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Introduction

Main motivation : stochastic/deterministic duality.
We are given a stochastic optimization problem (e.g. optimal
stopping, optimal control of diffusions...).
The possible controls ν must be adapted (non-anticipating), denote
the associated gain J(ν).
We want to compute the value

V = sup
ν adapted

E[J(ν)],

and (almost) optimal controls.
Lower bounds are given by any choice of policy ν, V > E [J(ν)].
To know how good a policy is : need for upper bound.
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Idea of the deterministic/stochastic duality

Information relaxation :

sup
ν adapted

E[J(ν)] 6 sup
ν anticipating

E[J(ν)]

= E
[
sup
µ

J(µ)(ω)

]
This inequality has no reason to be sharp ("value of information"),
but the hope is that one can penalize anticipating controls

sup
ν adapted

E[J(ν)] = inf
P∈P

E
[
sup
µ

J(µ)− P(µ)

]
,

for some suitably chosen class of penalties P.
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Our context

Controlled diffusions

dX = b(X , ν)dt + σ(X )dBt .

Technical difficulty : need way to make sense of controlled SDEs
with anticipating coefficients
−→ rough path theory.
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Rough path theory

ODE driven by a path xt = (x1
t , . . . , x

d
t ) :

dyt = V (yt)dxt :=
d∑

i=1

V i (yt)dx i
t . (1)

Extension to non-smooth x ?
Doss-Sussmann : When d = 1, solution yt = f (xt), ḟ = V (f ).
−→ extension to any continous path x by continuity.
Also for d > 1, when the vector fields V i commute,
yt = f (x1

t , . . . , x
d
t ).

x 7→ y continuous in β-Hölder topology, β > 1
2 (Young

integration).
These do not cover multi-dimensional Brownian Motion !
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Rough path theory

Key idea of Lyons (1998) : needs to consider extra data, the
iterated integrals of x against itself :

I 2(x)s,t :=

∫ t

s
xs,r ⊗ dxr =

(∫ t

s
x i
s,rdx

j
r

)
1 6 i ,j 6 d

. . .

I n(x)s,t :=

∫
s 6 t1 6 ... 6 tn 6 t

dxt1 ⊗ . . .⊗ dxtn ,

These iterated integrals are not well-defined a priori for
nonsmooth x , but taking them as given data, one can solve
any ODE driven by x .
One only needs to consider a finite number of those,
depending on the regularity of x , e.g. α when x is α-Hölder.
For 1

3 < α 6 1
2 : level 2 is enough.
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"Level 2" rough paths : definition

Fixed 1
3 < α 6 1

2 .

Rough path will be

x = (xs,t , x s,t)0 6 s,t 6 T ,

valued in Rd × (Rd )⊗2

Rough path distance :

dα(x, x̃) := sup
0 6 s,t 6 T

|xs,t − x̃s,t |
|t − s|α

+

∣∣x s,t − x̃ s,t
∣∣

|t − s|2α
.

Geometric rough paths D0,α(Rd ) : closure of (lift of) smooth
paths under dα.
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Rough differential equations

Rough differential equation (RDE)

dyt = V (yt)dxt

Existence of continuous solution map (for V regular enough)

D0,α × Rn → C([0,T ],Rn)

(x, y0) 7→ y
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RDEs and SDEs

Consistency with SDEs : define B = (B,
∫
B ⊗ ◦dB)

Stratonovich lift of Brownian Motion.
Then B ∈ D0,α a.s., and the solution to RDE

dyt = V (yt)dBt(ω)

coincides a.s. with the solution to SDE

dYt = V (Yt) ◦ dBt .

One advantage (among others) : no difficulty to make sense of
anticipating SDEs

dYt = V (Yt , ω) ◦ dB,

as long as y 7→ V (y , ω) is a.s. regular enough.
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Classical deterministic optimal control

Class of admissible controlsM = {µ : [0,T ]→ U measurable }.
Controlled ODE :

dX t,x ,µ
s = b

(
X t,x ,µ

s , µs
)
ds + σ

(
X t,x ,µ

s
)
dηs , X t,x ,µ

t = x ∈ Re

Here η : [0,T ]→ Rd is a smooth path.
Optimization problem :

J(t, x ;µ, η) :=

∫ T

t
f
(
s,X t,x ,µ

s , µs
)
ds + g

(
X t,x ,µ

T

)
,

v (t, x) := sup
µ

J(t, x ;µ, η).

Then to solve for the value function v and the optimal control :
HJB equation, Pontryagin maximum principle (PMP)...
We want to extend this to η rough path.
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Controlled RDE

Now for η ∈ C0,α,

dX t,x ,µ
s = b

(
X t,x ,µ

s , µs
)
ds + σ

(
X t,x ,µ

s
)
dηs (2)

Regularity requirements :
b(·, u) ∈ Lip1(Re) uniformly in u ∈ U
σ1, . . . , σd ∈ Lipγ(Re), for some γ > 1

α .
( For γ = [γ] + {γ}, where [γ] ∈ N and {γ} ∈ (0, 1], f is in Lipγ if it has
derivatives up to order [γ] which are {γ}-Hölder continuous.)

Theorem
For any µ inM, (2) has a unique solution. Moreover the mapping

(η, x0) 7→ X ∈ D0,α

is locally Lipschitz continuous, uniformly in µ ∈M.
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The rough control problem

Payoff functions :
f : [0,T ]× Re × U → R bounded, continuous and locally
uniformly continuous in t, x , uniformly in u
g ∈ BUC (Re)

Payoff

J(t, x ;µ;η) :=

∫ T

t
f
(
s,X t,x ,µ

s , µs
)
ds + g

(
X t,x ,µ

T

)
,

and value function

v (t, x) := sup
µ

J(t, x ;µ,η).

We will now show how in some sense, HJB equation and PMP hold
for this rough control problem.
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The rough HJB equation

Formally,

−dv − H (x ,Dv) dt − 〈σ (x) ,Dv〉 dη = 0,
v(T , x) = g(x)

(3)

where the Hamiltonian is

H(x , p) := sup
u∈U
{〈b (x , u) , p〉+ f (t, x , u)} .

How to make sense of this equation ?
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Definition
Caruana, Friz, Oberhauser (2011) :
v is a viscosity solution to a rough PDE

−dv − F (t, x , v ,Dv ,D2v)dt − G (t, x , v ,Dv)dηt = 0,
v(T , x) = φ(x),

if for any smooth ηn → η, vη
n → v , where vη

n
is the unique

solution to the PDE with η replaced by ηn.

In our case :

Proposition

v is the unique viscosity solution to the rough HJB (3).
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Pontryagin maximum principle

Assume b, f , g be C 1 in x , such that the derivative is Lipschitz in
x , u and bounded.
Assume σ1, . . . , σd ∈ Lipγ+2(Re).

Given (X , µ), dual RDE for the costate:

−dp(t) = Dxb(Xt , µt)p(t)dt + Dxσ(Xt)p(t)dηt + Dx f (Xt , µt)dt,
p(T ) = Dxg(XT ).

Theorem

Let X̄ , µ̄ be an optimal pair. Let p̄ be the associated costate.
Then

b(X̄t , µ̄t) · p(t) + f (X̄t , µ̄t) = sup
u∈U

[
b(X̄t , u) · p(t) + f (X̄t , u)

]
, a.e. t.
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Pontryagin maximum principle

Remarks :
The proof is similar to the classical one :

µε(t) = 1I (t)µ(t) + 1[0,T ]\I (t)µ̄(t), where |I | = ε.
Expansion J(µ̄)− J(µε) = εF (µ̄, µ) + o(ε),
First order condition : F (µ̄, µ) 6 0 ⇒ PMP.

Sufficient conditions ? Formally, would require convexity of

(x , u) 7→ b(x , u) · p + f (x , u) + σ(x) · η̇,

can only happen if σ linear in x .
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Why no µ-dependence in σ ?

The problem is NOT to make sense of controlled RDEs of the form

dX = b(t,X , µ)dt + σ(X , µ)dηt ,

which could be done by restricting the classM of controls, e.g.
piecewise constant, feedback controls,...

Real problem : degenerate control problem, i.e.

sup
µ∈M

{∫ T

t
f
(
s,X t,x ,µ,η

s , µs
)
ds + g

(
X t,x ,µ,η

T

)}
=

∫ T

t
(sup
µ,x

f (s, µ, x))ds + sup
x

g(x).

The reason is that if σ has enough u-dependence and η has
unbounded variation on any interval (as is the case for typical
Brownian paths), the system can essentially be driven to reach any
point instantly.
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Anticipating stochastic control

Probability space (Ω,F ,P) with brownian motion B .
Take η = B (ω), Stratonovich lift of Brownian motion, which is in
D0,α P-a.e. ω (1

2 > α > 1
3).

If ν ∈ A, set of progressively measurable maps : Ω× [0,T ]→ U,
then

X |µ=ν(ω),η=B(ω) = X̃ , P−a.s., (4)

where X̃ is the (usual) solution to the controlled SDE

X̃t = x0 +

∫ t

0
b(X̃r , νr )dr +

∫ t

0
σ(X̃ ) ◦ dBr .
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Deterministic/stochastic duality

General idea :

sup
ν

E[J(ν)] = E
[
sup
µ
{J(µ)− P∗(µ)}

]
,

= inf
P∈P

E
[
sup
µ
{J(µ)− P(µ)}

]
.

Long History :

Rockafellar, Wets (70s),
Davis and coauthors (late 80s–early 90s),
Rogers, Haugh–Kogan, Brown–Smith–Sun (2001–present)
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Example : duality for optimal stopping

Optimal stopping problem :

Y ∗0 := sup
τ stopping time

E [Zτ ] .

Davis–Karatzas (1994),
Rogers (2001), (also Haugh–Kogan (2002)):

Y ∗0 = inf
M∈H1

0

E
[
sup

t
(Zt −Mt)

]
,

where H1
0 is the space of martingales M s.t. supt M ∈ L1, and

M0 = 0.
Application to Monte-Carlo pricing of american options.
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Duality for optimal control

Some previous works :

Optimal control of diffusions : Davis–Burstein (1992). Use
anticipative stochastic calculus based on flow decomposition.
Discrete-time controlled Markov processes :
Rogers (2006), Brown–Smith–Sun (2010),....
Numerically useful to compute upper-bounds !

We extend these approaches in our framework.
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Setting : optimal control of diffusions

For ν ∈ A,

X t,x ,ν
t = x ,

dX t,x ,ν
s = b

(
X t,x ,ν

s , νs
)
ds +

d∑
i=1

σi
(
X t,x ,ν

s
)
◦ dB i

s ,

= b̃
(
X t,x ,ν

s , νs
)
ds +

d∑
i=1

σi
(
X t,x ,ν

s
)
dB i

s .

Value function :

V (t, x) := sup
ν∈A

E
[∫ T

t
f
(
s,X t,x ,ν

s , νs
)
ds + g

(
X t,x ,ν

T

)]
.
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Anticipating stochastic control

sup
ν∈A

E
[∫ T

t
f
(
s,X t,x ,ν

s , νs
)
ds + g

(
X t,x ,ν

T

)]
= sup

ν∈A
E
[
J(t, x ;µ,η)|µ=ν(ω),η=B(ω)

]
.

6 E

 sup
µ∈M

{J(t, x ;µ,η)}

∣∣∣∣∣
µ=ν(ω),η=B(ω)

 .
We don’t expect equality !
Difference between the two sides of this equation : "value of
information".

However, we can hope to penalize the r.h.s. to obtain equality.
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Penalization

ZF class of admissible penalties z : D0,α ×M→ R such that

z is bounded, measurable, and continuous in η ∈ D0,α

uniformly over µ ∈M
E[z(B, ν)] ≥ 0, if ν is adapted

Theorem

V (t, x) = inf
z∈ZF

E

 sup
µ∈M

{J(t, x ;µ,η) + z(η, µ)}

∣∣∣∣∣
µ=ν(ω),η=B(ω)

 .
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Proof :
’ 6 ’ is obvious.
’ > ’ : z∗(η, µ) := V (t, x)− J(t, x ;µ,η).

Of course this is not so interesting, since we already need to know
V to get z∗.

We now describe two concrete (parametrized) subsets of ZF for
which duality still holds.
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The Rogers penalty (value-function based)

Define Luφ = b̃(x , u) · ∇φ+ 1
2 Tr[σσ

T (x , u)D2φ].

Theorem

V (t, x) = inf
h∈C1,2

b

E

 sup
µ∈M

{
J(t, x ;µ,η)−Mt,x ,µ,η,h

t,T

}∣∣∣∣∣
η=B(ω)

 ,
where

Mt,x,µ,η,h
t,T := h

(
T ,X t,x,µ,η

T

)
−h
(
t,X t,x,µ,η

t
)
−
∫ T

t
(∂s + Lµs ) h

(
s,X t,x,µ,η

s
)
ds.

Moreover, if V ∈ C 1,2
b the infimum is achieved at h∗ = V .
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Proof (1/3)

First remark : for ν ∈ A, P-a.s, Mt,x ,ν(ω),h is the martingale
increment

∫ T
t Dh(s,Xs)dBs , so has zero expectation.

The proof is more or less a verification argument for the HJB
equation for V :

−∂tV − sup
u∈U

[LuV + f (x , u)] = 0,

V (T , ·) = g .

Denote by S+
s the class of C1,2

b supersolutions to this equation.
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Proof (2/3)

Then :

V (t, x)

= inf
h∈C1,2

b

sup
ν∈A

E
[{

J(t, x ;µ,η)−Mt,x,µ,η,h
t,T

}∣∣∣
µ=ν(ω),η=B(ω)

]

≤ inf
h∈C1,2

b

E

[
sup
µ∈M

{
J(t, x ;µ,η)−Mt,x,µ,η,h

t,T

}∣∣∣∣
η=B(ω)

]

= inf
h∈C1,2

b

(
h(t, x) + E

[
sup
µ∈M

{
g(X t,x,µ,η

T )− h(T ,X t,x,µ,η
T )

+

∫ T

t
f (s,X t,x,µ,η

s , µs) + (∂s + Lµs )h(s,X t,x,µ,η
s )ds

}∣∣∣∣∣
η=B(ω)

)
≤ inf

h∈S+
s

h(t, x).
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Proof (3/3)

Now :
If V is C1,2

b , then V ∈ S+
s .

In general : by a result of Krylov (2000), it is actually true
that V = infh∈S+

s
h.

Hence all inequalities are equalities, and we get the result.
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The Davis–Burstein penalty

Additional assumptions :
b ∈ C 5

b , σ ∈ C 5
b , σσ

T > 0,
U compact convex subset of Rn,
existence of an optimal feedback control u∗(t, x) continuous,
C 1 in t and C 4

b in x , taking values in the interior of U,
an additional convexity assumption.
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The Davis–Burstein penalty

Let A be the class of all λ : [0,T ]× Re ×D0,α → Rd such that

λ is bounded and uniformly continuous on bounded sets
λ is future adapted, i.e. for any fixed t, x , λ(t, x ,B) ∈ Ft,T

E[λ(t, x ,B)] = 0 for all t, x .

Theorem

Under these assumptions,

V (t, x) = inf
λ∈A

E[ sup
µ∈M

{
J(t, x ;µ,η) +

∫ T

t
〈λ(r ,X t,x,µ,η

r ,η), µr 〉dr

}∣∣∣∣∣
η=B(ω)

].

Moreover the infimum is achieved at some λ∗.
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Rough idea of the Davis–Burstein proof

Find a λ∗ such that for (almost) any η, the feedback control
u∗(t, x) is still optimal for the deterministic rough problem :

sup
µ∈M

[
g(X t,x,µ,η

T ) +

∫ T

t
f (s,X t,x,µ,η

s , µs)−
〈
λ∗(s,X t,x,µ,η

s ;η), µs
〉
ds
]

= g(X u∗
T ) +

∫ T

t
f (s,X u∗

s , u∗(s,X u∗
s ))−

〈
λ∗(s,X u∗

s ;η), u∗(s,X u∗
s )
〉

ds

Based on HJB verification argument for this deterministic
control problem, i.e. find W s.t. (formally)

0 = −∂tW − sup
u∈U
{〈b(x , u),DW 〉+ f (t, x , u)− 〈u, λ∗(t, x ;η)〉}

− 〈σ (x) ,DW 〉 η̇
= −∂tW − 〈b(x , u∗(t, x)),DW 〉+ f (t, x , u∗(t, x))− 〈u∗(t, x), λ∗(t, x ;η)〉
− 〈σ (x) ,DW 〉 η̇
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Explicit computations in LQ problems : additive noise

Additive noise :
Dynamics

dX = (MX + Nν)dt + dBt ,

and control problem

V (t, x) = infν∈A E
[

1
2

∫ T
t (〈QXs ,Xs〉+ 〈Rνs , νs〉)ds + 1

2〈GXT ,XT 〉
]
.

Of course in that case the solution is well-known. Still interesting
to compute and compare the optimal penalties.
Let P be the solution to the matrix Riccati equation

P(T ) = G ,
P ′(t) = −P(t)M − tMP(t) + PNR−1tNP(t)− Q,
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Explicit computations in LQ problems : additive noise

Proposition

For this LQ control problem the optimal penalty corresponding to
Theorem 7 (Davis–Burstein) is given by

z1(η, µ) = −
∫ T

t
〈λ1(s;η), µs〉ds,

where

λ1(t;η) = −tN
∫ T

t
e

tM(s−t)P(s)dηs .

The optimal penalty corresponding to Theorem 6 (Rogers) is given by

z2(η, µ) = z1(η, µ) + γR(η),

where γR(η) is a random (explicit) constant (not depending on the
control) with zero expectation.
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Explicit computations in LQ problems : multiplicative noise

Dynamics

dX = (MX + Nν)dt +
n∑

i=1

CiX ◦ dB i
t ,

and same cost criterion.
For notational simplicity we take d = n = 1.
Let Γt,s be the solution to the RDE

dsΓt,s = MΓt,sds + CΓt,sdηs , Γt,t = 1

For t 6 r 6 T , define

Θr =

∫ T

r
PsΓ2

r ,s(dηs − Cds).
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Explicit computations in LQ problems : multiplicative noise

Proposition

Then the optimal penalty corresponding to Theorem 7 (D–B) is
given by

z1(η, µ) = CNx
∫ T

t
Θsµsds,

while the optimal penalty corresponding to Theorem 6 (R) is given
by

z2(η, µ) = CΘtx2 + CNx
∫ T

t
Γt,sΘsµsds

+ CN2
∫ T

t

∫ T

t
Γr∧s,r∨sΘr∨sµrµsdrds.
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Conclusion

Summary :
We define and study optimal control of RDEs.
Special case : SDEs with anticipative control. This allows us
to formulate a deterministic/stochastic duality in continuous
time.

Some remaining questions :

Theoretical results, but are there useful applications ?
Extension to diffusions with control in the volatility
σ(X , µ)dB , non-Brownian noise...
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