Hb,σ) we have property

(P) ∀p ≥ 1, X ,X n ∈ Lp and E[ sup
0≤t≤T

|Xt − X n
t |p] ≤ Kp(T )

np/2
.
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Discretization error

In the context of possibly degenerate diffusions

For a given function ψ, we set

εn := Eψ(XT )− Eψ(X n
T )

If ψ b and σj are C4P then εn ' 1/n

However, if ψ is only of class C1, then we have εn ' 1/nα for
any α ∈ [1/2, 1]

From now on, we suppose

(Hαεn) nαεn := nαEψ(X n
T )− Eψ(XT )→ Cψ(T , α) for α ∈ [1/2, 1].
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CLT for Monte Carlo method

Theorem

Let ψ ∈ C1 s.t. we have

(Hαεn) lim
n→∞

nαεn = Cψ(T , α)

Then,

nα
( 1

n2α

n2
α∑

i=1

ψ(X n
T ,i )− Eψ(XT )

)
⇒ σG + Cψ(T , α),

with σ2 = Var(ψ(XT )).

Optimal time complexity

CMC = C × n2α+1
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Statistical Romberg algorithm

We construct two Euler schemes X n
T and X

√
n

T with time step
T/n and T/

√
n.

Let
E = Eψ

(
X
√
n

T

)
.

We set
Q = ψ (X n

T )− ψ
(

X
√
n

T

)
+ E

Note that

E(Q) = Eψ(X n
T ) and Var(Q) = O

(
1√
n

)
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Statistical Romberg method

The statistical Romberg routine that approximates Eψ(XT ) using
only two empirical means

Vn :=
1

N1

N1∑
i=1

ψ(X̂
√
n

T ,i ) +
1

N2

N2∑
i=1

ψ(X n
T ,i )− ψ(X

√
n

T ,i ).

Under assumption (Hαεn), this method is tamed by a central limit
theorem with a rate of convergence equal to nα (Kebaier 2005).
More precisely, for N1 = n2α, N2 = n2α−1/2 we have

nα(Vn − Eψ(XT ))→ N (Cψ(T , α), σ2), with

σ2 := Var (ψ(XT )) + Ṽar (∇ψ(XT ) · UT ) ,
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Statistical Romberg method

The process U is the weak limit process of the error√
n(X n − X ) and is solution to

dUt = ḃ(Xt)Utdt+

q∑
j=1

σ̇j(Xt)UtdW j
t−

1√
2

q∑
j ,`=1

σ̇j(Xt)σ`(Xt)dW̃ `j
t ,

where W̃ is a q2-dimensional standard Brownian motion,
independent of W , and ḃ (respectively (σ̇j)1≤j≤q) is the
Jacobian matrix of b (respectively (σj)1≤j≤q).

This result is due to Jacod-Kurtz-Protter (91-98) provided
that b and σ are C1.
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Importance Sampling

We define the family of Pθ, as all the equivalent probability
measures with respect to P such that

Lθt =
dPθ
dP
|Ft = exp

(
θ ·Wt −

1

2
|θ|2t

)
.

Hence, Bθ
t := Wt − θt is a Brownian motion under Pθ. This leads

to
Eψ(XT ) = Eθ

[
ψ(XT )e−θ·B

θ
T−

1
2
|θ|2T

]
.

The optimal θ parameter is chosen so that it reduces

Varθ

[
ψ(XT )e−θ·B

θ
T−

1
2
|θ|2T

]
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Let us introduce the process X θ
t solution, under P, to

dX θ
t =

b(X θ
t ) +

q∑
j=1

θjσj(X θ
t )

 dt +

q∑
j=1

σj(X θ
t )dW j

t ,

(Bθ
t ,Xt)t≥0 under Pθ has the same law as (Wt ,X

θ
t )t≥0 under P we

get

Eψ(XT ) = Eg(θ,X θ
T ,WT ), with g(θ, x , y) = ψ(x)e−θ·y−

1
2
|θ|2T .

We also introduce the Euler continuous approximation X n,θ of the
process X θ solution, under P, to

dX n,θ
t =

b(X n,θ
ηn(t)

) +

q∑
j=1

θjσj(X n,θ
ηn(t)

)

 dt +

q∑
j=1

σj(X θ
ηn(t)

)dW j
t ,
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Our target now is to approximate Eψ(XT ) = Eg(θ,X θ
T ,WT ) by

1

N1

N1∑
i=1

g(θ, X̂
√
n,θ

T ,i , ŴT ,i )+
1

N2

N2∑
i=1

g(θ,X
√
n,θ

T ,i ,WT ,i )−g(θ,X
√
n,θ

T ,i ,WT ,i ).

According to Kebaier (2005), we have a CLT with limit variance

Var
(

g(θ,X θ
T ,WT )

)
+ Ṽar

(
∇xg(θ,X θ

T ,WT ) · Uθ
T

)
where Uθ is the weak limit process of the error

√
n(X n,θ − X θ),

solution to

dUθ
t =

ḃ(X θ
t ) +

q∑
j=1

θj σ̇j(X θ
t )

Uθ
t dt +

q∑
j=1

σ̇j(X θ
t )Uθ

t dW j
t

− 1√
2

q∑
j ,`=1

σ̇j(X θ
t )σ`(X θ

t )dW̃ `j
t .
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it boils down to choose θ∗ = argmin
θ∈Rq

v(θ)

v(θ) := Ẽ
([
ψ(X θ

T )2 + (∇ψ(X θ
T ) · Uθ

T )2
]

e−2θ.WT−|θ|2T
)

Note that v(θ) is not explicit, we introduce θ∗n := argmin
θ∈Rq

vn(θ)

vn(θ) := Ẽ
([
ψ(X n,θ

T )2 + (∇ψ(X n,θ
T ) · Un,θ

T )2
]

e−2θ.WT−|θ|2T
)

with Un,θ is the Euler discretization scheme of Uθ, solution to

dUn,θ
t =

ḃ(X n,θ
ηn(t)

) +

q∑
j=1

θj σ̇j(X n,θ
ηn(t)

)

Un,θ
ηn(t)

dt

+

q∑
j=1

σ̇j(X n,θ
ηn(t)

)Un,θ
ηn(t)

dW j
t −

1√
2

q∑
j ,`=1

σ̇j(X n,θ
ηn(t)

)σ`(X n,θ
ηn(t)

)dW̃ `j
t .
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Theorem

Suppose σ and b are in C2 with bounded first and second
derivatives. Then for any θ ∈ R the following property holds

(P̃) ∀p ≥ 1, Uθ,Un,θ ∈ Lp and Ẽ

[
sup

0≤t≤T
|Uθ

t − Un,θ
t |p

]
≤ Kp(T )

np/2
.

In particular, for θ = 0 the above property holds for the processes
U and Un.
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existence and uniqueness of θ∗

Theorem

Suppose σ and b are in C2 with bounded first and second
derivatives and let ψ in C1 such that P(ψ(XT ) 6= 0) > 0.

If there exists a > 1 such that E
[
ψ2a(XT )

]
and

E
[
|∇ψ(XT )|2a

]
are finite,

Then the function θ 7→ v(θ) is C2 and strictly convex with
∇v(θ) = ẼH(θ,XT ,UT ,WT ) where

H(θ,XT ,UT ,WT ) := (θT −WT )
[
ψ(XT )2

+ (∇ψ(XT ) · UT )2
]

e−θ·WT+
1
2
|θ|2T .

Moreover, there exists a unique θ∗ ∈ Rq such that
minθ∈Rqv(θ) = v(θ∗).
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Proof

First of all, note the process (B,X ,U) under P̃θ has the same law
as (W ,X θ,Uθ) under P̃. So, using a change of probability, we get

v(θ) := Ẽ
([
ψ(XT )2 + (∇ψ(XT ) · UT )2

]
e−θ.WT+

1
2
|θ|2T

)
.

It follows that

The map θ 7→
[
ψ(XT )2 + (∇ψ(XT ) · UT )2

]
e−θ.WT+

1
2
|θ|2T is

C1

∇v(θ) = H(θ,XT ,UT ,WT )

For c > 0 we have,

sup
|θ|≤c
|H(θ,XT ,UT ,WT )| ≤ (cT + |WT |)

[
ψ(XT )2

+(∇ψ(XT ) · UT )2
]

ec|WT |+ 1
2
c2T .
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Proof

• Using Holder’s inequality, Ẽ sup|θ|≤c |H(θ,XT ,UT ,WT )| is
bounded by

e
1
2
c2T
(
‖ψ2(XT )‖a‖ec|WT |(cT + |WT |)‖ a

a−1

+ ‖|∇ψ(XT )|2‖a‖|UT |2‖ 2a
a−1
‖ec|WT |(cT + |WT |)‖ 2a

a−1

)
.

• Using property (P̃) and Eψ2a(XT ) and E|∇ψ(XT )|2a are finite
we conclude the boundedness of Ẽ sup|θ|≤c |H(θ,XT ,UT ,WT )|.
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• In the same way, we prove that v is of class C2 in Rq

Hess(v(θ)) = Ẽ [((θT −WT )(θT −WT )∗ + TIq)

×(ψ2(XT ) + (∇ψ(XT ) · UT )2)e−θ.WT+
1
2
|θ|2T

]
.

Since P(ψ(XT ) 6= 0) > 0, we get for all u ∈ Rq\{0}

u∗ Hess(v(θ)) u = Ẽ
[
T |u|2 + (u.(θT −WT ))2(ψ2(XT )

+ (∇ψ(XT ) · UT )2)e−θ.WT+
1
2
|θ|2T

]
> 0.

• Now it will be sufficient to prove that lim|θ|→∞ v(θ) = +∞
v(θ) = Ẽ

[
(ψ(XT )2 + (∇ψ(XT ) · UT )2)e−θ.WT+

1
2
|θ|2T

]
.

+∞ = Ẽ
[

lim inf
|θ|→∞

(ψ(XT )2 + (∇ψ(XT ) · UT )2)e−θ.WT+
1
2
|θ|2T

]
≤ lim inf
|θ|→+∞

Ẽ
[
(ψ(XT )2 + (∇ψ(XT ) · UT )2)e−θ.WT+

1
2
|θ|2T

]
.

According to Lebesgue’s theorem we deduce that v is C1 in Rq

and ∇v(θ) = ẼH(θ,XT ,UT ,WT ). In the same way, we prove that
v is of class C2 in Rq. So, we have
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The same results can be obtained for the Euler scheme X n.

Theorem

Suppose σ and b are in C2 with bounded first and second
derivatives.Let ψ be C1 such that P(ψ(X n

T ) 6= 0) > 0.

If there exists a > 1 such that E
[
ψ2a(X n

T )
]

and
E
[
|∇ψ(X n

T )|2a
]

are finite

Then the function θ 7→ vn(θ) is C2 and strictly convex with

∇vn(θ) = ẼH(θ,X n
T ,U

n
T ,WT ).

Moreover, there exists a unique θ∗n ∈ Rq such that
minθ∈Rqvn(θ) = vn(θ∗n).
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Further, we prove the convergence of θ∗n towards θ∗ as n tends to
infinity.

Theorem

Suppose σ and b are in C2 with bounded first and second
derivatives. Let ψ be C1 such that P(ψ(XT ) 6= 0) > 0 and for all
n ∈ N, P(ψ(X n

T ) 6= 0) > 0.

If there exists a > 1 such that E
[
ψ2a(XT )

]
,

supn∈N E
[
ψ2a(X n

T )
]
, E
[
|∇ψ(XT )|2a

]
and

supn∈N E
[
|∇ψ(X n

T )|2a
]

are finite.

Then,
θ∗n−→θ∗, as n→∞.
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• The aim now is to construct for fixed n some sequences (θni )i∈N
such that limi→∞ θ

n
i = θ∗n arg minθ∈R vn(θ) = almost surely.

• Indeed, using the Robbins-Monro algorithm, we construct
recursively the sequence of random variables (θni )i∈N in Rq given by

θni+1 = θni − γi+1H(θni ,X
n
T ,i+1,U

n
T ,i+1,WT ,i+1), i ≥ 0, θn0 ∈ Rq,

(γi )i≥1 is a decreasing sequence of positive real numbers satisfying

∞∑
i=1

γi =∞ and
∞∑
i=1

γ2i <∞

• To obtain the a.s. convergence of θni to θ∗n, we need to check

∀θ 6= θ∗n, 〈∇vn(θ), θ − θ∗n〉 > 0,

(NEC) Ẽ
[
|H(θ,X n

T ,U
n
T ,WT )|2

]
≤ C (1+|θ|2), for all θ ∈ Rq.

Unfortunately, this condition is not satisfied in our context.

Ahmed Kebaier Importance Sampling and Statistical Romberg method



Introduction
Robbins-Monro Algorithms

Central limit theorem for the adaptative procedure
Numerical results for the Heston model

Constrained stochastic algorithm

Let (Ki )i∈N denote an increasing sequence of compact sets

satisfying ∪∞i=0 Ki = Rd and Ki (
◦
Ki+1,∀i ∈ N. For θn0 ∈ K0,

αn
0 = 0 and a gain sequence (γi )i∈N satisfying (??), we define the

sequence (θni , α
n
i )i∈N recursively by

if θni − γi+1H(θni ,X
n
T ,i+1,U

n
T ,i+1,WT ,i+1) ∈ Kαn

i
, then

θni+1 = θni − γi+1H(θni ,X
n
T ,i+1,U

n
T ,i+1,WT ,i+1), and αn

i+1 = αn
i

else θni+1 = θn0 and αn
i+1 = αn

i + 1,
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Constrained stochastic algorithm

Theorem

Suppose σ and b are C2 with bounded first and second derivatives
and ψ is C1. Assume that for all n ∈ N, P(ψ(X n

T ) 6= 0) > 0.

there exists a > 1 s.t. E
[
ψ4a(X n

T )
]

and E
[
|∇ψ(X n

T )|4a
]
<∞

Then the sequence (θni )i≥0 satisfies

1 For all n ∈ N, we have θni −→
i→∞

θ∗n, a.s.

2 Reversely, for all i ∈ N, we have θni −→n→∞
θi , a.s.,


if θi − γi+1H(θi ,XT ,i+1,UT ,i+1,WT ,i+1) ∈ Kαi , then

θi+1 = θi − γi+1H(θi ,XT ,i+1,UT ,i+1,WT ,i+1), and αi+1 = αi

else θi+1 = θ0 and αi+1 = αi ,
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The following corollary follows immediately

Corollary

Under above assumptions the constrained algorithm given satisfies

lim
i ,n→∞

θni = lim
i→∞

( lim
n→∞

θni ) = lim
n→∞

( lim
i→∞

θni ) = θ∗, P̃-a.s.,

where θ∗ = argmin
θ∈Rq

v(θ)

v(θ) := Ẽ
([
ψ(X θ

T )2 + (∇ψ(X θ
T ) · Uθ

T )2
]

e−2θ.WT−|θ|2T
)
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Unconstrained stochastic algorithm

• We use the idea proposed by Lemaire and Pagès (2009), a new
algorithm that satisfies (NEC). In our context we have

∇vn(θ) = Ẽ
(

(θT −WT )
[
ψ(X n

T )2 + (∇ψ(X n
T ) · Un

T )2
]

e−θ·WT+
1
2
|θ|2T

)
.

• To do so, we apply Girsanov theorem, with shift parameter −θ.

B
(−θ)
t := Wt + θt and L

(−θ)
t :=

dP(−θ)

dP
|Ft = e−θ.Wt− 1

2
|θ|2t

∇vn(θ) = Ẽ(−θ)

[
(2θT − B

(−θ)
T )

[
ψ(X n

T )2 + (∇ψ(X n
T ) · Un

T )2
]

e |θ|
2T
]

= Ẽ
[
(2θT −WT )

[
ψ(X

n,(−θ)
T )2 + (∇ψ(X

n,(−θ)
T ) · Un,(−θ)

T )2
]

e |θ|
2T
]
,

since (B(−θ),X n,Un, P̃(−θ))
law
= (W ,X n,(−θ),Un,(−θ), P̃)
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• We need in this context to strengthen our assumptions on ψ and
suppose that ∂αψ are with polynomial growth for |α| ≤ 1

• we introduce for a given η > 0, a new function

H̃η(θ,X
n,(−θ)
T ,U

n,(−θ)
T ,WT ) = e−η|θ|

2T (2θT −WT )

×
[
ψ(X

n,(−θ)
T )2 + (∇ψ(X

n,(−θ)
T ) · Un,(−θ)

T )2
]
.

Then, the algorithm is given by

θni+1 = θni − γi+1Hη(θni ,X
n,(−θni )
T ,i+1 ,U

n,(−θni )
T ,i+1 ,WT ,i+1), θ0 ∈ R. (1)

This algorithm would behave like a classical Robbins-Monro one
and does not suffer from the violation of (NEC).
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Theorem

Suppose σ and b are C2 with bounded first and second derivatives.
Let ψ in C1 such that for and for all n ∈ N, P(ψ(X n

T ) 6= 0) > 0. In
addition, assume that for λ > 0 we have

|∇ψ(x)| ≤ Cψ(1 + |x |λ) for all x ∈ Rd and Cψ > 0.

Then, the sequence (θni )i≥0 given by routine (1), satisfies

∀n ∈ N, θni −→
i→∞

θ∗n, a.s.

θ∗n := argmin
θ∈Rq

Ẽ
([
ψ(X n,θ

T )2 + (∇ψ(X n,θ
T ) · Un,θ

T )2
]

e−2θ.WT−|θ|2T
)
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Proof

• We have to check first that ∀θ 6= θ∗n

〈hn(θ), θ − θ∗n〉 > 0, where hn(θ) = ẼHη(θ,X
n,(−θ)
T ,U

n,(−θ)
T ,WT ).

This is immediate since hn(θ) = Kη(θ)∇vn(θ) with Kη > 0.
• It remains to prove

supθ∈Rq Ẽ
[
|Hη(θ,X

n,(−θ)
T ,U

n,(−θ)
T ,WT )|2

]
<∞,

By Cauchy-Schwartz inequality we obtain for λ1 = 4λ ∨ 2(λ+ 1),

Ẽ
[
|Hη(θ,X

n,(−θ)
T ,U

n,(−θ)
T ,WT )|2

]
≤ e−2η|θ|

2T
∥∥|2θT −WT |2

∥∥
2

×
(∥∥∥ψ(X

n,(−θ)
T )2

∥∥∥
2

+
∥∥∥(∇ψ(X

n,(−θ)
T ) · Un,(−θ)

T )2
∥∥∥
2

)
.

Ẽ
[
|Hη(θ,X

n,(−θ)
T ,U

n,(−θ)
T ,WT )|2

]
≤ Ce−2η|θ|

2T (1 + |θ|2)
(

1 +
∥∥∥|X n,(−θ)

T |λ1
∥∥∥
2

+
∥∥∥|Un,(−θ)

T |4
∥∥∥
2

)
.
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• Using properties (P) and (P̃), we get

Ẽ
[
|Hη(θ,X

n,(−θ)
T ,U

n,(−θ)
T ,WT )|2

]
≤ Ce−2η|θ|

2T (1 + |θ|2)

×
(

1 +
∥∥∥|X n,(−θ)

T − X n
T |λ1

∥∥∥
2

+
∥∥∥|Un,(−θ)

T − Un
T |4
∥∥∥
2

)
• Using Gronwall inequality, we obtain that

Ẽ
∣∣∣X n,(−θ)

T − X n
T

∣∣∣2λ1 ≤ C |θ|2λ1
q∑

j=1

Ẽ
∣∣∣∣∫ T

0
|σj(X

n,(−θ)
s )|ds

∣∣∣∣2λ1 ,
Ẽ
∣∣∣Un,(−θ)

T − Un
T

∣∣∣8 ≤ C |θ|8 Ẽ
∣∣∣∣∫ T

0
|Un,(−θ)

s |ds

∣∣∣∣8 .
•As (B(−θ),X n,Un, P̃(−θ))

law
= (W ,X n,(−θ),Un,(−θ), P̃),

Ẽ
∣∣∣∣∫ T

0
|σj(X

n,(−θ)
s )|ds

∣∣∣∣2λ1 = Ẽ

(∣∣∣∣∫ T

0
|σj(X n

s )|ds

∣∣∣∣2λ1 e−θ·WT− 1
2
|θ|2T

)
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In the same way

Ẽ
∣∣∣∣∫ T

0
|Un,(−θ)

s |ds

∣∣∣∣8 = Ẽ

(∣∣∣∣∫ T

0
|Un

s |ds

∣∣∣∣8 e−θ·WT− 1
2
|θ|2T

)
.

Now using Holder’s inequality, with 1
r + 1

r ′ = 1, the linear growth

of (σj)1≤j≤q, properties (P) and (P̃) we obtain

Ẽ
[
|Hη(θ,X

n,(−θ)
T ,U

n,(−θ)
T ,WT )|2

]
≤ Ce−2η|θ|

2T (1 + |θ|2)
(

1 + (|θ|λ1 + |θ|4)e
r−1
4
|θ|2T

)
.

We complete the proof by choosing r ∈]1, 1 + 8η[. �
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Theorem

Suppose b and σ are C2 with bounded first and second derivatives
and s.t. all the derivatives of order 2 are Lipschitz continuous. Let
∇ψ in C1 s.t. for all n ∈ N, P(ψ(X n

T ) 6= 0) > 0.

Assume also that ∂αψ, for |α| ≤ 2, are with polynomial
growth

Then, for all ∀i ∈ N, p ≥ 1, there exists Ci > 0 such that

∀n ∈ N∗, Ẽ|θni+1 − θi+1|2p ≤
Ci

np
.

Moreover,
∀i ∈ N, θni −→n→∞

θi , a.s.

where the sequence (θi )i≥0 is introduced in the above corollary.
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Proof

We give the proof in the case of dimension one and proceed by
induction on i ∈ N For all p ≥ 1 relation (1) yields

Ẽ(θni+1 − θi+1)2p ≤ C Ẽ(θni − θi )2p

+ Cγ2pi+1Ẽ
(

Hη(θni ,X
n,(−θni )
T ,i+1 ,U

n,(−θni )
T ,i+1 ,WT ,i+1)

−Hη(θi ,X
(−θi )
T ,i+1,U

(−θi )
T ,i+1,WT ,i+1)

)2p
.

Using the induction assumption we only need to control the second
term bounded by C × (ẼH2p

1 + ẼH2p
2 )

H1 := e−η|θ
n
i |

2T (2θni T −WT ,i+1)

×
[
ψ(X

n,(−θni )
T ,i+1 )2 +

(
ψ′(X

n,(−θni )
T ,i+1 )U

n,(−θni )
T ,i+1

)2
−ψ(X

(−θni )
T ,i+1)2 −

(
ψ′(X

(−θni )
T ,i+1)U

(−θni )
T ,i+1

)2]
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H2 := e−η|θ
n
i |

2T (2θni T−WT ,i+1)

[
ψ(X

(−θni )
T ,i+1)2 +

(
ψ′(X

(−θni )
T ,i+1)U

(−θni )
T ,i+1

)2]
−e−η|θi |

2T (2θiT−WT ,i+1)

[
ψ(X

(−θi )
T ,i+1)2 +

(
ψ′(X

(−θi )
T ,i+1)U

(−θi )
T ,i+1

)2]
.

• We give the proof for H2. Here, we need first to introduce, for all

u ∈ R, the couple of u-sensitivity processes (Y
(−u)
t ,Z

(−u)
t )t∈[0,T ]

given by Y
(−u)
t := ∂X

(−u)
t
∂u and Z

(−u)
t :=

∂U
(−u)
t

∂u
, t ∈ [0,T ]

Therefore, we write ẼH2p
2 = ẼB(θni , θi )

B(θ, θ′) = Ẽ

[∫
(θ′,θ)

∂

∂u

{
e−η|u|

2T (2uT −WT )

×
[
ψ(X

(−u)
T )2 +

(
ψ′(X

(−u)
T )U

(−u)
T

)2]}
du

]2p
.
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• Now, B(θ, θ′) ≤ C
∑4

i=1 Bi (θ, θ
′). These four terms are of the

same type, so we only treat one of them let’s say B3

B3(θ, θ′) ≤ C |θ − θ′|2p−1

×
∫
(θ′,θ)

Ẽ
[
(2uT −WT )2pe−2pη|u|

2T (U
(−u)
T )2pψ′(X

(−u)
T )4p(Z

(−u)
T )2p

]
du

• Note that the same probability change leading to cancel the
u-term in the drift part of X (−u) operates in the same way for the
other processes U(−u), Y (−u) and Z (−u). So for all u ∈ R, we get

(B(−u),X ,U,Y ,Z , P̃(−u))
law
= (W ,X (−u),U(−u),Y (−u),Z (−u), P̃)

B3(θ, θ′) ≤ C |θ − θ′|2p−1
∫
(θ′,θ)

Ẽ
[
(uT −WT )2pe−2pη|u|

2T

×(UT )2pψ′(XT )4p(ZT )2pe−uWT− 1
2
|u|2T

]
du.
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B3(θ, θ′) ≤ C |θ − θ′|2p,

• This is immediate, since X and U satisfy properties (P) and (P̃)
and Z is a diffusion process with enough smooth coefficients
satisfying likewise the same type of properties.
• So that, we obtain for all p > 1

B(θ, θ′) ≤ C |θ − θ′|2p.

Now, since ẼH2p
2 = ẼB(θni , θi ), it follows for all p > 1

ẼH2p
2 ≤ CE|θni − θi |2p ≤

Ci

np
.
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Corollary

Under above assumptions if P(ψ(XT ) 6= 0) > 0, then the
unconstrained algorithm satisfies

lim
i ,n→∞

θni = lim
i→∞

( lim
n→∞

θni ) = lim
n→∞

( lim
i→∞

θni ) = θ∗, P̃-a.s.,

where θ∗ = argmin
θ∈Rq

v(θ)

v(θ) := Ẽ
([
ψ(X θ

T )2 + (∇ψ(X θ
T ) · Uθ

T )2
]

e−2θ.WT−|θ|2T
)
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Adaptative Statistical Romberg method

• The adaptative importance sampling algorithm for the statistical
Romberg method approximates our initial quantity of interest

Eψ(XT ) = E
[
ψ(X θ

T )e−θ·WT− 1
2
|θ|2T

]
by

1

N1

N1∑
i=1

g(θ̂mi , X̂
m,θ̂mi
T ,i+1, ŴT ,i+1)

+
1

N2

N2∑
i=1

(
g(θni ,X

n,θni
T ,i+1,WT ,i+1)− g(θni ,X

m,θni
T ,i+1,WT ,i+1)

)
,

where for all x ∈ Rd and y ∈ Rq, g(θ, x , y) = ψ(x)e−θ·y−
1
2
|θ|2T .

• Here the paths generated by W and Ŵ are of course
independent.
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Lindeberg Feller CLT

Theorem

Suppose that (Ω,F,P) is a probability space and that for each n,
we have a filtration Fn = (Fn

k )k≥0, a sequence kn →∞ as n→∞
and a real square integrable vector martingale Mn = (Mn

k )k≥0
which is adapted to Fn such that

There exists a deterministic symmetric positive semi-definite
matrix Γ , such that

〈M〉nkn =
∑kn

k=1 E
[
|Mn

k −Mn
k−1|2|Fn

k−1
] P−→
n→∞

Γ.

There exists a real number a > 1, such that∑kn
k=1 E

[
|Mn

k −Mn
k−1|2a|Fn

k−1
] P−→
n→∞

0.

Then
Mn

kn
L−→ N (0, Γ ) as n→∞.
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Toeplitz Lemma

Lemma

Let (ai )1≤i≤kn a sequence of real positive numbers, where kn ↑ ∞
as n tends to infinity, and (xn

i )i≥1,n≥1 a double indexed sequence
such that

(i) lim
n→∞

∑
1≤i≤kn ai =∞

(ii) lim
i ,n→∞

xn
i = lim

i→∞
( lim
n→∞

xn
i ) = lim

n→∞
( lim
i→∞

xn
i ) = x <∞

Then

lim
n→+∞

∑kn
i=1 aix

n
i∑kn

i=1 ai
= x .

Ahmed Kebaier Importance Sampling and Statistical Romberg method



Introduction
Robbins-Monro Algorithms

Central limit theorem for the adaptative procedure
Numerical results for the Heston model

The adaptative Monte Carlo method

Theorem

• Let (θni )i≥0, n ∈ N and (θi )i≥0 satisfying
(Hθ) lim

i ,n→∞
θni = lim

i→∞
( lim
n→∞

θni ) = lim
n→∞

( lim
i→∞

θni ) = θ∗, P̃-a.s.,

• Assume that b and σ satisfy (Hb,σ) and the function ψ is a real
valued function satisfying assumption (Hεn), with α ∈ [1/2, 1] and
Cψ ∈ R, s.t. |ψ(x)− ψ(y)| ≤ C (1 + |x |p + |y |p)|x − y |, then the
following convergence holds

nα

 1

n2α

n2α∑
i=1

g(θni ,X
n,θni
T ,i+1,WT ,i+1)− Eψ(XT )

 L−→ N
(
Cψ, σ

2
)
.

σ2 := E
(
ψ(XT )2e−θ

∗.WT− 1
2
|θ∗|2T

)
− [Eψ(XT )]2
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The adaptative statistical Romberg method

Theorem

• Let (θni )i≥0, n ∈ N and (θi )i≥0 satisfying (Hθ).
• Assume that b and σ are C1 satisfying (Hb,σ) and ψ is C1,
satisfying (Hεn), with constants α ∈ (1/2, 1] and Cψ ∈ R, s.t.

|ψ(x)− ψ(y)| ≤ C (1 + |x |p + |y |p)|x − y |, for some C , p > 0.

If we choose N1 = n2α, N2 = n2α−β then

nα (Vn − Eψ(XT ))
L−→ N

(
Cψ, σ

2 + σ̃2
)

as n→∞,

where σ2 = E
[
ψ(XT )2e−θ

∗·WT− 1
2
|θ∗|2T

]
− [Eψ(XT )]2 and

σ̃2 := Ẽ
[
[∇ψ(XT ) · UT ]2 e−θ

∗·WT− 1
2
|θ∗|2T

]
.
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Proof

• We prove only the convergence of the secod empirical mean in
the Statistical Romberg method. To do so, we introduce the
martingale arrays (Mn

k )k≥1. For β = 1/2

Mn
k :=

1

nα−β

k∑
i=1

(
g(θni ,X

n,θni
T ,i+1,WT ,i+1)

−g(θni ,X
nβ ,θni
T ,i+1,WT ,i+1)− E[ψ(X n

T )− ψ(X nβ

T )]
)
,

• The quadratic variation of M evaluated at n2α−β is given by

〈M〉nn2α−β =
1

n2α−β

n2α−β∑
i=1

nβξn(θni )−
(

n
β
2 [Eψ(X n

T )− Eψ(X nβ

T )]
)2
,

where ∀θ ∈ Rq, ξn(θ) := E
(

[ψ(X n
T )− ψ(X nβ

T )]2e−θ·WT+
1
2
|θ|2T

)
.
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• We focus now on the asymptotic behavior of nβξn(θ). Applying
Taylor expansion theorem twice we get for all θ ∈ Rq

n
β
2 [ψ(X n

T )− ψ(X nβ

T )]e−
1
2
θ·WT+

1
4
|θ|2T

= n
β
2∇ψ(XT ) · [X n

T − X nβ

T ]e−
1
2
θ·WT+

1
4
|θ|2T + Rn,

Rn := n
β
2 (X n

T−XT )ε(XT ,X
n
T−XT )−n

β
2 (X nβ

T −XT )ε(XT ,X
nβ

T −XT )

with ε(XT ,X
n
T − XT )

P-a.s.−→ 0 and ε(XT ,X
nβ

T − XT )
P-a.s.−→ 0

• Further, as b and σ are C1 functions then we have the tightness

of n
β
2 (X n

T − XT ) and n
β
2 (X nβ

T − XT ) and we deduce that Rn → 0.
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• It follows

n
β
2 [ψ(X n

T )−ψ(X nβ

T )]e−
1
2
θ·WT+

1
4
|θ|2T stably

=⇒ ∇ψ(XT )·UT e−
1
2
θ·WT+

1
4
|θ|2T .

• Otherwise, ∀θ ∈ Rq and a′ > 1 we have thanks to the
assumption on ψ together with property (P), we obtain

sup
n

E
∣∣∣n β

2 [ψ(X n
T )− ψ(X nβ

T )]e−
1
2
θ·WT+

1
4
|θ|2T

∣∣∣2a′ <∞
So, limn→∞ nβξn(θ) = Ẽ

(
[∇ψ(XT ) · UT ]2 e−θ·WT+

1
2
|θ|2T

)
:= ξ(θ)

• Using property (P) with assumption on ψ, we check the
equicontinuity of the family functions (nβξn)n≥1.
• So under assumption (Hθ), we get

lim
i ,n→∞

nβξn(θni ) = ξ(θ∗) P̃-a.s.

Then, Toeplitz Lemma yields limn→∞〈M〉nn2α−β = ξ(θ∗), P̃-a.s.
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The popular stochastic volatility model in finance is the Heston
model solution to{

dSt = rStdt +
√

VtStdW 1
t

dVt = κ(v̄ − Vt)dt + σ
√

VtρdW 1
t + σ

√
Vt

√
1− ρ2dW 2

t ,

where W 1 and W 2 are two independent Brownian motions.
Parameters κ, σ, v̄ , r > 0 and |ρ| ≤ 1.
• Our aim is to use the importance sampling method in order to
reduce the variance when computing the price is

e−rTEψ(ST ) = e−rTE
[
g(θ,SθT )

]
= e−rTE

[
ψ(SθT ) e−θ.WT− 1

2
|θ|2T

]
, θ ∈ R2.

To approximate SθT , we consider the step T/n and we discretize
the stochastic process using the Euler scheme. For i ∈ [0, n − 1]
and θ = (θ1, θ2) ∈ R2,
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

Sn,θ
ti+1

= Sn,θ
ti

(
1 + (r + θ1

√
V n,θ
ti )

T

n
+

√
V n,θ
ti

T

n
Z1,i+1

)
,

V n,θ
ti+1

=
∣∣∣V n,θ

ti +
(
κ(v̄ − V n,θ

ti )

+σ

√
V n,θ
ti (ρθ1 +

√
1− ρ2θ2)

)
T

n
+ σ

√
V n,θ
ti

T

n
Z2,i+1

∣∣∣∣∣ ,
Hence, the price is firstly approximated by

e−rTE
[
g(θ,Sn,θ

T )
]

= e−rTE
[
ψ(Sn,θ

T ) e−θ.WT− 1
2
|θ|2T

]
, θ ∈ R2.

• The optimal θ for a Monte Carlo method

θ∗n = arg min
θ∈R2

E
[
ψ2(Sn,θ

T ) e−2θ.WT−|θ|2T
]
.
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• The optimal θ for the second one is

θ̃∗n = arg min
θ∈R2

E
[(
ψ2(Sn,θ

T ) + (∇ψ(Sn,θ
T ).Un,θ

T )2
)

e−2θ.WT−|θ|2T
]
,

• Here, we have also the choice of the algorithm approximating
both θ∗n and θ̃∗n by the constrained algorithm or by the
unconstrained algorithm
• We fix S0 = 100, V0 = 0.01, K = 100, the free interest rate
r = log(1.1), σ = 0.2, k = 2, v̄ = 0.01, ρ = 0.5 and maturity time
T = 1.

Constrained algorithm Unconstrained algorithm
θ∗n (0.7906, 0.0516) (0.7904, 0.0532)

θ̃∗n (0.7884, 0.0587) (0.7898, 0.0576)

Table: Estimation of θ∗n and θ̃∗n
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1 First, we choose γi = γ0/iα, for α ∈ (12 , 1) and γ0 > 0.
2 Then, we compute θ̄ni+1 := 1

i+1

∑i
k=0 θ̃

n
k .
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Figure: Values obtained with n = 100, γ0 = 0.01 and α = 0.75.
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Our aim now, is to compare

- MC+IS method: European call option price approximation
with N = n2

e−rT

N

N∑
i=1

g(θnM , S
n,θnM
T ,i+1)

- SR+IS method: European call option price approximation

method with N1 = n2 and N2 = n
3
2

e−rT

N1

N1∑
i=1

g(θ̃nM , Ŝ
√
n,θ̃nM

T ,i+1 )

+
e−rT

N2

N2∑
i=1

(
g(θ̃nM ,S

n,θ̃nM
T ,i+1)− g(θ̃nM , S

√
n,θ̃nM

T ,i+1 )

)
.
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Method n Price CI length time

MC+IS
400 9.641444 0.060094 10.38
900 9.661192 0.029409 91.5

1600 9.656892 0.016538 512.29

SR+IS
600 9.659409 0.057454 3.36

1600 9.660062 0.019933 26.79
3600 9.65673 0.008584 194.6

Table: Call Price for the Heston model
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Method n Price CI length time

MC+IS
400 0.863968 0.00721 9.39
900 0.863291 0.003151 91.58

1600 0.863766 0.001774 515.31

SR+IS
600 0.867441 0, 007249 3.27

1600 0.864213 0.002541 27.02
3600 0.862589 0.001095 202.2

Table: Delta call price for the Heston model

The first method (MC+IS) is already implemented and available in
the free online version of Premia platform
(https://www.rocq.inria.fr/mathfi/Premia/index.html)
and our method (SR+IS) is now added in the latest premium
version.
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Figure: CPU time versus the 95%-confidence interval length
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Thank you!
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Multilevel Monte Carlo and the Euler scheme

We use L + 1 Euler schemes with time steps
T

m`
for

` ∈ {0, 1, · · · , L} such that mL = n.
We can write

E(f (X n
T )) = E

(
f (Xm0

T )
)

+
L∑
`=1

E
(

f (Xm`

T )− f (Xm`−1

T )
)
.

The Multilevel method consits on estimating independently
each of the expectations above.

Qn =
1

N0

N0∑
k=1

f (Xm0

T ,k) +
L∑
`=1

1

N`

N∑̀
k=1

(
f (Xm`

T ,k)− f (Xm`−1

T ,k )
)
.

we have

Var(Qn) = O
( L∑
`=1

N−1` m−`
)
.
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