Multi-level Monte Carlo for Approximation of Distribution Functions and an Application to AF⁴

Klaus Ritter Computational Stochastics TU Kaiserslautern

Given a random element X (random vector, stochastic process, . . .) and a real-valued functional $\varphi,$ such that $\varphi(X)$ has a Lebesgue density.

Approximate

- the distribution function F or
- $\bullet\,$ the density $\rho\,$
- of $\varphi(X)$ on a compact interval.

Given a random element X (random vector, stochastic process, . . .) and a real-valued functional $\varphi,$ such that $\varphi(X)$ has a Lebesgue density.

Approximate

- the distribution function F or
- $\bullet\,$ the density ρ

of $\varphi(X)$ on a compact interval.

Assumption Instead of X, approximations $X^{(0)}, X^{(1)}, \ldots$ can be simulated.

Given a random element X (random vector, stochastic process, . . .) and a real-valued functional $\varphi,$ such that $\varphi(X)$ has a Lebesgue density.

Approximate

- $\bullet\,$ the distribution function F or
- $\bullet\,$ the density $\rho\,$

of $\varphi(X)$ on a compact interval.

Assumption Instead of *X*, approximations $X^{(0)}, X^{(1)}, \ldots$ can be simulated. **Application**

• X is the solution of an SDE (with reflection)

$$dX(t) = \mu(X(t)) dt + \sigma(X(t)) dW(t) + (dn(t)),$$

• φ is a functional on the corresponding path space, e.g., an exit time.

Given a random element X (random vector, stochastic process, . . .) and a real-valued functional $\varphi,$ such that $\varphi(X)$ has a Lebesgue density.

Approximate

- $\bullet\,$ the distribution function F or
- $\bullet\,$ the density $\rho\,$

of $\varphi(X)$ on a compact interval.

Assumption Instead of X, approximations $X^{(0)}, X^{(1)}, \ldots$ can be simulated.

Goal Monte Carlo (randomized) algorithm ${\cal M}$ with error

$$\operatorname{error}(\mathcal{M}) = \left(\operatorname{E}\sup_{s\in[S_0,S_1]}|F(s)-\mathcal{M}|^2\right)^{1/2}$$

bounded by ε and with cost

 $cost(\mathcal{M}) = E(\text{\# operations and random number calls})$

as small as possible. Likewise for ρ .

Asymmetric Flow Field Flow Fractionation Separation of nano-particles

of different types.

Courtesy of Wyatt Technology Europe GmbH

Courtesy of Wyatt Technology Europe GmbH

We are interested in the stopped exit time φ , i.e.,

$$\varphi(x) = \inf\{t \ge 0 : x(t) \in D_0\} \land T,$$

where $D \subset \mathbb{R}^d$ is a bounded domain and $D_0 \subset \partial D$.

We are interested in the stopped exit time φ , i.e.,

$$\varphi(x) = \inf\{t \ge 0 : x(t) \in D_0\} \land T,$$

where $D \subset \mathbb{R}^d$ is a bounded domain and $D_0 \subset \partial D$. A measurement result (cf. emprical densities of two exit times)

Courtesy of Wyatt Technology Europe GmbH

OUTLINE

- II. Single-level MC for Real-valued Functionals
- III. Multi-level MC for Real-valued Functionals
- IV. Multi-level MC for Distribution Functions and Densities
- V. Complexity of Infinite-Dimensional Integration Problems

Joint work with

- M. Giles (Oxford), O. Iliev (ITWM), T. Nagapetyan (ITWM),
- J. Creutzig (Darmstadt), S. Dereich (Münster), T. Müller-Gronbach (Passau)

II. Single-level MC for Real-valued Functionals

Compute $a = E(\varphi(X)) \in \mathbb{R}$ for a real-valued functional φ .

Single-level Monte Carlo is defined by

$$\mathcal{M}_N^L = \frac{1}{N} \sum_{i=1}^N \varphi(X_i^{(L)})$$

with $L \in \mathbb{N}_0$, $N \in \mathbb{N}$, and independent copies $X_1^{(L)}, \ldots, X_N^{(L)}$ of $X^{(L)}$. We have

$$\operatorname{error}^{2}(\mathcal{M}_{N}^{L}) = \operatorname{E}(a - \mathcal{M}_{N}^{L})^{2}$$
$$= \left(a - \operatorname{E}(\varphi(X^{(L)}))\right)^{2} + \frac{1}{N}\operatorname{Var}(\varphi(X^{(L)})),$$
$$\operatorname{cost}(\mathcal{M}_{N}^{L}) \leq c \cdot N \cdot \operatorname{cost}(\varphi(X^{(L)})).$$

ASSUMPTIONS

Cost for simulating the distribution of $\varphi(X^{(\ell)})$

There exists M>1, c>0 such that, for $\ell\in\mathbb{N}_0$,

$$cost(\varphi(X^{(\ell)})) \le c \cdot M^{\ell}.$$

Weak error estimate

There exist $\alpha > 0$, c > 0 such that, for $\ell \in \mathbb{N}_0$,

$$\left|a - \mathcal{E}(\varphi(X^{(\ell)}))\right| \le c \cdot M^{-\ell \cdot \alpha}$$

Bounded variances $\sup_{\ell \in \mathbb{N}_0} \operatorname{Var}(\varphi(X^{(\ell)})) < \infty$.

ASSUMPTIONS

Cost for simulating the distribution of $\varphi(X^{(\ell)})$

There exists M>1, c>0 such that, for $\ell\in\mathbb{N}_0$,

$$cost(\varphi(X^{(\ell)})) \le c \cdot M^{\ell}.$$

Weak error estimate

There exist $\alpha > 0$, c > 0 such that, for $\ell \in \mathbb{N}_0$,

$$\left|a - \mathcal{E}(\varphi(X^{(\ell)}))\right| \le c \cdot M^{-\ell \cdot \alpha}$$

Bounded variances $\sup_{\ell \in \mathbb{N}_0} \operatorname{Var}(\varphi(X^{(\ell)})) < \infty$.

Example For the solution X of an SDE, the Euler approximation $X^{(\ell)}$ with step-size $2^{-\ell}$, and $\varphi: C([0,T], \mathbb{R}^d) \to \mathbb{R}$ being Lipschitz continuous

$$M = 2,$$
 $\alpha = 1/2 - \varepsilon.$

Terminology A sequence of Monte Carlo algorithms \mathcal{M}_n with $\lim_{n\to\infty} \operatorname{error}(\mathcal{M}_n) = 0$ achieves the order of convergence $\gamma > 0$ if

$$\exists c > 0 \ \exists \varepsilon > 0 \ \forall n \in \mathbb{N} :$$
$$\operatorname{cost}(\mathcal{M}_n) \le c \cdot \left(\operatorname{error}(\mathcal{M}_n)\right)^{-(\gamma + \varepsilon)}.$$

Terminology A sequence of Monte Carlo algorithms \mathcal{M}_n with $\lim_{n\to\infty} \operatorname{error}(\mathcal{M}_n) = 0$ achieves the order of convergence $\gamma > 0$ if

$$\exists c > 0 \ \exists \varepsilon > 0 \ \forall n \in \mathbb{N} :$$
$$\operatorname{cost}(\mathcal{M}_n) \le c \cdot \left(\operatorname{error}(\mathcal{M}_n)\right)^{-(\gamma + \varepsilon)}.$$

Theorem

With suitably chosen parameters, the single-level Monte Carlo algorithms \mathcal{M}^L_N achieve the order of convergence

$$\gamma = 2 + \frac{1}{\alpha}.$$

Terminology A sequence of Monte Carlo algorithms \mathcal{M}_n with $\lim_{n\to\infty} \operatorname{error}(\mathcal{M}_n) = 0$ achieves the order of convergence $\gamma > 0$ if

$$\exists c > 0 \ \exists \varepsilon > 0 \ \forall n \in \mathbb{N} :$$
$$\operatorname{cost}(\mathcal{M}_n) \le c \cdot \left(\operatorname{error}(\mathcal{M}_n)\right)^{-(\gamma + \varepsilon)}.$$

Theorem

With suitably chosen parameters, the single-level Monte Carlo algorithms \mathcal{M}^L_N achieve the order of convergence

$$\gamma = 2 + \frac{1}{\alpha}.$$

Example For SDEs, the Euler approximation, and Lipschitz continuous functionals φ on the path space

$$\gamma = 4.$$

III. Multi-level MC for Real-valued Functionals

Compute $a = E(\varphi(X)) \in \mathbb{R}$ for a real-valued functional φ .

Choose $L \in \mathbb{N}_0$ as previously. Clearly

$$\mathrm{E}(\varphi(X^{(L)})) = \mathrm{E}(\underbrace{\varphi(X^{(0)})}_{=\Delta^{(0)}}) + \sum_{\ell=1}^{L} \mathrm{E}(\underbrace{\varphi(X^{(\ell)}) - \varphi(X^{(\ell-1)})}_{=\Delta^{(\ell)}}).$$

III. Multi-level MC for Real-valued Functionals

Compute $a = E(\varphi(X)) \in \mathbb{R}$ for a real-valued functional φ . Choose $L \in \mathbb{N}_0$ as previously. Clearly

$$\mathrm{E}(\varphi(X^{(L)})) = \mathrm{E}(\underbrace{\varphi(X^{(0)})}_{=\Delta^{(0)}}) + \sum_{\ell=1}^{L} \mathrm{E}(\underbrace{\varphi(X^{(\ell)}) - \varphi(X^{(\ell-1)})}_{=\Delta^{(\ell)}}).$$

Typically, we have

$$\lim_{\ell \to \infty} \cot \Delta^{(\ell)} = \infty \quad \text{ but } \quad \lim_{\ell \to \infty} \operatorname{Var} \Delta^{(\ell)} = 0.$$

III. Multi-level MC for Real-valued Functionals

Compute $a = E(\varphi(X)) \in \mathbb{R}$ for a real-valued functional φ . Choose $L \in \mathbb{N}_0$ as previously. Clearly

$$\mathrm{E}(\varphi(X^{(L)})) = \mathrm{E}(\underbrace{\varphi(X^{(0)})}_{=\Delta^{(0)}}) + \sum_{\ell=1}^{L} \mathrm{E}(\underbrace{\varphi(X^{(\ell)}) - \varphi(X^{(\ell-1)})}_{=\Delta^{(\ell)}}).$$

Typically, we have

$$\lim_{\ell \to \infty} \cot \Delta^{(\ell)} = \infty \quad \text{but} \quad \lim_{\ell \to \infty} \operatorname{Var} \Delta^{(\ell)} = 0.$$

Idea Variance reduction, compared to single-level MC, by approximating $E\Delta^{(0)}, \ldots, E\Delta^{(L)}$ separately with independent MC algorithms.

ASSUMPTIONS

Cost for simulating the joint distribution of $\varphi(X^{(\ell)})$ and $\varphi(X^{(\ell-1)})$ There exists M > 1, c > 0 such that, for $\ell \in \mathbb{N}$,

$$\operatorname{cost}(\varphi(X^{(\ell)}), \varphi(X^{(\ell-1)})) \leq c \cdot M^{\ell}.$$

Weak error estimate

There exist $\alpha > 0$, c > 0 such that, for $\ell \in \mathbb{N}_0$,

$$a - \mathrm{E}(\varphi(X^{(\ell)})) \Big| \le c \cdot M^{-\ell \cdot \alpha}.$$

Strong error estimate

There exist $\beta > 0$, c > 0 such that, for $\ell \in \mathbb{N}_0$,

$$E(\varphi(X) - \varphi(X^{(\ell)}))^2 \le c \cdot M^{-\ell \cdot \beta}$$

ASSUMPTIONS

Cost for simulating the joint distribution of $\varphi(X^{(\ell)})$ and $\varphi(X^{(\ell-1)})$ There exists M > 1, c > 0 such that, for $\ell \in \mathbb{N}$,

$$\operatorname{cost}(\varphi(X^{(\ell)}), \varphi(X^{(\ell-1)})) \leq c \cdot M^{\ell}.$$

Weak error estimate

There exist $\alpha > 0$, c > 0 such that, for $\ell \in \mathbb{N}_0$,

$$a - \mathrm{E}(\varphi(X^{(\ell)})) \Big| \le c \cdot M^{-\ell \cdot \alpha}.$$

Strong error estimate

There exist $\beta > 0$, c > 0 such that, for $\ell \in \mathbb{N}_0$,

$$\mathcal{E}(\varphi(X) - \varphi(X^{(\ell)}))^2 \le c \cdot M^{-\ell \cdot \beta}.$$

Example For the solution X of an SDE, the Euler approximation $X^{(\ell)}$ with step-size $2^{-\ell}$, and $\varphi: C([0,T], \mathbb{R}^d) \to \mathbb{R}$ being Lipschitz continuous

$$M=2, \qquad \alpha=1/2-arepsilon, \qquad \beta=1-arepsilon.$$
 11/1

Consider an

• independent family of random elements $(X_i^{(\ell)}, Y_i^{(\ell)})$ such that

 $(X_i^{(\ell)}, Y_i^{(\ell)}) \stackrel{\mathrm{d}}{=} (X^{(\ell)}, X^{(\ell-1)}).$

Consider an

• independent family of random elements $(X_i^{(\ell)}, Y_i^{(\ell)})$ such that $(X_i^{(\ell)}, Y_i^{(\ell)}) \stackrel{\mathrm{d}}{=} (X^{(\ell)}, X^{(\ell-1)}).$

Example Coupled Euler scheme

Consider an

• independent family of random elements $(X_i^{(\ell)}, Y_i^{(\ell)})$ such that $(X_i^{(\ell)}, Y_i^{(\ell)}) \stackrel{\mathrm{d}}{=} (X^{(\ell)}, X^{(\ell-1)}).$

Choose

- minimal and maximal levels $L_0, L_1 \in \mathbb{N}_0$ and
- replication numbers $N_{\ell} \in \mathbb{N}$ at the levels $\ell = L_0, \ldots, L_1$.

Consider an

• independent family of random elements $(X_i^{(\ell)}, Y_i^{(\ell)})$ such that $(X_i^{(\ell)}, Y_i^{(\ell)}) \stackrel{\mathrm{d}}{=} (X^{(\ell)}, X^{(\ell-1)}).$

Choose

- minimal and maximal levels $L_0, L_1 \in \mathbb{N}_0$ and
- replication numbers $N_{\ell} \in \mathbb{N}$ at the levels $\ell = L_0, \ldots, L_1$.

Put

$$\mathcal{M}_{N_{L_{0}},...,N_{L_{1}}}^{L_{0},L_{1}} = \underbrace{\frac{1}{N_{L_{0}}} \cdot \sum_{i=1}^{N_{L_{0}}} \varphi(X_{i}^{(L_{0})})}_{\to \mathcal{E}(\varphi(X^{(L_{0})}))} + \underbrace{\sum_{\ell=L_{0}+1}^{L_{1}} \frac{1}{N_{\ell}} \cdot \sum_{i=1}^{N_{\ell}} \left(\varphi(X_{i}^{(\ell)}) - \varphi(Y_{i}^{(\ell)})\right)}_{\to \mathcal{E}\left(\varphi(X^{(\ell)}) - \varphi(X^{(\ell-1)})\right)}.$$

12/1

Theorem Giles (2008)

With suitably chosen parameters, the multi-level Monte Carlo algorithms $\mathcal{M}^{L_0,L_1}_{N_{L_0},\dots,N_{L_1}}$ achieve the order of convergence

$$\gamma = 2 + \frac{(1-\beta)_+}{\alpha}.$$

Theorem Giles (2008)

With suitably chosen parameters, the multi-level Monte Carlo algorithms $\mathcal{M}^{L_0,L_1}_{N_{L_0},\dots,N_{L_1}}$ achieve the order of convergence

$$\gamma = 2 + \frac{(1-\beta)_+}{\alpha}.$$

Remark Recall that single-level MC achieves

$$\gamma = 2 + \frac{1}{\alpha}.$$

Example For SDEs, the Euler approximation, and Lipschitz continuous functionals φ on the path space

$$\gamma=2$$
 vs. $\gamma=4.$

Multi-level Monte Carlo

- Abstract analysis, integral equations, parametric integration Heinrich (1998), Heinrich, Sindambiwe (1999),
- SDEs, two-level construction, density estimation *Kebaier (2005), Kebaier, Kohatsu-Higa (2008)*
- S(P)DEs, computational finance, ...

Giles (2008, ...), ...

Multi-level Monte Carlo

- Abstract analysis, integral equations, parametric integration Heinrich (1998), Heinrich, Sindambiwe (1999),
- SDEs, two-level construction, density estimation *Kebaier (2005), Kebaier, Kohatsu-Higa (2008)*
- S(P)DEs, computational finance, ...

Giles (2008, ...), ...

• Non-standard SDEs, non-standard functionals

Avikainen (2009), Giles, Higham, Mao (2009), Altmayer, Neuenkirch (2013), Dereich, Neuenkirch, Szpruch (2012), Dereich (2011), Hutzenthaler, Jentzen (2011,...)

• • • •

See http://people.maths.ox.ac.uk/gilesm/mlmc_community.html

IV. Multi-level MC for Distribution Functions

ASSUMPTIONS

Smoothness of the density ρ of $\varphi(X)$

There exists $r \in \mathbb{N}_0$ and $\delta > 0$ such that $\rho \in C^r([S_0 - \delta, S_1 + \delta])$.

IV. Multi-level MC for Distribution Functions

ASSUMPTIONS

Smoothness of the density ρ of $\varphi(X)$

There exists $r \in \mathbb{N}_0$ and $\delta > 0$ such that $\rho \in C^r([S_0 - \delta, S_1 + \delta])$. For smoothing of $1_{]-\infty,0]}$ we take a suitable function $g : \mathbb{R} \to \mathbb{R}$, e.g.,

We approximate $1_{]-\infty,s]}$ by rescaled translates $g(\frac{\cdot -s}{\delta})$, where $\delta > 0$.

IV. Multi-level MC for Distribution Functions

ASSUMPTIONS

Smoothness of the density ρ of $\varphi(X)$

There exists $r \in \mathbb{N}_0$ and $\delta > 0$ such that $\rho \in C^r([S_0 - \delta, S_1 + \delta])$. For smoothing of $1_{]-\infty,0]}$ we take a suitable function $g : \mathbb{R} \to \mathbb{R}$, e.g.,

We approximate $1_{]-\infty,s]}$ by rescaled translates $g(\frac{\cdot -s}{\delta})$, where $\delta > 0$. Put

$$\tau = \varphi(X), \qquad \tau^{(\ell)} = \varphi(X^{(\ell)}).$$

Cost for simulating the joint distribution of $\tau^{(\ell)}$ and $\tau^{(\ell-1)}$

There exists $M>1,\,c>0$ such that, for $\ell\in\mathbb{N},$

$$\operatorname{cost}(\tau^{(\ell)}, \tau^{(\ell-1)}) \le c \cdot M^{\ell}.$$

Cost for simulating the joint distribution of $\tau^{(\ell)}$ and $\tau^{(\ell-1)}$

There exists $M>1,\,c>0$ such that, for $\ell\in\mathbb{N},$

$$\operatorname{cost}(\tau^{(\ell)}, \tau^{(\ell-1)}) \le c \cdot M^{\ell}.$$

Weak error estimate

There exist $\alpha_1 \ge 0$, $\alpha_2 > \alpha_3 \ge 0$, c > 0 such that, for $\ell \in \mathbb{N}_0$ and $\delta \in]0, 1]$,

$$\sup_{s \in [S_0, S_1]} \left| \operatorname{E} \left(g((\tau - s)/\delta) - g((\tau^{(\ell)} - s)/\delta) \right) \right|$$
$$\leq c \cdot \min \left(\delta^{-\alpha_1} \cdot M^{-\ell \cdot \alpha_2}, M^{-\ell \cdot \alpha_3} \right).$$

Cost for simulating the joint distribution of $\tau^{(\ell)}$ and $\tau^{(\ell-1)}$

There exists $M>1,\,c>0$ such that, for $\ell\in\mathbb{N},$

$$\operatorname{cost}(\tau^{(\ell)}, \tau^{(\ell-1)}) \le c \cdot M^{\ell}.$$

Weak error estimate

There exist $\alpha_1 \ge 0$, $\alpha_2 > \alpha_3 \ge 0$, c > 0 such that, for $\ell \in \mathbb{N}_0$ and $\delta \in]0, 1]$,

$$\sup_{s \in [S_0, S_1]} \left| \operatorname{E} \left(g((\tau - s)/\delta) - g((\tau^{(\ell)} - s)/\delta) \right) \right|$$
$$\leq c \cdot \min \left(\delta^{-\alpha_1} \cdot M^{-\ell \cdot \alpha_2}, M^{-\ell \cdot \alpha_3} \right).$$

Strong error estimate

There exist $\beta_1 \ge 0$, $\beta_2 > 0$, c > 0 such that, for $\ell \in \mathbb{N}_0$ and $\delta \in [0, 1]$,

$$\operatorname{Emin}((\tau - \tau^{(\ell)})^2 / \delta^2, 1) \le c \cdot \delta^{-\beta_1} \cdot M^{-\ell \cdot \beta_2}.$$

- X is the solution of a d-dimensional system of SDEs,
- $\varphi: \mathbb{R}^d \to \mathbb{R}$ is Lipschitz continuous.

- X is the solution of a d-dimensional system of SDEs,
- $\varphi : \mathbb{R}^d \to \mathbb{R}$ is Lipschitz continuous.

Take $\tau^{(\ell)} = \varphi(X_T^{(\ell)})$, where

• $X^{(\ell)}$ is the Euler scheme with 2^{ℓ} equidistant time-steps.

 ${\rm Then}\; M=2$

- X is the solution of a d-dimensional system of SDEs,
- $\varphi : \mathbb{R}^d \to \mathbb{R}$ is Lipschitz continuous.

Take $\tau^{(\ell)} = \varphi(X_T^{(\ell)}),$ where

• $X^{(\ell)}$ is the Euler scheme with 2^{ℓ} equidistant time-steps.

Then M = 2 and, due to Bally, Talay (1996),

$$\alpha_1 = 0, \qquad \alpha_2 = 1, \qquad \alpha_3 = 0,$$

Recall

weak error
$$\leq c \cdot \min\left(\delta^{-\alpha_1} \cdot M^{-\ell \cdot \alpha_2}, M^{-\ell \cdot \alpha_3}\right)$$

- X is the solution of a d-dimensional system of SDEs,
- $\varphi : \mathbb{R}^d \to \mathbb{R}$ is Lipschitz continuous.

Take $\tau^{(\ell)} = \varphi(X_T^{(\ell)})$, where

• $X^{(\ell)}$ is the Euler scheme with 2^{ℓ} equidistant time-steps.

Then M=2 and

$$\alpha_1 = 0, \quad \alpha_2 = 1, \quad \alpha_3 = 0,
\beta_1 = 2, \quad \beta_2 = 1.$$

Recall

strong error
$$\leq c \cdot \delta^{-\beta_1} \cdot M^{-\ell \cdot \beta_2}$$

- X is the solution of a d-dimensional system of SDEs,
- $\varphi: C([0,T], \mathbb{R}^d) \to \mathbb{R}$ is Lipschitz continuous.

Take $\tau^{(\ell)} = \varphi(X^{(\ell)}),$ where

• $X^{(\ell)}$ is the Euler scheme with 2^{ℓ} equidistant time-steps.

Then ${\cal M}=2$ and

$$\alpha_1 = \varepsilon, \quad \alpha_2 = 1/2 - \varepsilon, \quad \alpha_3 = 1/2 - \varepsilon,$$

 $\beta_1 = 2, \quad \beta_2 = 1 - \varepsilon.$

Cf. Avikainen (2009).

Example 3 (SDE, stopped exit time)

Let $\tau=\varphi(X),$ where

- X is the solution of a d-dimensional system of SDEs,
- $\varphi(x) = \inf\{t \ge 0 : x(t) \in \partial D\} \land T$ for a bounded domain $D \subset \mathbb{R}^d$.

Take $\tau^{(\ell)} = \varphi(X^{(\ell)}),$ where

• $X^{(\ell)}$ is an Euler scheme with 2^{ℓ} equidistant time-steps.

Then ${\cal M}=2$ and

$$\alpha_1 = 1, \quad \alpha_2 = 1/2, \quad \alpha_3 = 1/4,$$

 $\beta_1 = 1, \quad \beta_2 = 1/2.$

Example 3 (SDE, stopped exit time)

Let $\tau=\varphi(X),$ where

- X is the solution of a d-dimensional system of SDEs,
- $\varphi(x) = \inf\{t \ge 0 : x(t) \in \partial D\} \land T$ for a bounded domain $D \subset \mathbb{R}^d$.

Take $\tau^{(\ell)} = \varphi(X^{(\ell)}),$ where

• $X^{(\ell)}$ is an Euler scheme with 2^{ℓ} equidistant time-steps.

Then ${\cal M}=2$ and

$$\alpha_1 = 1, \quad \alpha_2 = 1/2, \quad \alpha_3 = 1/4,$$

 $\beta_1 = 1, \quad \beta_2 = 1/2.$

According to *Bouchard, Geiss, Gobet (2013)*, for $1 \le p < \infty$,

$$\left(\mathbf{E}|\tau - \tau^{(\ell)}|^p\right)^{1/p} \le c_p \cdot M^{-\ell/(2p)}$$

Step 1 Approximation of the distribution function F of τ at discrete points. Choose

- $\bullet\,$ a number $k\in\mathbb{N}$ of point,
- a smoothing parameter $\delta > 0$,
- minimal and maximal levels $L_0, L_1 \in \mathbb{N}$, and
- replication numbers $N_{\ell} \in \mathbb{N}$ at the levels $\ell = L_0, \ldots, L_1$.

Put

$$s_i = S_0 + i \cdot (S_1 - S_0)/k, \qquad i = 0, \dots, k,$$
$$g^{k,\delta}(t) = \left(g(\frac{t - s_1}{\delta}), \dots, g(\frac{t - s_k}{\delta})\right), \qquad t \in \mathbb{R}.$$

Step 1 Approximation of the distribution function F of τ at discrete points. Choose

- a number $k \in \mathbb{N}$ of point,
- a smoothing parameter $\delta > 0$,
- minimal and maximal levels $L_0, L_1 \in \mathbb{N}$, and
- replication numbers $N_{\ell} \in \mathbb{N}$ at the levels $\ell = L_0, \ldots, L_1$.

Put

$$s_i = S_0 + i \cdot (S_1 - S_0)/k, \qquad i = 0, \dots, k,$$
$$g^{k,\delta}(t) = \left(g(\frac{t - s_1}{\delta}), \dots, g(\frac{t - s_k}{\delta})\right), \qquad t \in \mathbb{R}.$$

Consider an independent family of random vectors $(\tau_i^{(\ell)}, \sigma_i^{(\ell)})$ such that $(\tau_i^{(\ell)}, \sigma_i^{(\ell)}) \stackrel{\mathrm{d}}{=} (\tau^{(\ell)}, \tau^{(\ell-1)}).$

For approximation of $(F(s_1), \ldots, F(s_k))$ define the multi-level algorithm

$$\mathcal{M}_{N_{L_0},\dots,N_{L_1}}^{k,\delta,L_0,L_1} = \frac{1}{N_{L_0}} \cdot \sum_{i=1}^{N_{L_0}} g^{k,\delta}(\tau_i^{(L_0)}) + \sum_{\ell=L_0+1}^{L_1} \frac{1}{N_\ell} \cdot \sum_{i=1}^{N_\ell} \left(g^{k,\delta}(\tau_i^{(\ell)}) - g^{k,\delta}(\sigma_i^{(\ell)}) \right).$$

Step 2 Extension to functions on $[S_0, S_1]$. Put $||f||_{\infty} = \sup_{s \in [S_0, S_1]} |f(s)|$ and $|x|_{\infty} = \sup_{i=1,...,k} |x_i|$. Take linear mappings $Q_k : \mathbb{R}^k \to C([S_0, S_1])$ such that $\exists c > 0 \forall k \in \mathbb{N}$

> $\forall x \in \mathbb{R}^k : \quad \cot(Q_k(x)) \le c \cdot k,$ $\forall x \in \mathbb{R}^k : \quad \|Q_k(x)\|_{\infty} \le c \cdot \|x\|_{\infty},$ $\|F - Q_k(F(s_1), \dots, F(s_k))\|_{\infty} \le c \cdot k^{-(r+1)}.$

E.g., Q_k piecewise polynomial interpolation of degree max(r, 1).

Step 2 Extension to functions on $[S_0, S_1]$. Put $||f||_{\infty} = \sup_{s \in [S_0, S_1]} |f(s)|$ and $|x|_{\infty} = \sup_{i=1,...,k} |x_i|$. Take linear mappings $Q_k : \mathbb{R}^k \to C([S_0, S_1])$ such that $\exists c > 0 \forall k \in \mathbb{N}$

> $\forall x \in \mathbb{R}^k : \quad \cot(Q_k(x)) \le c \cdot k,$ $\forall x \in \mathbb{R}^k : \quad \|Q_k(x)\|_{\infty} \le c \cdot \|x\|_{\infty},$ $\|F - Q_k(F(s_1), \dots, F(s_k))\|_{\infty} \le c \cdot k^{-(r+1)}.$

E.g., Q_k piecewise polynomial interpolation of degree max(r, 1).

Steps 1 and 2 yield the multi-level algorithm

$$\mathcal{A}_{N_{L_0},...,N_{L_1}}^{k,\delta,L_0,L_1} = Q_k(\mathcal{M}_{N_{L_0},...,N_{L_1}}^{k,\delta,L_0,L_1}).$$

Put

$$q = \min\left(\frac{r+1+\alpha_1}{\alpha_2}, \frac{r+1}{\alpha_3}\right).$$

Theorem Giles, Nagapetyan, R (2013)

With suitably chosen parameters, the algorithms $\mathcal{A}^{k,\delta,L_0,L_1}_{N_{L_0},...,N_{L_1}}$ achieve

$$\gamma = 2 + \frac{\vartheta}{r+1}$$

for approximation of F on $[S_0, S_1]$, where

$$\vartheta = \begin{cases} \max(1, q), & \text{if } q \le \max(1, \beta_1 / \beta_2), \\ \max(1, \beta_1 / \beta_2, \beta_1 + (1 - \beta_2) \cdot q), & \text{otherwise.} \end{cases}$$

Put

$$q = \min\left(\frac{r+1+\alpha_1}{\alpha_2}, \frac{r+1}{\alpha_3}\right).$$

Theorem Giles, Nagapetyan, R (2013)

With suitably chosen parameters, the algorithms $\mathcal{A}^{k,\delta,L_0,L_1}_{N_{L_0},...,N_{L_1}}$ achieve

$$\gamma = 2 + \frac{\vartheta}{r+1}$$

for approximation of F on $\left[S_{0},S_{1}\right]$, where

$$\vartheta = \begin{cases} \max(1, q), & \text{if } q \le \max(1, \beta_1 / \beta_2), \\ \max(1, \beta_1 / \beta_2, \beta_1 + (1 - \beta_2) \cdot q), & \text{otherwise.} \end{cases}$$

Remark

- Similar results holds for approximation of F(s) and of ρ on $[S_0, S_1]$.
- Single-level MC 'suffices', i.e., $L_0 = L_1$, if $q \le \max(1, \beta_1/\beta_2)$.

	F	ρ	F(s)
smooth functional	$2 + \frac{2}{r+1}$	$2 + \frac{4}{r}$	$2 + \frac{1}{r+1}$
stopped exit time	$3 + \frac{2}{r+1}$	$3 + \frac{5}{r}$	$3 + \frac{2}{r+1}$

	F	ρ	F(s)
smooth functional	$2 + \frac{2}{r+1}$	$2 + \frac{4}{r}$	$2 + \frac{1}{r+1}$
stopped exit time	$3 + \frac{2}{r+1}$	$3 + \frac{5}{r}$	$3 + \frac{2}{r+1}$

Remark

- Multi-level 'superior' to single level in all these cases.
- The same orders for path-independent and path-dependent functionals.
- For d = 1, path-independent functionals, and the Milstein scheme

	F	ρ	F(s)
smooth, path-indep.	$2 + \frac{1}{r+1}$	$2 + \frac{3}{r}$	2

	F	ρ	F(s)
smooth functional	$2 + \frac{2}{r+1}$	$2 + \frac{4}{r}$	$2 + \frac{1}{r+1}$
stopped exit time	$3 + \frac{2}{r+1}$	$3 + \frac{5}{r}$	$3 + \frac{2}{r+1}$

Remark Corresponding results available for the approximation of $E(\varphi(X))$ by means of multi-level Euler algorithms. For smooth functionals

$$\gamma = 2,$$

and for stopped exit times, see Higham et al. (2013),

$$\gamma = 3.$$

	F	ρ	F(s)
smooth functional	$2 + \frac{2}{r+1}$	$2 + \frac{4}{r}$	$2 + \frac{1}{r+1}$
stopped exit time	$3 + \frac{2}{r+1}$	$3 + \frac{5}{r}$	$3 + \frac{2}{r+1}$

Remark Corresponding results available for the approximation of $E(\varphi(X))$ by means of multi-level Euler algorithms. For smooth functionals

$$\gamma = 2,$$

and for stopped exit times, see Higham et al. (2013),

$$\gamma = 3.$$

Question Optimality?

A Numerical Experiment Let $\tau = X_1$, where $X_0 = 1$ and

 $dX_t = 0.05 X_t \, dt + 0.2 X_t \, dW_t.$

Let $S_0 = 0$ and $S_1 = 2$.

A Numerical Experiment Let $\tau = X_1$, where $X_0 = 1$ and

 $dX_t = 0.05 X_t \, dt + 0.2 X_t \, dW_t.$

Let $S_0 = 0$ and $S_1 = 2$. Choose r = 7.

A Numerical Experiment Let $\tau = X_1$, where $X_0 = 1$ and

 $dX_t = 0.05 X_t \, dt + 0.2 X_t \, dW_t.$

Let $S_0 = 0$ and $S_1 = 2$. Choose r = 7.

Order of convergence (theoretically, empirically)

single-level: 3.00, 2.94, multi-level: 2.25, 2.37.

V. Complexity of Infinite-Dimensional Integration

Given

- a Borel probability measure μ on a separable Banach space \mathfrak{X} ,
- a class F of integrable functions $\varphi : \mathfrak{X} \to \mathbb{R}$.

Compute

$$I(\varphi) = \int_{\mathfrak{X}} \varphi \, d\mu, \qquad \varphi \in F.$$

V. Complexity of Infinite-Dimensional Integration

Given

- a Borel probability measure μ on a separable Banach space \mathfrak{X} ,
- a class F of integrable functions $\varphi : \mathfrak{X} \to \mathbb{R}$.

Compute

$$I(\varphi) = \int_{\mathfrak{X}} \varphi \, d\mu, \qquad \varphi \in F.$$

The classical case

• $\mathfrak{X} = \mathbb{R}^n$ and μ uniform distribution on $[0, 1]^n$ or standard normal distribution.

In the sequel

• μ distribution of the solution of an SDE on $\mathfrak{X} = C([0, T], \mathbb{R}^d)$.

Randomized (Monte Carlo) algorithms

- exact computation with real numbers; cost one per operation
- perfect random number generator for every distribution; cost one per call,
- oracle for $\varphi(x)$ for every $x \in \bigcup_{\ell \in \mathbb{N}_0} \mathfrak{X}_\ell$ with any scale of finite-dimensional subspaces

$$\mathfrak{X}_0 \subset \mathfrak{X}_1 \subset \ldots \subset C([0,T],\mathbb{R}^d);$$

cost dim \mathfrak{X}_{ℓ} for evaluation of φ at $x \in \mathfrak{X}_{\ell} \setminus \mathfrak{X}_{\ell-1}$.

Randomized (Monte Carlo) algorithms

- exact computation with real numbers; cost one per operation
- perfect random number generator for every distribution; cost one per call,
- oracle for $\varphi(x)$ for every $x\in \bigcup_{\ell\in\mathbb{N}_0}\mathfrak{X}_\ell$ with any scale of finite-dimensional subspaces

$$\mathfrak{X}_0 \subset \mathfrak{X}_1 \subset \ldots \subset C([0,T],\mathbb{R}^d);$$

cost dim \mathfrak{X}_{ℓ} for evaluation of φ at $x \in \mathfrak{X}_{\ell} \setminus \mathfrak{X}_{\ell-1}$.

Worst case analysis: error and cost of a randomized algorithm \mathcal{M} , complexity of the integration problem

$$\operatorname{error}(\mathcal{M}, F) = \sup_{\varphi \in F} \left(E \left| I(\varphi) - \mathcal{M}(\varphi) \right) \right|^2 \right)^{1/2},$$

$$\operatorname{cost}(\mathcal{M}, F) = \sup_{\varphi \in F} E \left(\text{\# op's} + \text{\# random number calls} + \text{oracle cost} \right),$$

$$\operatorname{comp}(\varepsilon, F) = \inf \{ \operatorname{cost}(\mathcal{M}) : \operatorname{error}(\mathcal{M}) \leq \varepsilon \}.$$

1 10

$$|f(x) - f(y)| \le ||x - y||_{\infty}, \qquad x, y \in C([0, T], \mathbb{R}^d).$$

 $|f(x) - f(y)| \le ||x - y||_{\infty}, \qquad x, y \in C([0, T], \mathbb{R}^d).$

Theorem Creutzig, Dereich, Müller-Gronbach, R (2009)

There exist $c_1, c_2 > 0$, which only depend on the coefficients and the initial value of the SDE, such that for every $\varepsilon \in [0, 1/2[$

$$c_1 \cdot \varepsilon^{-2} \leq \operatorname{comp}(\varepsilon, \operatorname{Lip}(1)) \leq c_2 \cdot \varepsilon^{-2} \cdot (\log \varepsilon^{-1})^2$$

 $|f(x) - f(y)| \le ||x - y||_{\infty}, \qquad x, y \in C([0, T], \mathbb{R}^d).$

Theorem Creutzig, Dereich, Müller-Gronbach, R (2009)

There exist $c_1, c_2 > 0$, which only depend on the coefficients and the initial value of the SDE, such that for every $\varepsilon \in [0, 1/2[$

$$c_1 \cdot \varepsilon^{-2} \leq \operatorname{comp}(\varepsilon, \operatorname{Lip}(1)) \leq c_2 \cdot \varepsilon^{-2} \cdot (\log \varepsilon^{-1})^2$$

Remark

- The upper bound is achieved by the multi-level Euler algorithm.
- Deterministic algorithms merely yield $\exp(\varepsilon^{-2})$.

 $|f(x) - f(y)| \le ||x - y||_{\infty}, \qquad x, y \in C([0, T], \mathbb{R}^d).$

Theorem Creutzig, Dereich, Müller-Gronbach, R (2009)

There exist $c_1, c_2 > 0$, which only depend on the coefficients and the initial value of the SDE, such that for every $\varepsilon \in [0, 1/2[$

$$c_1 \cdot \varepsilon^{-2} \leq \operatorname{comp}(\varepsilon, \operatorname{Lip}(1)) \leq c_2 \cdot \varepsilon^{-2} \cdot (\log \varepsilon^{-1})^2$$

Remark General result for

- every probability measure μ on any separable Banach space $\mathfrak X$ and
- $F = \operatorname{Lip}(1)$.

Upper and lower bounds for $\operatorname{comp}(\varepsilon,\operatorname{Lip}(1))$ in terms of

• quantization numbers and Kolmogorov widths of μ .