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|. The Computational Problem

Given a random element X (random vector, stochastic process, ...) and a
real-valued functional , such that ¢ (X ) has a Lebesgue density.

Approximate
e the distribution function F’ or
e the density p

of ©(X') on a compact interval.
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|. The Computational Problem

Given a random element X (random vector, stochastic process, ...) and a
real-valued functional , such that ¢ (X ) has a Lebesgue density.

Approximate
e the distribution function F’ or
e the density p

of ©(X') on a compact interval.

Assumption Instead of X, approximations X (©). X1 . can be simulated.

Application

e X is the solution of an SDE (with reflection)
dX (t) = p(X(t)) dt + o (X (t)) dW (t) + (dn(t)),

e (p is a functional on the corresponding path space, e.g., an exit time.
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|. The Computational Problem

Given a random element X (random vector, stochastic process, ...) and a
real-valued functional , such that ¢ (X ) has a Lebesgue density.

Approximate
e the distribution function F’ or
e the density p

of ©(X') on a compact interval.

Assumption Instead of X, approximations X (©). X1 . can be simulated.

Goal Monte Carlo (randomized) algorithm M with error

error(M) = (E sup |F(s)— /\/1]2)1/2
s€[S0,51]
bounded by £ and with cost
cost(M) = E(# operations and random number calls)

as small as possible. Likewise for p.
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We are interested in the stopped exit time ¢, i.e.,
e(x) =inf{t > 0:x(t) € Do} AT,

where D C R?%is a bounded domain and Dy C 0D.
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We are interested in the stopped exit time ¢, i.e.,
e(x) =inf{t > 0:x(t) € Do} AT,

where D C R?%is a bounded domain and Dy C 0D.

A measurement result (cf. emprical densities of two exit times)
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OUTLINE

Il. Single-level MC for Real-valued Functionals
[1l. Multi-level MC for Real-valued Functionals
V. Multi-level MC for Distribution Functions and Densities

V. Complexity of Infinite-Dimensional Integration Problems

Joint work with

M. Giles (Oxford), O. lliev (ITWM), T. Nagapetyan (ITWM),
J. Creutzig (Darmstadt), S. Dereich (Munster), T. Muller-Gronbach (Passau)

6/1



ll. Single-level MC for Real-valued Functionals

Compute a = E(p(X)) € R for a real-valued functional ¢.

Single-level Monte Carlo is defined by

| N

(L)

:_ZSD(Xz' )
N i=1

with L € Ny, NV € N, and independent copies Xl(L), . ,X](\,L) of X (L),

We have
error’(My) = E(a — MY)?
= (a — E(p(X®)))* + = Var(p(X 1)),

cost(M%) < ¢+ N - cost(p(X ).

7/1



ASSUMPTIONS
Cost for simulating the distribution of gp(X(g))
There exists M > 1, ¢ > 0 such that, for £ € N,

cost(p( X)) < - M*

Weak error estimate

There exist « > 0, ¢ > 0 such that, for £ € N,

o~ B(p(X9))| < e Mt

Bounded variances  sup,cy, Var(o(X®9)) < .
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ASSUMPTIONS
Cost for simulating the distribution of gp(X(g))
There exists M > 1, ¢ > 0 such that, for £ € N,

cost(p( X)) < - M*

Weak error estimate

There exist « > 0, ¢ > 0 such that, for £ € Np,
0= B(p(X0)| < c- M=
Bounded variances  sup,cy, Var(o(X®9)) < .

Example For the solution X of an SDE, the Euler approximation X © with
step-size 27¢, and ¢ : C'([0,T],R¢) — R being Lipschitz continuous

M =2, a=1/2—c¢.
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Terminology A sequence of Monte Carlo algorithms M, with

lim,,_,, error(M,,) = 0 achieves the order of convergence y > 0 if

dc>0de>0VneN:
cost(M,,) < c¢- (error(/\/ln))_(wg).
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Terminology A sequence of Monte Carlo algorithms M, with

lim,,_,, error(M,,) = 0 achieves the order of convergence y > 0 if

dc>0de>0VneN:
cost(M,,) < c¢- (error(/\/ln))_(wg).

Theorem
With suitably chosen parameters, the single-level Monte Carlo algorithms

M]LV achieve the order of convergence

v =24 —.
o
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Terminology A sequence of Monte Carlo algorithms M, with

lim,,_,, error(M,,) = 0 achieves the order of convergence y > 0 if

dc>0de>0VneN:
cost(M,,) < c¢- (error(/\/ln))_(7+€).

Theorem
With suitably chosen parameters, the single-level Monte Carlo algorithms
/\/l]LV achieve the order of convergence

1
v=24+ —.
)

Example For SDEs, the Euler approximation, and Lipschitz continuous

functionals ¢ on the path space

v =4.

9/1



l1l. Multi-level MC for Real-valued Functionals

Compute a = E(p(X)) € R for a real-valued functional .
Choose L € Ny as previously. Clearly

L

E(p(X1) = B(e(X”)) + > B(p(X") = p(X“")).

—A(0) —A)
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l1l. Multi-level MC for Real-valued Functionals

Compute a = E(p(X)) € R for a real-valued functional .
Choose L € Ny as previously. Clearly

L

E(p(X1) = B(e(X”)) + > B(p(X") = p(X“")).

—A(0) —A)

Typically, we have

lim cost AW = o but lim Var AW = 0.

{—00 {—00
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l1l. Multi-level MC for Real-valued Functionals

Compute a = E(p(X)) € R for a real-valued functional .
Choose L € Ny as previously. Clearly

E(p(X D) = B(p(X®)) + 3 B(p(X®) — p(X D))
_A0) =1 _A0)

Typically, we have

lim cost AW = o but lim Var AW = 0.

{—00 {—00

ldea Variance reduction, compared to single-level MC, by approximating
EA© . EAW separately with independent MC algorithms.
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ASSUMPTIONS
Cost for simulating the  joint distribution  of ¢(X(f)) and gp(X(E_l))
There exists M > 1, ¢ > 0 such that, for ¥ € N,

Cost(gp(X@)), ¢(X(£_1))) <c- M

Weak error estimate
There exist &« > 0, ¢ > 0 such that, for ¢ € Nj,

o — E(p(X')] <e- M5

Strong error estimate
There exist 8 > 0, ¢ > 0 such that, for £ € Ny,

E(p(X) — p(XY))? <c- M7,
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ASSUMPTIONS
Cost for simulating the  joint distribution  of gp(X(E)) and gp(X(E_l))
There exists M > 1, ¢ > 0 such that, for ¥ € N,

COS’C(QD(X<£)), ¢(X(£_1))) <c-M"

Weak error estimate
There exist &« > 0, ¢ > 0 such that, for ¢ € Nj,

o — E(p(X')] <e- M5

Strong error estimate
There exist 8 > 0, ¢ > 0 such that, for £ € Ny,

E(p(X) — p(XY))? <c- M7,

Example For the solution X of an SDE, the Euler approximation X O with
step-size 27¢, and ¢ : C'([0,T],R¢) — R being Lipschitz continuous

M =2, a=1/2—c¢, B=1-—c¢.
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DEFINITION OF THE MULTI-LEVEL ALGORITHM

Consider an
e independent family of random elements (X-(e), Y-(E)) such that

(X@) Y(e)) g (X(e),X(E_l)).

1 ) 1
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DEFINITION OF THE MULTI-LEVEL ALGORITHM

Consider an
e independent family of random elements (Xz-(e), YZ-(E)) such that
(X-(g) Y(e)) g (X(e),X(g_l)).

1 ) 1

Example Coupled Euler scheme

1% (X(Q),X(l))

V. N
R 4
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DEFINITION OF THE MULTI-LEVEL ALGORITHM
Consider an
e independent family of random elements (Xz-(e), Yz-(g)) such that
(X9, 79 £ (xO, x (-0,
Choose

e minimal and maximal levels Lg, L1 € Ny and

e replication numbers N, € N atthe levels ¢ = L, ..., Ly.

12/2



DEFINITION OF THE MULTI-LEVEL ALGORITHM
Consider an
e independent family of random elements (Xz-(e), Yz-(g)) such that
(Xi(f)’y;(@)) d (X(e),X(g_l)).
Choose
e minimal and maximal levels Lg, L1 € Ny and

e replication numbers N, € N atthe levels ¢ = L, ..., Ly.

Put

Ny, L N
1 0 I 1 1 14 ) /
= > e(XI+ 3 =3 (p(x) — (v, )
< Lo 1=1 £:L0—i—1\ ¢ 1=1 P

SE(p(X E0))) —>E(90(X(£))—90(X “—1))) 12/1



Theorem Giles (2008)
With suitably chosen parameters, the multi-level Monte Carlo algorithms

Lo,L
My ., achieve the order of convergence

(1-8).

8%

V=24
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Theorem Giles (2008)
With suitably chosen parameters, the multi-level Monte Carlo algorithms

Lo,L
My ., achieve the order of convergence

(1-8).

8%

V=24

Remark Recall that single-level MC achieves

1
V=24 —.
o

Example For SDEs, the Euler approximation, and Lipschitz continuous

functionals ¢ on the path space
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Multi-level Monte Carlo

e Abstract analysis, integral equations, parametric integration

Heinrich (1998), Heinrich, Sindambiwe (1999), ....

e SDEs, two-level construction, density estimation

Kebaier (2005), Kebaier, Kohatsu-Higa (2008)

e S(P)DEs, computational finance, ...

Giles (2008, ...), . . .
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Multi-level Monte Carlo

e Abstract analysis, integral equations, parametric integration

Heinrich (1998), Heinrich, Sindambiwe (1999), ....

e SDEs, two-level construction, density estimation

Kebaier (2005), Kebaier, Kohatsu-Higa (2008)

e S(P)DEs, computational finance, ...

Giles (2008, ...), . . .

e Non-standard SDEs, non-standard functionals

Avikainen (2009), Giles, Higham, Mao (2009), Altmayer, Neuenkirch (2013),
Dereich, Neuenkirch, Szpruch (2012), Dereich (2011),
Hutzenthaler, Jentzen (2011,...)

See http://people.maths.ox.ac.uk/gilesm/mimc  _community.html
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V. Multi-level MC for Distribution Functions

ASSUMPTIONS
Smoothness of the density p of p(X)
There exists € Ny and 0 > 0 suchthat p € C"([.Sy — 9, 51 + 6]).
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V. Multi-level MC for Distribution Functions

ASSUMPTIONS
Smoothness of the density p of p(X)
There exists € Ny and 0 > 0 suchthat p € C"([.Sy — 9, 51 + 6]).

For smoothing of 1j_., o] we take a suitable function g : R — R, e.g.,

Smoothing polynomial

-1 -0.5 0 0.5 1

We approximate 1j_ 4 by rescaled translates g(-=*), where § > 0.
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V. Multi-level MC for Distribution Functions

ASSUMPTIONS
Smoothness of the density p of p(X)
There exists € Ny and 0 > 0 suchthat p € C"([.Sy — 9, 51 + 6]).

For smoothing of 1j_., o] we take a suitable function g : R — R, e.g.,

Smoothing polynomial

-1 -0.5 0 0.5 1

We approximate 1j_ 4 by rescaled translates g(-=*), where § > 0.

Put
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Cost for simulating the joint distribution of 7 and 71
There exists M > 1, ¢ > 0 such that, for £ € N,

cost(70, 7"D) < ¢ ME
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Cost for simulating the joint distribution of 7 and 71
There exists M > 1, ¢ > 0 such that, for £ € N,

cost(70, 7"D) < ¢ ME

Weak error estimate
There exist «; > 0, g > a3 > 0, ¢ > 0 such that, for / € Ny and § € |0, 1],

sup |E (9((r — 5)/8) — g((r® — 5)/6)]

86[50,51]
< ¢-min (5_0‘1 L MTEez, M_K'O“”) .
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Cost for simulating the joint distribution of 7 and 71
There exists M > 1, ¢ > 0 such that, for £ € N,

cost(70, 7"D) < ¢ ME

Weak error estimate
There exist «; > 0, g > a3 > 0, ¢ > 0 such that, for / € Ny and § € |0, 1],

sup [E(9((7 = 5)/8) = g((r = 5)/))
< ¢ - min (5_a1 M2, M_e.ag) '

Strong error estimate
There exist 5; > 0, 82 > 0, ¢ > 0 such that, for £ € Ny and 0 € |0, 1],

Emin((t —7%¥)?/6%,1) < c¢- 57 . M~4P2,
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Example 1 (SDE, smooth path-independent functional)

Let 7 = ¢(X7T), where
e X is the solution of a d-dimensional system of SDEs,

e ©: R% — Ris Lipschitz continuous.
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Example 1 (SDE, smooth path-independent functional)

Let 7 = (X7), where
e X is the solution of a d-dimensional system of SDEs,
e ©: R% — Ris Lipschitz continuous.
Take 71 = gp(Xq(f)), where
e X is the Euler scheme with 2¢ equidistant time-steps.

Then M = 2
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Example 1 (SDE, smooth path-independent functional)

Let 7 = (X7), where
e X is the solution of a d-dimensional system of SDEs,
e ©: R% — Ris Lipschitz continuous.
Take 71 = gp(Xq(f)), where
e X is the Euler scheme with 2¢ equidistant time-steps.

Then M = 2 and, due to Bally, Talay (1996),

04120, &2:1, &320,

Recall
weak error < ¢ - min (5_0‘1 LM TEe2, M_E'O@) :
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Example 1 (SDE, smooth path-independent functional)

Let 7 = ¢(X7T), where
e X is the solution of a d-dimensional system of SDEs,
e ©: R% — Ris Lipschitz continuous.

Take 71 = gp(Xq(f)), where

e X is the Euler scheme with 2¢ equidistant time-steps.

Then M = 2 and

04120, &2:1, &320,
b1 =2, [a=1

Recall
strong error < ¢ - ANV e
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Example 2 (SDE, smooth path-dependent functional)
Let 7 = (X ), where

e X is the solution of a d-dimensional system of SDESs,
e ©:(C([0,7T],R%) — Ris Lipschitz continuous.
Take 79 = (X)), where
e X is the Euler scheme with 2¢ equidistant time-steps.

Then M = 2 and

a1 = &, 042:1/2—8, 043:1/2—8,
61:2, 62:1—8.

Cf. Avikainen (2009).
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Example 3 (SDE, stopped exit time)
Let 7 = (X ), where

e X is the solution of a d-dimensional system of SDEs,

e o(x)=1inf{t > 0:x(t) € 9D} AT for a bounded domain D C R
Take 79 = (X)), where
e X is an Euler scheme with 2° equidistant time-steps.

Then M = 2 and

041:1, 042:1/2, 043:1/4,
51:17 62:1/2
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Example 3 (SDE, stopped exit time)
Let 7 = (X ), where

e X is the solution of a d-dimensional system of SDEs,

e o(x)=1inf{t > 0:x(t) € 9D} AT for a bounded domain D C R

Take 79 = (X)), where
e X is an Euler scheme with 2° equidistant time-steps.

Then M = 2 and
041:1, 042:1/2, 043:1/4,
51:17 62:1/2

According to Bouchard, Geiss, Gobet (2013), for 1 < p < o0,

(E\T . T(e)‘p) 1/p <c,- N 2p)
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DEFINITION OF THE MULTI-LEVEL ALGORITHM

Step 1 Approximation of the distribution function F' of 7 at discrete points.

Choose
e anumber k£ € N of point,
e a smoothing parameter ¢ > 0,
e minimal and maximal levels Ly, L1 € N, and
e replication numbers N, € N atthe levels ¢ = L, ..., Ly.
Put
si=Sg+1- (51— 5)/k, 1 =20,...,k,

go(t) = (9(52), ..., 9(552)) t€R.
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DEFINITION OF THE MULTI-LEVEL ALGORITHM

Step 1 Approximation of the distribution function F' of 7 at discrete points.

Choose
e anumber k£ € N of point,
e a smoothing parameter ¢ > 0,

e minimal and maximal levels Ly, L1 € N, and

e replication numbers N, € N atthe levels ¢ = L, ..., Ly.
Put
si=Sg+1- (51— 5)/k, 1=0,...,k,
got) = (g(52), ..., 9(52), teR

Consider an independent family of random vectors (T,L-(E), 0(6)) such that

(Ti(ﬁ)’ Ogﬁ)) d (7_(6)’7_(6—1)).
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For approximation of (F'(s1), ... F'(s;)) define the multi-level algorithm

1
k.S Lo, L k6 _(Lo)
MNLO,?..,J\lle = NLO -;g (7'Z 0 )
L1 1 Ng
¢ ¢
Y 5 (60 g e?)
{=Lp+1 1=1
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Step 2 Extension to functions on [ Sy, S1].
Put [ flloc = supyeis, 5,1 [/ (s)] and [2|os = sup,_;
Take linear mappings Q. : R* — C([Sy, S1]) suchthat 3¢ > 0Vk € N

vz € R¥:  cost(Qn(z)) < c-k,
Ve R [ Qk(@)]lo < € |2,
|F = Qr(F(s1), ..., F(si))lloo < c- k™00,

E.g., ()i piecewise polynomial interpolation of degree max(r, 1).
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Step 2 Extension to functions on [ Sy, S1].
Put || fllec = suPseis, 5,1 1/ (8)] and |2]os = sup;,

Take linear mappings Q. : R* — C([Sy, S1]) suchthat 3¢ > 0Vk € N
Vr € R¥:  cost(Qp(x)) < c-k,
Ve € RV [|Qk(2)]loo < € |2]o0s
1F — Qu(F(s1),..., F(56)|loo < ¢ k~rHY.

E.g., ()i piecewise polynomial interpolation of degree max(r, 1).

Steps 1 and 2 yield the multi-level algorithm

k.0,Lo,L . k,0,Lo,L
ANLO,(.)..,]\lle o Qk(MNLO ’ Al[L )

.....
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Put

.<r+1+a1r+1>
¢ = min : .
07) X3

Theorem Giles, Nagapetyan, R (2013)

With suitably chosen parameters, the algorithms Ak 0:Lo, L N achieve
07 *

Y
r—+1

V=24

for approximation of F' on [Sy, S|, where

;

HlaX(l, Q)7 If q S max(l, 61/62)7
\maX(la Bi/B2, 81+ (1 — B2) - q), otherwise.
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Put

.<r+1+a1r+1>
¢ = min , .
Q2 a3

Theorem Giles, Nagapetyan, R (2013)

With suitably chosen parameters, the algorithms Ak 0:Lo, L N achieve
07 *

Y
r—+1

V=24

for approximation of F' on [Sy, S|, where

;

maX(la Q)7 If q S maX(la 61/52)7
\maX(la Bi/B2, 81+ (1 — B2) - q), otherwise.

Remark

e Similar results holds for approximation of F'(s) and of p on Sy, S1].

e Single-level MC ‘suffices’, i.e., Ly = L1, if ¢ < max(1, 81/52).
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Application SDE, Euler, r € N

smooth functional | 2 + 7°—|2—1 2+2 2+ ,,jrl

stopped exit time | 3 + T% 3+ % 3+ 9
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Application SDE, Euler, r € N

F P F(s)

smooth functional | 2 + 7°—|2—1 2+2 2+ ,,jrl

stopped exit time 3+T+L1 34 5 3+r—2u

Remark

e Multi-level 'superior’ to single level in all these cases.

® The same orders for path-independent and path-dependent functionals.

e For d = 1, path-independent functionals, and the Milstein scheme

smooth, path-indep. | 2 + T}rl 2+ % 2
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Application SDE, Euler, r € N

F P F(s)

smooth functional | 2 + T_QH 2+2 2+ Til

stopped exit time 3+T+L1 34 5 3+r—2u

Remark Corresponding results available for the approximation of

E(¢(X)) by means of multi-level Euler algorithms. For smooth functionals
Y =2,
and for stopped exit times, see Higham et al. (2013),

v = 3.
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Application SDE, Euler, r € N

F P F(s)

smooth functional | 2 + 7°—|2—1 2+2 2+ ,,jrl

stopped exit time 3+T+L1 34 5 3+r—2u

Remark Corresponding results available for the approximation of

E(¢(X)) by means of multi-level Euler algorithms. For smooth functionals
Y =2,
and for stopped exit times, see Higham et al. (2013),

v = 3.

Question Optimality?
24/1



A Numerical Experiment Let 7 = X, where Xy = 1 and

Let S = 0 and S| = 2.
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A Numerical Experiment

Let S = 0and S; = 2. Choose r = 7.

COST

1012;
1011%
1010;
10° »
10° »
10’ »
10° »
10° »

10"
10

Let 7 = X, where Xy = 1 and

T
-] MLMC - Smoothing

@ SL - Smoothing

- - = 0.467 *X_ 2.948*|Ogl.986(xfl) E

0.1539 *x~ 2373%10g2-696 (1| ]

RMSE

107
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A Numerical Experiment

Let S = 0and S; = 2. Choose r = 7.

COST

1012;
1011%
1010;
10° »
10° »
10’ »
10° »
10° »

10"
10

Let 7 = X, where Xy = 1 and

T
-] MLMC - Smoothing

@ SL - Smoothing

- - = 0.467 *X_ 2.948*|Ogl.986(xfl) E

0.1539 *x~ 2373%10g2-696 (1| ]

RMSE

Order of convergence (theoretically, empirically)

single-level:

multi-level;

3.00, 2.94,
2.25, 2.37.

107
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V. Complexity of Infinite-Dimensional Integration

Given
e a Borel probability measure 1 on a separable Banach space X,
e aclass F’ of integrable functions ¢ : X — RR.

Compute

1(90)=/90du, p €L
X
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V. Complexity of Infinite-Dimensional Integration

Given
e a Borel probability measure 1 on a separable Banach space X,
e aclass F’ of integrable functions ¢ : X — RR.

Compute

f(w)szdu, p €L
X

The classical case
e X = R™ and  uniform distribution on |0, 1]™ or standard normal distribution.

In the sequel

e 11 distribution of the solution of an SDE on X = C'([0, T], RY).

26/1



Randomized (Monte Carlo) algorithms

® exact computation with real numbers; cost one per operation

e perfect random number generator for every distribution; cost one per call,

e oracle for (x) for every x € U%NO X with any scale of

finite-dimensional subspaces

XoCX;C...C C([O,T],Rd),

cost dim X, for evaluation of p at z € X, \ X,_1.
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Randomized (Monte Carlo) algorithms

® exact computation with real numbers; cost one per operation

e perfect random number generator for every distribution; cost one per call,

e oracle for (x) for every x € U%NO X with any scale of

finite-dimensional subspaces

XoCX;C...C C([O,T],Rd),

cost dim X, for evaluation of p at z € X, \ X,_1.

Worst case analysis : error and cost of a randomized algorithm M,

complexity of the integration problem

error(M, F') = sup(E’](go) — M(@))}Q)lma

pel

cost(M, F') = sup E(# op’s + # random number calls 4 oracle cost),
pEF

comp(e, F') = inf{cost(M) : error(M) < e}.

27/1



Let F' = Lip(1), i.e.,

f(@)=f)l < 7=yl z,y € C([0,T],R%).
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Let F' = Lip(1),i.e,
f(@)=fy)] < [[2=ylle, z,y € C([0, 7], RY).

Theorem Creutzig, Dereich, Miiller-Gronbach, R (2009)

There exist ¢;, cog > 0, which only depend on the coefficients and the initial

value of the SDE, such that for every € € ]0,1/2|

¢ -e 2 < comp(e,Lip(1)) < cy-e77 - (loge ).
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Let F' = Lip(1),i.e,
f(@)=fy)] < [[2=ylle, z,y € C([0, 7], RY).

Theorem Creutzig, Dereich, Miiller-Gronbach, R (2009)

There exist ¢;, cog > 0, which only depend on the coefficients and the initial

value of the SDE, such that for every € € ]0,1/2|

¢ -e 2 < comp(e,Lip(1)) < cy-e77 - (loge ).

Remark

e The upper bound is achieved by the multi-level Euler algorithm.

e Deterministic algorithms merely yield exp(e~2).
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Let F' = Lip(1),i.e,

f(@)=f)l < 7=yl z,y € C([0,T],R%).

Theorem Creutzig, Dereich, Miiller-Gronbach, R (2009)
There exist ¢;, cog > 0, which only depend on the coefficients and the initial
value of the SDE, such that for every € € ]0,1/2|

¢ -e 2 < comp(e,Lip(1)) < cy-e77 - (loge ).

Remark General result for
e every probability measure 1 on any separable Banach space X and
o = Lip(1).

Upper and lower bounds for comp(e, Lip(1)) in terms of

e quantization numbers and Kolmogorov widths of (.
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