# Stochastic optimal control with rough paths

#### Paul Gassiat

TU Berlin

# Stochastic processes and their statistics in Finance, Okinawa, October 28, 2013

Joint work with Joscha Diehl and Peter Friz

### Introduction

Main motivation : stochastic/deterministic duality.

We are given a stochastic optimization problem (e.g. optimal stopping, optimal control of diffusions...).

The possible controls  $\nu$  must be adapted (non-anticipating), denote the associated gain  $J(\nu)$ .

We want to compute the value

$$V = \sup_{
u ext{ adapted}} \mathbb{E}[J(
u)],$$

and (almost) optimal controls.

Lower bounds are given by any choice of policy  $\nu$ ,  $V \ge \mathbb{E}[J(\nu)]$ . To know how good a policy is : need for upper bound.

# Idea of the deterministic/stochastic duality

Information relaxation :

$$\begin{array}{ll} \sup_{\nu} \mathbb{E}[J(\nu)] &\leqslant & \sup_{\nu} \mathbb{E}[J(\nu)] \\ & \nu \text{ anticipating} \end{array} \\ &= & \mathbb{E}\left[\sup_{\mu} J(\mu)(\omega)\right] \end{array}$$

This inequality has no reason to be sharp ("value of information"), but the hope is that one can penalize anticipating controls

$$\sup_{\nu \text{ adapted}} \mathbb{E}[J(\nu)] = \inf_{P \in \mathcal{P}} \mathbb{E}\left[\sup_{\mu} J(\mu) - P(\mu)\right],$$

for some suitably chosen class of penalties  $\mathcal{P}$ .



Controlled diffusions

$$dX = b(X, \nu)dt + \sigma(X)dB_t.$$

Technical difficulty : need way to make sense of controlled SDEs with anticipating coefficients

 $\longrightarrow$  rough path theory.

# Outline



### 2 Duality results for classical stochastic control

### Outline



#### 2 Duality results for classical stochastic control

### Rough path theory

ODE driven by a path  $x_t = (x_t^1, \dots, x_t^d)$  :

$$dy_t = V(y_t)dx_t := \sum_{i=1}^d V^i(y_t)dx_t^i.$$
 (1)

Extension to non-smooth x ?

- Doss-Sussmann : When d = 1, solution yt = f(xt), f = V(f).
   → extension to any continuous path x by continuity.
   Also for d > 1, when the vector fields V<sup>i</sup> commute,
   yt = f(xt1,...,xtd).
- x → y continuous in β-Hölder topology, β > <sup>1</sup>/<sub>2</sub> (Young integration).

These do not cover multi-dimensional Brownian Motion !

### Rough path theory

Key idea of Lyons (1998) : needs to consider extra data, the iterated integrals of x against itself :

$$I^{2}(x)_{s,t} := \int_{s}^{t} x_{s,r} \otimes dx_{r} = \left(\int_{s}^{t} x_{s,r}^{i} dx_{r}^{j}\right)_{1 \leq i,j \leq d}$$
  
...  
$$I^{n}(x)_{s,t} := \int_{s \leq t_{1} \leq ... \leq t_{n} \leq t} dx_{t_{1}} \otimes ... \otimes dx_{t_{n}},$$

- These iterated integrals are not well-defined a priori for nonsmooth x, but **taking them as given data**, one can solve any ODE driven by x.
- One only needs to consider a finite number of those, depending on the regularity of x, e.g. α when x is α-Hölder. For <sup>1</sup>/<sub>3</sub> < α ≤ <sup>1</sup>/<sub>2</sub> : level 2 is enough.

# "Level 2" rough paths : definition

Fixed 
$$\frac{1}{3} < \alpha \leqslant \frac{1}{2}$$
.

• Rough path will be

$$\mathbf{x} = (x_{s,t}, \underline{x}_{s,t})_{0 \leqslant s,t \leqslant T},$$

valued in  $\mathbb{R}^d imes (\mathbb{R}^d)^{\otimes 2}$ 

• Rough path distance :

$$d_lpha({\sf x},\widetilde{{\sf x}}):=\sup_{0\,\leqslant\,s,t\,\leqslant\, au}rac{|x_{s,t}-\widetilde{x}_{s,t}|}{|t-s|^lpha}+rac{|\underline{x}_{s,t}-\widetilde{\underline{x}}_{s,t}|}{|t-s|^{2lpha}}.$$

Geometric rough paths D<sup>0,α</sup>(R<sup>d</sup>) : closure of (lift of) smooth paths under d<sub>α</sub>.

# Rough differential equations

Rough differential equation (RDE)

$$dy_t = V(y_t)d\mathbf{x}_t$$

Existence of **continuous** solution map (for *V* regular enough)

$$\begin{aligned} \mathcal{D}^{0,\alpha} \times \mathbb{R}^n &\to \mathcal{C}([0,T],\mathbb{R}^n) \\ (\mathsf{x}, y_0) &\mapsto y \end{aligned}$$

## RDEs and SDEs

 Consistency with SDEs : define B = (B, ∫ B ⊗ ∘dB) Stratonovich lift of Brownian Motion. Then B ∈ D<sup>0,α</sup> a.s., and the solution to RDE

$$dy_t = V(y_t) d\mathsf{B}_t(\omega)$$

coincides a.s. with the solution to SDE

$$dY_t = V(Y_t) \circ dB_t.$$

 One advantage (among others) : no difficulty to make sense of anticipating SDEs

$$dY_t = V(Y_t, \omega) \circ dB,$$

as long as  $y \mapsto V(y, \omega)$  is a.s. regular enough.

### Classical deterministic optimal control

Class of admissible controls  $\mathcal{M} = \{\mu : [0, T] \rightarrow U \text{ measurable }\}.$ Controlled ODE :

$$\begin{split} dX_s^{t,x,\mu} &= b\left(X_s^{t,x,\mu}, \mu_s\right) ds + \sigma\left(X_s^{t,x,\mu}\right) d\eta_s, \qquad X_t^{t,x,\mu} = x \quad \in \mathbb{R}^e \\ \text{Here } \eta : [0, T] \to \mathbb{R}^d \text{ is a smooth path.} \\ \text{Optimization problem :} \end{split}$$

$$J(t, x; \mu, \eta) := \int_{t}^{T} f(s, X_{s}^{t, x, \mu}, \mu_{s}) ds + g(X_{T}^{t, x, \mu}),$$
  
$$v(t, x) := \sup_{\mu} J(t, x; \mu, \eta).$$

Then to solve for the value function v and the optimal control : HJB equation, Pontryagin maximum principle (PMP)... We want to extend this to  $\eta$  rough path.

### Controlled RDE

Now for  $oldsymbol{\eta}\in\mathcal{C}^{0,lpha}$  ,

$$dX_{s}^{t,x,\mu} = b\left(X_{s}^{t,x,\mu},\mu_{s}\right)ds + \sigma\left(X_{s}^{t,x,\mu}\right)d\eta_{s}$$
(2)

Regularity requirements :

- $b(\cdot, u) \in \operatorname{Lip}^1(\mathbb{R}^e)$  uniformly in  $u \in U$
- $\sigma_1, \ldots, \sigma_d \in \operatorname{Lip}^{\gamma}(\mathbb{R}^e)$ , for some  $\gamma > \frac{1}{\alpha}$ .

( For  $\gamma = [\gamma] + \{\gamma\}$ , where  $[\gamma] \in \mathbb{N}$  and  $\{\gamma\} \in (0, 1]$ , f is in Lip<sup> $\gamma$ </sup> if it has derivatives up to order  $[\gamma]$  which are  $\{\gamma\}$ -Hölder continuous.)

#### Theorem

For any  $\mu$  in  $\mathcal{M}$ , (2) has a unique solution. Moreover the mapping

$$(\boldsymbol{\eta}, x_0) \mapsto X \in \mathcal{D}^{0, \alpha}$$

is locally Lipschitz continuous, uniformly in  $\mu \in \mathcal{M}$ .

## The rough control problem

#### Payoff functions :

- $f:[0,T] \times \mathbb{R}^e \times U \to \mathbb{R}$  bounded, continuous and locally uniformly continuous in t, x, uniformly in u
- $g \in BUC(\mathbb{R}^e)$

Payoff

$$J(t,x;\mu;\boldsymbol{\eta}) := \int_t^T f\left(s, X_s^{t,x,\mu}, \mu_s\right) ds + g\left(X_T^{t,x,\mu}\right),$$

and value function

$$v(t,x) := \sup_{\mu} J(t,x;\mu,\eta).$$

We will now show how in some sense, HJB equation and PMP hold for this rough control problem.

### The rough HJB equation

#### Formally,

$$-dv - H(x, Dv) dt - \langle \sigma(x), Dv \rangle d\eta = 0,$$
  
$$v(T, x) = g(x)$$
(3)

where the Hamiltonian is

$$H(x,p) := \sup_{u \in U} \left\{ \left\langle b(x,u), p \right\rangle + f(t,x,u) \right\}.$$

How to make sense of this equation ?

#### Definition

Caruana, Friz, Oberhauser (2011) : v is a viscosity solution to a rough PDE

$$-dv - F(t, x, v, Dv, D^2v)dt - G(t, x, v, Dv)d\eta_t = 0,$$
  
$$v(T, x) = \phi(x)$$

if for any smooth  $\eta^n \to \eta$ ,  $v^{\eta^n} \to v$ , where  $v^{\eta^n}$  is the unique solution to the PDE with  $\eta$  replaced by  $\eta^n$ .

In our case :

Proposition

v is the unique viscosity solution to the rough HJB (3).

### Pontryagin maximum principle

Assume b, f, g be  $C^1$  in x, such that the derivative is Lipschitz in x, u and bounded.

Assume  $\sigma_1, \ldots, \sigma_d \in \operatorname{Lip}^{\gamma+2}(\mathbb{R}^e)$ .

Given  $(X, \mu)$ , dual RDE for the costate:

$$-dp(t) = D_x b(X_t, \mu_t) p(t) dt + D_x \sigma(X_t) p(t) d\eta_t + D_x f(X_t, \mu_t) dt,$$
  
$$p(T) = D_x g(X_T).$$

#### Theorem

Let  $\bar{X}, \bar{\mu}$  be an optimal pair. Let  $\bar{p}$  be the associated costate. Then

$$b(\bar{X}_t, \bar{\mu}_t) \cdot p(t) + f(\bar{X}_t, \bar{\mu}_t) = \sup_{u \in U} \left[ b(\bar{X}_t, u) \cdot p(t) + f(\bar{X}_t, u) \right], \text{ a.e. } t.$$

# Pontryagin maximum principle

Remarks :

- The proof is similar to the classical one :
  - $\mu^{\varepsilon}(t) = 1_{I}(t)\mu(t) + 1_{[0,T]\setminus I}(t)\overline{\mu}(t)$ , where  $|I| = \varepsilon$ .
  - Expansion  $J(\bar{\mu}) J(\mu^{\varepsilon}) = \varepsilon F(\bar{\mu}, \mu) + o(\varepsilon)$ ,
  - First order condition :  $F(\bar{\mu}, \mu) \leq 0 \Rightarrow PMP$ .

• Sufficient conditions ? Formally, would require convexity of

$$(x, u) \mapsto b(x, u) \cdot p + f(x, u) + \sigma(x) \cdot \dot{\eta},$$

can only happen if  $\sigma$  linear in x.

## Why no $\mu$ -dependence in $\sigma$ ?

The problem is NOT to make sense of controlled RDEs of the form

$$dX = b(t, X, \mu)dt + \sigma(X, \mu)d\eta_t,$$

which could be done by restricting the class  $\mathcal{M}$  of controls, e.g. piecewise constant, feedback controls,...

Real problem : degenerate control problem, i.e.

$$\sup_{\mu \in \mathcal{M}} \left\{ \int_{t}^{T} f\left(s, X_{s}^{t, x, \mu, \eta}, \mu_{s}\right) ds + g\left(X_{T}^{t, x, \mu, \eta}\right) \right\}$$
$$= \int_{t}^{T} (\sup_{\mu, x} f(s, \mu, x)) ds + \sup_{x} g(x).$$

The reason is that if  $\sigma$  has enough *u*-dependence and  $\eta$  has unbounded variation on any interval (as is the case for typical Brownian paths), the system can essentially be driven to reach any point instantly.

### Anticipating stochastic control

Probability space  $(\Omega, \mathcal{F}, \mathbb{P})$  with brownian motion B. Take  $\eta = \mathbf{B}(\omega)$ , Stratonovich lift of Brownian motion, which is in  $\mathcal{D}^{0,\alpha}$   $\mathbb{P}$ -a.e.  $\omega$   $(\frac{1}{2} > \alpha \ge \frac{1}{3})$ . If  $\nu \in \mathcal{A}$ , set of progressively measurable maps :  $\Omega \times [0, T] \rightarrow U$ , then

$$X|_{\mu=\nu(\omega),\eta=\mathbf{B}(\omega)}=\widetilde{X},\qquad \mathbb{P}-a.s.,$$
 (4)

where  $\widetilde{X}$  is the (usual) solution to the controlled SDE

$$\widetilde{X}_t = x_0 + \int_0^t b(\widetilde{X}_r, \nu_r) dr + \int_0^t \sigma(\widetilde{X}) \circ dB_r.$$

# Outline



#### 2 Duality results for classical stochastic control

# Deterministic/stochastic duality

General idea :

$$\sup_{\nu} \mathbb{E}[J(\nu)] = \mathbb{E}\left[\sup_{\mu} \left\{J(\mu) - P^{*}(\mu)\right\}\right],$$
$$= \inf_{P \in \mathcal{P}} \mathbb{E}\left[\sup_{\mu} \left\{J(\mu) - P(\mu)\right\}\right].$$

Long History :

- Rockafellar, Wets (70s),
- Davis and coauthors (late 80s-early 90s),
- Rogers, Haugh-Kogan, Brown-Smith-Sun (2001-present)

# Example : duality for optimal stopping

Optimal stopping problem :

$$Y_0^* := \sup_{ au \text{ stopping time}} \mathbb{E}\left[Z_{ au}
ight].$$

- Davis–Karatzas (1994),
- Rogers (2001), (also Haugh-Kogan (2002)):

$$Y_0^* = \inf_{M \in H_0^1} \mathbb{E} \left[ \sup_t (Z_t - M_t) \right],$$

where  $H_0^1$  is the space of martingales M s.t.  $\sup_t M \in L^1$ , and  $M_0 = 0$ . Application to Monte-Carlo pricing of american options.

# Duality for optimal control

Some previous works :

- Optimal control of diffusions : Davis-Burstein (1992). Use anticipative stochastic calculus based on flow decomposition.
- Discrete-time controlled Markov processes : Rogers (2006), Brown–Smith–Sun (2010),....
   Numerically useful to compute upper-bounds !

We extend these approaches in our framework.

# Setting : optimal control of diffusions

For  $\nu \in \mathcal{A}$ ,

$$\begin{split} X_t^{t,x,\nu} &= x, \\ dX_s^{t,x,\nu} &= b\left(X_s^{t,x,\nu},\nu_s\right) ds + \sum_{i=1}^d \sigma_i\left(X_s^{t,x,\nu}\right) \circ dB_s^i, \\ &= \widetilde{b}\left(X_s^{t,x,\nu},\nu_s\right) ds + \sum_{i=1}^d \sigma_i\left(X_s^{t,x,\nu}\right) dB_s^i. \end{split}$$

Value function :

$$V(t,x) := \sup_{\nu \in \mathcal{A}} \mathbb{E}\left[\int_{t}^{T} f\left(s, X_{s}^{t,x,\nu}, \nu_{s}\right) ds + g\left(X_{T}^{t,x,\nu}\right)\right].$$

# Anticipating stochastic control

$$\sup_{\nu \in \mathcal{A}} \mathbb{E} \left[ \int_{t}^{T} f\left(s, X_{s}^{t, x, \nu}, \nu_{s}\right) ds + g\left(X_{T}^{t, x, \nu}\right) \right]$$
$$= \sup_{\nu \in \mathcal{A}} \mathbb{E} \left[ J(t, x; \mu, \eta)|_{\mu = \nu(\omega), \eta = \mathbf{B}(\omega)} \right].$$
$$\leqslant \mathbb{E} \left[ \left. \sup_{\mu \in \mathcal{M}} \left\{ J(t, x; \mu, \eta) \right\} \right|_{\mu = \nu(\omega), \eta = \mathbf{B}(\omega)} \right].$$

We don't expect equality ! Difference between the two sides of this equation : "value of information".

However, we can hope to penalize the r.h.s. to obtain equality.

### Penalization

- $\mathcal{Z}_\mathcal{F}$  class of admissible penalties  $z:\mathcal{D}^{0,lpha} imes\mathcal{M} o\mathbb{R}$  such that
  - z is bounded, measurable, and continuous in  $\eta \in \mathcal{D}^{0, \alpha}$  uniformly over  $\mu \in \mathcal{M}$
  - $\mathbb{E}[z(\mathbf{B}, \nu)] \geq 0$ , if  $\nu$  is adapted

#### Theorem

$$V(t,x) = \inf_{z \in \mathcal{Z}_{\mathcal{F}}} \mathbb{E} \left[ \sup_{\mu \in \mathcal{M}} \left\{ J(t,x;\mu,\eta) + z(\eta,\mu) \right\} \bigg|_{\mu = \nu(\omega),\eta = \mathbf{B}(\omega)} \right].$$

 $\frac{\text{Proof}:}{\leqslant \text{' is obvious.}}$   $\text{'} \ge \text{'}: z^*(\eta, \mu) := V(t, x) - J(t, x; \mu, \eta).$ 

Of course this is not so interesting, since we already need to know V to get  $z^*$ .

We now describe two concrete (parametrized) subsets of  $\mathcal{Z}_\mathcal{F}$  for which duality still holds.

# The Rogers penalty (value-function based)

Define 
$$L^{u}\phi = \tilde{b}(x, u) \cdot \nabla \phi + \frac{1}{2} \operatorname{Tr}[\sigma \sigma^{T}(x, u)D^{2}\phi].$$

#### Theorem

$$V(t,x) = \inf_{h \in C_b^{1,2}} \mathbb{E} \left[ \left. \sup_{\mu \in \mathcal{M}} \left\{ J(t,x;\mu,\eta) - M_{t,T}^{t,x,\mu,\eta,h} \right\} \right|_{\eta = \mathbf{B}(\omega)} \right],$$

#### where

$$M_{t,T}^{t,x,\mu,\eta,h} := h\left(T, X_T^{t,x,\mu,\eta}\right) - h\left(t, X_t^{t,x,\mu,\eta}\right) - \int_t^T \left(\partial_s + L^{\mu_s}\right) h\left(s, X_s^{t,x,\mu,\eta}\right) ds$$

Moreover, if  $V \in C_b^{1,2}$  the infimum is achieved at  $h^* = V$ .

# Proof (1/3)

First remark : for  $\nu \in A$ ,  $\mathbb{P}$ -a.s,  $M^{t,x,\nu(\omega),h}$  is the martingale increment  $\int_{t}^{T} Dh(s, X_{s}) dB_{s}$ , so has zero expectation.

The proof is more or less a verification argument for the HJB equation for V :

$$\begin{aligned} -\partial_t V - \sup_{u \in U} \left[ L^u V + f(x, u) \right] &= 0, \\ V(T, \cdot) &= g. \end{aligned}$$

Denote by  $S_s^+$  the class of  $\mathcal{C}_b^{1,2}$  supersolutions to this equation.

# Proof (2/3)

#### Then :

$$\begin{split} & V(t,x) \\ &= \inf_{h \in C_{b}^{1,2}} \sup_{\nu \in \mathcal{A}} \mathbb{E} \left[ \left\{ J(t,x;\mu,\eta) - M_{t,T}^{t,x,\mu,\eta,h} \right\} \Big|_{\mu = \nu(\omega),\eta = \mathbf{B}(\omega)} \right] \\ &\leq \inf_{h \in C_{b}^{1,2}} \mathbb{E} \left[ \left. \sup_{\mu \in \mathcal{M}} \left\{ J(t,x;\mu,\eta) - M_{t,T}^{t,x,\mu,\eta,h} \right\} \right|_{\eta = \mathbf{B}(\omega)} \right] \\ &= \inf_{h \in C_{b}^{1,2}} \left( h(t,x) + \mathbb{E} \left[ \left. \sup_{\mu \in \mathcal{M}} \left\{ g(X_{T}^{t,x,\mu,\eta}) - h(T,X_{T}^{t,x,\mu,\eta}) \right. \right. \right. \right. \\ &+ \left. \int_{t}^{T} f(s,X_{s}^{t,x,\mu,\eta},\mu_{s}) + (\partial_{s} + L^{\mu_{s}})h(s,X_{s}^{t,x,\mu,\eta}) ds \right\} \Big|_{\eta = \mathbf{B}(\omega)} \right] \right) \\ &\leq \inf_{h \in S_{b}^{+}} h(t,x). \end{split}$$

#### Now :

• If V is 
$$\mathcal{C}_b^{1,2}$$
, then  $V \in S_s^+$ .

• In general : by a result of Krylov (2000), it is actually true that  $V = \inf_{h \in S_s^+} h$ .

Hence all inequalities are equalities, and we get the result.

# The Davis-Burstein penalty

Additional assumptions :

- $b\in C_b^5$ ,  $\sigma\in C_b^5$ ,  $\sigma\sigma^T>$ 0,
- U compact convex subset of  $\mathbb{R}^n$ ,
- existence of an optimal feedback control  $u^*(t, x)$  continuous,  $C^1$  in t and  $C_b^4$  in x, taking values in the interior of U,
- an additional convexity assumption.

### The Davis-Burstein penalty

Let A be the class of all  $\lambda : [0, T] \times \mathbb{R}^e \times \mathcal{D}^{0, \alpha} \to \mathbb{R}^d$  such that

- $\lambda$  is bounded and uniformly continuous on bounded sets
- $\lambda$  is future adapted, i.e. for any fixed  $t, x, \lambda(t, x, \mathsf{B}) \in \mathcal{F}_{t, \mathcal{T}}$
- $\mathbb{E}[\lambda(t, x, \mathbf{B})] = 0$  for all t, x.

#### Theorem

Under these assumptions,

$$V(t,x) = \inf_{\lambda \in A} \mathbb{E}[\sup_{\mu \in \mathcal{M}} \left\{ J(t,x;\mu,\eta) + \int_{t}^{T} \langle \lambda(r,X_{r}^{t,x,\mu,\eta},\eta), \mu_{r} \rangle dr \right\} \bigg|_{\eta = \mathbf{B}(\omega)}]$$

Moreover the infimum is achieved at some  $\lambda^*$ .

# Rough idea of the Davis-Burstein proof

• Find a  $\lambda^*$  such that for (almost) any  $\eta$ , the feedback control  $u^*(t,x)$  is still optimal for the deterministic rough problem :

$$\sup_{\mu \in \mathcal{M}} \left[ g(X_T^{t,x,\mu,\eta}) + \int_t^T f(s, X_s^{t,x,\mu,\eta}, \mu_s) - \left\langle \lambda^*(s, X_s^{t,x,\mu,\eta}; \eta), \mu_s \right\rangle ds \right]$$
$$= g(X_T^{u^*}) + \int_t^T f(s, X_s^{u^*}, u^*(s, X_s^{u^*})) - \left\langle \lambda^*(s, X_s^{u^*}; \eta), u^*(s, X_s^{u^*}) \right\rangle ds$$

• Based on HJB verification argument for this deterministic control problem, i.e. find W s.t. (formally)

$$0 = -\partial_t W - \sup_{u \in U} \{ \langle b(x, u), DW \rangle + f(t, x, u) - \langle u, \lambda^*(t, x; \eta) \rangle \} - \langle \sigma(x), DW \rangle \dot{\eta} = -\partial_t W - \langle b(x, u^*(t, x)), DW \rangle + f(t, x, u^*(t, x)) - \langle u^*(t, x), \lambda^*(t, x; \eta) \rangle - \langle \sigma(x), DW \rangle \dot{\eta}$$

# Explicit computations in LQ problems : additive noise

Additive noise : Dynamics

$$dX = (MX + N\nu)dt + dB_t,$$

and control problem

$$V(t,x) = \inf_{\nu \in \mathcal{A}} \mathbb{E} \left[ \frac{1}{2} \int_{t}^{T} (\langle QX_{s}, X_{s} \rangle + \langle R\nu_{s}, \nu_{s} \rangle) ds + \frac{1}{2} \langle GX_{T}, X_{T} \rangle \right]$$

Of course in that case the solution is well-known. Still interesting to compute and compare the optimal penalties. Let P be the solution to the matrix Riccati equation

$$P(T) = G,$$
  
 $P'(t) = -P(t)M - {}^{t}MP(t) + PNR^{-1t}NP(t) - Q,$ 

# Explicit computations in LQ problems : additive noise

#### Proposition

For this LQ control problem the optimal penalty corresponding to Theorem 7 (Davis–Burstein) is given by

$$z^1(oldsymbol{\eta},\mu) = -\int_t^T \langle \lambda^1(s;oldsymbol{\eta}),\mu_s 
angle ds,$$

where

$$\lambda^{1}(t;\eta) = -{}^{t}N\int_{t}^{T}e^{{}^{t}M(s-t)}P(s)d\eta_{s}.$$

The optimal penalty corresponding to Theorem 6 (Rogers) is given by

$$z^2(\boldsymbol{\eta},\mu) = z^1(\boldsymbol{\eta},\mu) + \gamma^R(\boldsymbol{\eta}),$$

where  $\gamma^{R}(\eta)$  is a random (explicit) constant (not depending on the control) with zero expectation.

# Explicit computations in LQ problems : multiplicative noise

Dynamics

$$dX = (MX + N\nu)dt + \sum_{i=1}^{n} C_i X \circ dB_t^i,$$

and same cost criterion.

For notational simplicity we take d = n = 1. Let  $\Gamma_{t,s}$  be the solution to the RDE

$$d_s\Gamma_{t,s} = M\Gamma_{t,s}ds + C\Gamma_{t,s}d\eta_s, \ \ \Gamma_{t,t} = 1$$

For  $t \leq r \leq T$ , define

$$\Theta_r = \int_r^T P_s \Gamma_{r,s}^2 (d\eta_s - Cds).$$

# Explicit computations in LQ problems : multiplicative noise

#### Proposition

Then the optimal penalty corresponding to Theorem 7 (D-B) is given by

$$z^1(\eta,\mu) = CNx \int_t^T \Theta_s \mu_s ds,$$

while the optimal penalty corresponding to Theorem 6 (R) is given by

$$z^{2}(\eta,\mu) = C\Theta_{t}x^{2} + CNx\int_{t}^{T}\Gamma_{t,s}\Theta_{s}\mu_{s}ds$$
$$+ CN^{2}\int_{t}^{T}\int_{t}^{T}\Gamma_{r\wedge s,r\vee s}\Theta_{r\vee s}\mu_{r}\mu_{s}drds.$$

# Conclusion

#### Summary :

- We define and study optimal control of RDEs.
- Special case : SDEs with anticipative control. This allows us to formulate a deterministic/stochastic duality in continuous time.

Some remaining questions :

- Theoretical results, but are there useful applications ?
- Extension to diffusions with control in the volatility  $\sigma(X,\mu)dB$ , non-Brownian noise...