
Multi-level Monte Carlo for
Approximation of Distribution Functions

and an Application to AF 4

Klaus Ritter

Computational Stochastics

TU Kaiserslautern

1/1



I. The Computational Problem

Given a random element X (random vector, stochastic process, . . . ) and a

real-valued functional ϕ, such that ϕ(X) has a Lebesgue density.

Approximate

• the distribution function F or

• the density ρ

of ϕ(X) on a compact interval.
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I. The Computational Problem

Given a random element X (random vector, stochastic process, . . . ) and a

real-valued functional ϕ, such that ϕ(X) has a Lebesgue density.

Approximate

• the distribution function F or

• the density ρ

of ϕ(X) on a compact interval.

Assumption Instead of X , approximations X(0), X(1), . . . can be simulated.

Application

• X is the solution of an SDE (with reflection)

dX(t) = µ(X(t)) dt+ σ(X(t)) dW (t) +
(
dn(t)

)
,

• ϕ is a functional on the corresponding path space, e.g., an exit time.
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I. The Computational Problem

Given a random element X (random vector, stochastic process, . . . ) and a

real-valued functional ϕ, such that ϕ(X) has a Lebesgue density.

Approximate

• the distribution function F or

• the density ρ

of ϕ(X) on a compact interval.

Assumption Instead of X , approximations X(0), X(1), . . . can be simulated.

Goal Monte Carlo (randomized) algorithm M with error

error(M) =
(
E sup

s∈[S0,S1]

|F (s)−M|2
)1/2

bounded by ε and with cost

cost(M) = E(# operations and random number calls)

as small as possible. Likewise for ρ.
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Asymmetric Flow Field Flow Fractionation Separation of nano-particles

of different types.
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We are interested in the stopped exit time ϕ, i.e.,

ϕ(x) = inf{t ≥ 0 : x(t) ∈ D0} ∧ T,

where D ⊂ R
d is a bounded domain and D0 ⊂ ∂D.
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We are interested in the stopped exit time ϕ, i.e.,

ϕ(x) = inf{t ≥ 0 : x(t) ∈ D0} ∧ T,

where D ⊂ R
d is a bounded domain and D0 ⊂ ∂D.

A measurement result (cf. emprical densities of two exit times)
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OUTLINE

II. Single-level MC for Real-valued Functionals

III. Multi-level MC for Real-valued Functionals

IV. Multi-level MC for Distribution Functions and Densities

V. Complexity of Infinite-Dimensional Integration Problems

Joint work with

M. Giles (Oxford), O. Iliev (ITWM), T. Nagapetyan (ITWM),

J. Creutzig (Darmstadt), S. Dereich (Münster), T. Müller-Gronbach (Passau)
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II. Single-level MC for Real-valued Functionals

Compute a = E(ϕ(X)) ∈ R for a real-valued functional ϕ.

Single-level Monte Carlo is defined by

ML
N =

1

N

N∑

i=1

ϕ(X
(L)
i )

with L ∈ N0, N ∈ N, and independent copies X
(L)
1 , . . . , X

(L)
N of X(L).

We have

error2(ML
N) = E(a−ML

N)
2

=
(
a− E(ϕ(X(L)))

)2
+

1

N
Var(ϕ(X(L))),

cost(ML
N) ≤ c ·N · cost(ϕ(X(L))).
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ASSUMPTIONS

Cost for simulating the distribution of ϕ(X(ℓ))

There exists M > 1, c > 0 such that, for ℓ ∈ N0,

cost(ϕ(X(ℓ))) ≤ c ·M ℓ.

Weak error estimate

There exist α > 0, c > 0 such that, for ℓ ∈ N0,

∣
∣a− E(ϕ(X(ℓ)))

∣
∣ ≤ c ·M−ℓ·α.

Bounded variances supℓ∈N0
Var(ϕ(X(ℓ))) < ∞.
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ASSUMPTIONS

Cost for simulating the distribution of ϕ(X(ℓ))

There exists M > 1, c > 0 such that, for ℓ ∈ N0,

cost(ϕ(X(ℓ))) ≤ c ·M ℓ.

Weak error estimate

There exist α > 0, c > 0 such that, for ℓ ∈ N0,

∣
∣a− E(ϕ(X(ℓ)))

∣
∣ ≤ c ·M−ℓ·α.

Bounded variances supℓ∈N0
Var(ϕ(X(ℓ))) < ∞.

Example For the solution X of an SDE, the Euler approximation X(ℓ) with

step-size 2−ℓ, and ϕ : C([0, T ],Rd) → R being Lipschitz continuous

M = 2, α = 1/2− ε.
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Terminology A sequence of Monte Carlo algorithms Mn with

limn→∞ error(Mn) = 0 achieves the order of convergence γ > 0 if

∃ c > 0 ∃ ε > 0 ∀n ∈ N :

cost(Mn) ≤ c ·
(
error(Mn)

)
−(γ+ε)

.
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With suitably chosen parameters, the single-level Monte Carlo algorithms
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Terminology A sequence of Monte Carlo algorithms Mn with

limn→∞ error(Mn) = 0 achieves the order of convergence γ > 0 if

∃ c > 0 ∃ ε > 0 ∀n ∈ N :

cost(Mn) ≤ c ·
(
error(Mn)

)
−(γ+ε)

.

Theorem

With suitably chosen parameters, the single-level Monte Carlo algorithms

ML
N achieve the order of convergence

γ = 2 +
1

α
.

Example For SDEs, the Euler approximation, and Lipschitz continuous

functionals ϕ on the path space

γ = 4.
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III. Multi-level MC for Real-valued Functionals

Compute a = E(ϕ(X)) ∈ R for a real-valued functional ϕ.

Choose L ∈ N0 as previously. Clearly

E(ϕ(X(L))) = E(ϕ(X(0))
︸ ︷︷ ︸

=∆(0)

) +
L∑

ℓ=1

E
(
ϕ(X(ℓ))− ϕ(X(ℓ−1))
︸ ︷︷ ︸

=∆(ℓ)

)
.
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lim
ℓ→∞
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III. Multi-level MC for Real-valued Functionals

Compute a = E(ϕ(X)) ∈ R for a real-valued functional ϕ.

Choose L ∈ N0 as previously. Clearly

E(ϕ(X(L))) = E(ϕ(X(0))
︸ ︷︷ ︸

=∆(0)

) +
L∑

ℓ=1

E
(
ϕ(X(ℓ))− ϕ(X(ℓ−1))
︸ ︷︷ ︸

=∆(ℓ)

)
.

Typically, we have

lim
ℓ→∞

cost∆(ℓ) = ∞ but lim
ℓ→∞

Var∆(ℓ) = 0.

Idea Variance reduction, compared to single-level MC, by approximating

E∆(0), . . . ,E∆(L) separately with independent MC algorithms.
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ASSUMPTIONS

Cost for simulating the joint distribution of ϕ(X(ℓ)) and ϕ(X(ℓ−1))

There exists M > 1, c > 0 such that, for ℓ ∈ N,

cost
(
ϕ(X(ℓ)), ϕ(X(ℓ−1))

)
≤ c ·M ℓ.

Weak error estimate

There exist α > 0, c > 0 such that, for ℓ ∈ N0,

∣
∣a− E(ϕ(X(ℓ)))

∣
∣ ≤ c ·M−ℓ·α.

Strong error estimate

There exist β > 0, c > 0 such that, for ℓ ∈ N0,

E(ϕ(X)− ϕ(X(ℓ)))2 ≤ c ·M−ℓ·β.
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ASSUMPTIONS

Cost for simulating the joint distribution of ϕ(X(ℓ)) and ϕ(X(ℓ−1))

There exists M > 1, c > 0 such that, for ℓ ∈ N,

cost
(
ϕ(X(ℓ)), ϕ(X(ℓ−1))

)
≤ c ·M ℓ.

Weak error estimate

There exist α > 0, c > 0 such that, for ℓ ∈ N0,

∣
∣a− E(ϕ(X(ℓ)))

∣
∣ ≤ c ·M−ℓ·α.

Strong error estimate

There exist β > 0, c > 0 such that, for ℓ ∈ N0,

E(ϕ(X)− ϕ(X(ℓ)))2 ≤ c ·M−ℓ·β.

Example For the solution X of an SDE, the Euler approximation X(ℓ) with

step-size 2−ℓ, and ϕ : C([0, T ],Rd) → R being Lipschitz continuous

M = 2, α = 1/2− ε, β = 1− ε. 11/1



DEFINITION OF THE MULTI-LEVEL ALGORITHM

Consider an

• independent family of random elements (X
(ℓ)
i , Y

(ℓ)
i ) such that

(X
(ℓ)
i , Y

(ℓ)
i )

d
= (X(ℓ), X(ℓ−1)).
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Consider an

• independent family of random elements (X
(ℓ)
i , Y

(ℓ)
i ) such that

(X
(ℓ)
i , Y

(ℓ)
i )

d
= (X(ℓ), X(ℓ−1)).

Example Coupled Euler scheme

W
(
X(2), X(1)

)

t
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0

t
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DEFINITION OF THE MULTI-LEVEL ALGORITHM

Consider an

• independent family of random elements (X
(ℓ)
i , Y

(ℓ)
i ) such that

(X
(ℓ)
i , Y

(ℓ)
i )

d
= (X(ℓ), X(ℓ−1)).

Choose

• minimal and maximal levels L0, L1 ∈ N0 and

• replication numbers Nℓ ∈ N at the levels ℓ = L0, . . . , L1.
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DEFINITION OF THE MULTI-LEVEL ALGORITHM

Consider an

• independent family of random elements (X
(ℓ)
i , Y

(ℓ)
i ) such that

(X
(ℓ)
i , Y

(ℓ)
i )

d
= (X(ℓ), X(ℓ−1)).

Choose

• minimal and maximal levels L0, L1 ∈ N0 and

• replication numbers Nℓ ∈ N at the levels ℓ = L0, . . . , L1.

Put

ML0,L1

NL0
,...,NL1

=
1

NL0

·

NL0∑

i=1

ϕ(X
(L0)
i )

︸ ︷︷ ︸

→E(ϕ(X(L0)))

+

L1∑

ℓ=L0+1

1

Nℓ

·

Nℓ∑

i=1

(

ϕ(X
(ℓ)
i )− ϕ(Y

(ℓ)
i )

)

︸ ︷︷ ︸

→E
(
ϕ(X(ℓ))−ϕ(X(ℓ−1))

)

.
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Theorem Giles (2008)

With suitably chosen parameters, the multi-level Monte Carlo algorithms

ML0,L1

NL0
,...,NL1

achieve the order of convergence

γ = 2 +
(1− β)+

α
.
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Theorem Giles (2008)

With suitably chosen parameters, the multi-level Monte Carlo algorithms

ML0,L1

NL0
,...,NL1

achieve the order of convergence

γ = 2 +
(1− β)+

α
.

Remark Recall that single-level MC achieves

γ = 2 +
1

α
.

Example For SDEs, the Euler approximation, and Lipschitz continuous

functionals ϕ on the path space

γ = 2 vs. γ = 4.
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Multi-level Monte Carlo

• Abstract analysis, integral equations, parametric integration

Heinrich (1998), Heinrich, Sindambiwe (1999), . . . .

• SDEs, two-level construction, density estimation

Kebaier (2005), Kebaier, Kohatsu-Higa (2008)

• S(P)DEs, computational finance, . . .

Giles (2008, . . . ), . . .
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Multi-level Monte Carlo

• Abstract analysis, integral equations, parametric integration

Heinrich (1998), Heinrich, Sindambiwe (1999), . . . .

• SDEs, two-level construction, density estimation

Kebaier (2005), Kebaier, Kohatsu-Higa (2008)

• S(P)DEs, computational finance, . . .

Giles (2008, . . . ), . . .
• Non-standard SDEs, non-standard functionals

Avikainen (2009), Giles, Higham, Mao (2009), Altmayer, Neuenkirch (2013),

Dereich, Neuenkirch, Szpruch (2012), Dereich (2011),

Hutzenthaler, Jentzen (2011,. . . )

• . . .
See http://people.maths.ox.ac.uk/gilesm/mlmc community.html
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IV. Multi-level MC for Distribution Functions

ASSUMPTIONS

Smoothness of the density ρ of ϕ(X)

There exists r ∈ N0 and δ > 0 such that ρ ∈ Cr([S0 − δ, S1 + δ]).
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IV. Multi-level MC for Distribution Functions

ASSUMPTIONS

Smoothness of the density ρ of ϕ(X)

There exists r ∈ N0 and δ > 0 such that ρ ∈ Cr([S0 − δ, S1 + δ]).

For smoothing of 1]−∞,0] we take a suitable function g : R → R, e.g.,

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

Smoothing polynomial

 

 

r=7
r=15
r=30

We approximate 1]−∞,s] by rescaled translates g( · −s
δ
), where δ > 0.
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IV. Multi-level MC for Distribution Functions

ASSUMPTIONS

Smoothness of the density ρ of ϕ(X)

There exists r ∈ N0 and δ > 0 such that ρ ∈ Cr([S0 − δ, S1 + δ]).

For smoothing of 1]−∞,0] we take a suitable function g : R → R, e.g.,

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

Smoothing polynomial

 

 

r=7
r=15
r=30

We approximate 1]−∞,s] by rescaled translates g( · −s
δ
), where δ > 0.

Put

τ = ϕ(X), τ (ℓ) = ϕ(X(ℓ)).
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Cost for simulating the joint distribution of τ (ℓ) and τ (ℓ−1)

There exists M > 1, c > 0 such that, for ℓ ∈ N,

cost(τ (ℓ), τ (ℓ−1)) ≤ c ·M ℓ.
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Cost for simulating the joint distribution of τ (ℓ) and τ (ℓ−1)

There exists M > 1, c > 0 such that, for ℓ ∈ N,

cost(τ (ℓ), τ (ℓ−1)) ≤ c ·M ℓ.

Weak error estimate

There exist α1 ≥ 0, α2 > α3 ≥ 0, c > 0 such that, for ℓ ∈ N0 and δ ∈ ]0, 1],

sup
s∈[S0,S1]

∣
∣E

(
g((τ − s)/δ)− g((τ (ℓ) − s)/δ)

)∣
∣

≤ c ·min
(
δ−α1 ·M−ℓ·α2 ,M−ℓ·α3

)
.
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Cost for simulating the joint distribution of τ (ℓ) and τ (ℓ−1)

There exists M > 1, c > 0 such that, for ℓ ∈ N,

cost(τ (ℓ), τ (ℓ−1)) ≤ c ·M ℓ.

Weak error estimate

There exist α1 ≥ 0, α2 > α3 ≥ 0, c > 0 such that, for ℓ ∈ N0 and δ ∈ ]0, 1],

sup
s∈[S0,S1]

∣
∣E

(
g((τ − s)/δ)− g((τ (ℓ) − s)/δ)

)∣
∣

≤ c ·min
(
δ−α1 ·M−ℓ·α2 ,M−ℓ·α3

)
.

Strong error estimate

There exist β1 ≥ 0, β2 > 0, c > 0 such that, for ℓ ∈ N0 and δ ∈ ]0, 1],

Emin((τ − τ (ℓ))2/δ2, 1) ≤ c · δ−β1 ·M−ℓ·β2 .
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Example 1 (SDE, smooth path-independent functional)

Let τ = ϕ(XT ), where

• X is the solution of a d-dimensional system of SDEs,

• ϕ : Rd → R is Lipschitz continuous.
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Take τ (ℓ) = ϕ(X
(ℓ)
T ), where

• X(ℓ) is the Euler scheme with 2ℓ equidistant time-steps.

Then M = 2
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Example 1 (SDE, smooth path-independent functional)

Let τ = ϕ(XT ), where

• X is the solution of a d-dimensional system of SDEs,

• ϕ : Rd → R is Lipschitz continuous.

Take τ (ℓ) = ϕ(X
(ℓ)
T ), where

• X(ℓ) is the Euler scheme with 2ℓ equidistant time-steps.

Then M = 2 and, due to Bally, Talay (1996),

α1 = 0, α2 = 1, α3 = 0,

Recall

weak error ≤ c ·min

(

δ−α1 ·M−ℓ·α2 ,M−ℓ·α3

)

.
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Example 1 (SDE, smooth path-independent functional)

Let τ = ϕ(XT ), where

• X is the solution of a d-dimensional system of SDEs,

• ϕ : Rd → R is Lipschitz continuous.

Take τ (ℓ) = ϕ(X
(ℓ)
T ), where

• X(ℓ) is the Euler scheme with 2ℓ equidistant time-steps.

Then M = 2 and

α1 = 0, α2 = 1, α3 = 0,

β1 = 2, β2 = 1.

Recall

strong error ≤ c · δ−β1 ·M−ℓ·β2 .
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Example 2 (SDE, smooth path-dependent functional)

Let τ = ϕ(X), where

• X is the solution of a d-dimensional system of SDEs,

• ϕ : C([0, T ],Rd) → R is Lipschitz continuous.

Take τ (ℓ) = ϕ(X(ℓ)), where

• X(ℓ) is the Euler scheme with 2ℓ equidistant time-steps.

Then M = 2 and

α1 = ε, α2 = 1/2− ε, α3 = 1/2− ε,

β1 = 2, β2 = 1− ε.

Cf. Avikainen (2009).
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Example 3 (SDE, stopped exit time)

Let τ = ϕ(X), where

• X is the solution of a d-dimensional system of SDEs,

• ϕ(x) = inf{t ≥ 0 : x(t) ∈ ∂D} ∧ T for a bounded domain D ⊂ R
d.

Take τ (ℓ) = ϕ(X(ℓ)), where

• X(ℓ) is an Euler scheme with 2ℓ equidistant time-steps.

Then M = 2 and

α1 = 1, α2 = 1/2, α3 = 1/4,

β1 = 1, β2 = 1/2.
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Example 3 (SDE, stopped exit time)

Let τ = ϕ(X), where

• X is the solution of a d-dimensional system of SDEs,

• ϕ(x) = inf{t ≥ 0 : x(t) ∈ ∂D} ∧ T for a bounded domain D ⊂ R
d.

Take τ (ℓ) = ϕ(X(ℓ)), where

• X(ℓ) is an Euler scheme with 2ℓ equidistant time-steps.

Then M = 2 and

α1 = 1, α2 = 1/2, α3 = 1/4,

β1 = 1, β2 = 1/2.

According to Bouchard, Geiss, Gobet (2013), for 1 ≤ p < ∞,

(
E|τ − τ (ℓ)|p

)1/p
≤ cp ·M

−ℓ/(2 p).
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DEFINITION OF THE MULTI-LEVEL ALGORITHM

Step 1 Approximation of the distribution function F of τ at discrete points.

Choose

• a number k ∈ N of point,

• a smoothing parameter δ > 0,

• minimal and maximal levels L0, L1 ∈ N, and

• replication numbers Nℓ ∈ N at the levels ℓ = L0, . . . , L1.

Put

si = S0 + i · (S1 − S0)/k, i = 0, . . . , k,

gk,δ(t) =
(
g( t−s1

δ
), . . . , g( t−sk

δ
)
)
, t ∈ R.
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DEFINITION OF THE MULTI-LEVEL ALGORITHM

Step 1 Approximation of the distribution function F of τ at discrete points.

Choose

• a number k ∈ N of point,

• a smoothing parameter δ > 0,

• minimal and maximal levels L0, L1 ∈ N, and

• replication numbers Nℓ ∈ N at the levels ℓ = L0, . . . , L1.

Put

si = S0 + i · (S1 − S0)/k, i = 0, . . . , k,

gk,δ(t) =
(
g( t−s1

δ
), . . . , g( t−sk

δ
)
)
, t ∈ R.

Consider an independent family of random vectors (τ
(ℓ)
i , σ

(ℓ)
i ) such that

(τ
(ℓ)
i , σ

(ℓ)
i )

d
= (τ (ℓ), τ (ℓ−1)).
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For approximation of (F (s1), . . . F (sk)) define the multi-level algorithm

Mk,δ,L0,L1

NL0
,...,NL1

=
1

NL0

·

NL0∑

i=1

gk,δ(τ
(L0)
i )

+

L1∑

ℓ=L0+1

1

Nℓ

·

Nℓ∑

i=1

(

gk,δ(τ
(ℓ)
i )− gk,δ(σ

(ℓ)
i )

)

.
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Step 2 Extension to functions on [S0, S1].

Put ‖f‖∞ = sups∈[S0,S1] |f(s)| and |x|∞ = supi=1,...,k |xi|.

Take linear mappings Qk : R
k → C([S0, S1]) such that ∃ c > 0 ∀ k ∈ N

∀x ∈ R
k : cost(Qk(x)) ≤ c · k,

∀x ∈ R
k : ‖Qk(x)‖∞ ≤ c · |x|∞,

‖F −Qk(F (s1), . . . , F (sk))‖∞ ≤ c · k−(r+1).

E.g., Qk piecewise polynomial interpolation of degree max(r, 1).
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Step 2 Extension to functions on [S0, S1].

Put ‖f‖∞ = sups∈[S0,S1] |f(s)| and |x|∞ = supi=1,...,k |xi|.

Take linear mappings Qk : R
k → C([S0, S1]) such that ∃ c > 0 ∀ k ∈ N

∀x ∈ R
k : cost(Qk(x)) ≤ c · k,

∀x ∈ R
k : ‖Qk(x)‖∞ ≤ c · |x|∞,

‖F −Qk(F (s1), . . . , F (sk))‖∞ ≤ c · k−(r+1).

E.g., Qk piecewise polynomial interpolation of degree max(r, 1).

Steps 1 and 2 yield the multi-level algorithm

Ak,δ,L0,L1

NL0
,...,NL1

= Qk(M
k,δ,L0,L1

NL0
,...,NL1

).
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Put

q = min

(
r + 1 + α1

α2

,
r + 1

α3

)

.

Theorem Giles, Nagapetyan, R (2013)

With suitably chosen parameters, the algorithms Ak,δ,L0,L1

NL0
,...,NL1

achieve

γ = 2 +
ϑ

r + 1

for approximation of F on [S0, S1], where

ϑ =







max(1, q), if q ≤ max(1, β1/β2),

max(1, β1/β2, β1 + (1− β2) · q), otherwise.
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Put

q = min

(
r + 1 + α1

α2

,
r + 1

α3

)

.

Theorem Giles, Nagapetyan, R (2013)

With suitably chosen parameters, the algorithms Ak,δ,L0,L1

NL0
,...,NL1

achieve

γ = 2 +
ϑ

r + 1

for approximation of F on [S0, S1], where

ϑ =







max(1, q), if q ≤ max(1, β1/β2),

max(1, β1/β2, β1 + (1− β2) · q), otherwise.

Remark

• Similar results holds for approximation of F (s) and of ρ on [S0, S1].

• Single-level MC ‘suffices’, i.e., L0 = L1, if q ≤ max(1, β1/β2). 23/1



Application SDE, Euler, r ∈ N

F ρ F (s)

smooth functional 2 + 2
r+1

2 + 4
r

2 + 1
r+1

stopped exit time 3 + 2
r+1

3 + 5
r

3 + 2
r+1
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Application SDE, Euler, r ∈ N

F ρ F (s)

smooth functional 2 + 2
r+1

2 + 4
r

2 + 1
r+1

stopped exit time 3 + 2
r+1

3 + 5
r

3 + 2
r+1

Remark

• Multi-level ’superior’ to single level in all these cases.

• The same orders for path-independent and path-dependent functionals.

• For d = 1, path-independent functionals, and the Milstein scheme

F ρ F (s)

smooth, path-indep. 2 + 1
r+1

2 + 3
r

2
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Application SDE, Euler, r ∈ N

F ρ F (s)

smooth functional 2 + 2
r+1

2 + 4
r

2 + 1
r+1

stopped exit time 3 + 2
r+1

3 + 5
r

3 + 2
r+1

Remark Corresponding results available for the approximation of

E(ϕ(X)) by means of multi-level Euler algorithms. For smooth functionals

γ = 2,

and for stopped exit times, see Higham et al. (2013),

γ = 3.
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Application SDE, Euler, r ∈ N

F ρ F (s)

smooth functional 2 + 2
r+1

2 + 4
r

2 + 1
r+1

stopped exit time 3 + 2
r+1

3 + 5
r

3 + 2
r+1

Remark Corresponding results available for the approximation of

E(ϕ(X)) by means of multi-level Euler algorithms. For smooth functionals

γ = 2,

and for stopped exit times, see Higham et al. (2013),

γ = 3.

Question Optimality?
24/1



A Numerical Experiment Let τ = X1, where X0 = 1 and

dXt = 0.05Xt dt+ 0.2Xt dWt.

Let S0 = 0 and S1 = 2.
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A Numerical Experiment Let τ = X1, where X0 = 1 and

dXt = 0.05Xt dt+ 0.2Xt dWt.

Let S0 = 0 and S1 = 2. Choose r = 7.
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MLMC − Smoothing

0.1539 *x− 2.373*log2.696(x−1)
SL − Smoothing

0.467 *x− 2.948*log1.986(x−1)
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A Numerical Experiment Let τ = X1, where X0 = 1 and

dXt = 0.05Xt dt+ 0.2Xt dWt.

Let S0 = 0 and S1 = 2. Choose r = 7.
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−1

10
4

10
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10
6

10
7

10
8

10
9

10
10

10
11

10
12

RMSE

CO
ST

 

 
MLMC − Smoothing

0.1539 *x− 2.373*log2.696(x−1)
SL − Smoothing

0.467 *x− 2.948*log1.986(x−1)

Order of convergence (theoretically, empirically)

single-level: 3.00, 2.94,

multi-level: 2.25, 2.37. 25/1



V. Complexity of Infinite-Dimensional Integration

Given

• a Borel probability measure µ on a separable Banach space X,

• a class F of integrable functions ϕ : X → R.

Compute

I(ϕ) =

∫

X

ϕdµ, ϕ ∈ F.
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V. Complexity of Infinite-Dimensional Integration

Given

• a Borel probability measure µ on a separable Banach space X,

• a class F of integrable functions ϕ : X → R.

Compute

I(ϕ) =

∫

X

ϕdµ, ϕ ∈ F.

The classical case

• X = R
n and µ uniform distribution on [0, 1]n or standard normal distribution.

In the sequel

• µ distribution of the solution of an SDE on X = C([0, T ],Rd).
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Randomized (Monte Carlo) algorithms

• exact computation with real numbers; cost one per operation

• perfect random number generator for every distribution; cost one per call,

• oracle for ϕ(x) for every x ∈
⋃

ℓ∈N0
Xℓ with any scale of

finite-dimensional subspaces

X0 ⊂ X1 ⊂ . . . ⊂ C([0, T ],Rd);

cost dimXℓ for evaluation of ϕ at x ∈ Xℓ \ Xℓ−1.
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Randomized (Monte Carlo) algorithms

• exact computation with real numbers; cost one per operation

• perfect random number generator for every distribution; cost one per call,

• oracle for ϕ(x) for every x ∈
⋃

ℓ∈N0
Xℓ with any scale of

finite-dimensional subspaces

X0 ⊂ X1 ⊂ . . . ⊂ C([0, T ],Rd);

cost dimXℓ for evaluation of ϕ at x ∈ Xℓ \ Xℓ−1.

Worst case analysis : error and cost of a randomized algorithm M,

complexity of the integration problem

error(M, F ) = sup
ϕ∈F

(

E
∣
∣I(ϕ)−M(ϕ))

∣
∣
2
)1/2

,

cost(M, F ) = sup
ϕ∈F

E
(

# op’s + # random number calls + oracle cost
)
,

comp(ε, F ) = inf{cost(M) : error(M) ≤ ε}.
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Let F = Lip(1), i.e.,

|f(x)−f(y)| ≤ ‖x−y‖∞, x, y ∈ C([0, T ],Rd).
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Let F = Lip(1), i.e.,

|f(x)−f(y)| ≤ ‖x−y‖∞, x, y ∈ C([0, T ],Rd).

Theorem Creutzig, Dereich, Müller-Gronbach, R (2009)

There exist c1, c2 > 0, which only depend on the coefficients and the initial

value of the SDE, such that for every ε ∈ ]0, 1/2[

c1 · ε
−2 ≤ comp(ε,Lip(1)) ≤ c2 · ε

−2 · (log ε−1)2.
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Let F = Lip(1), i.e.,

|f(x)−f(y)| ≤ ‖x−y‖∞, x, y ∈ C([0, T ],Rd).

Theorem Creutzig, Dereich, Müller-Gronbach, R (2009)

There exist c1, c2 > 0, which only depend on the coefficients and the initial

value of the SDE, such that for every ε ∈ ]0, 1/2[

c1 · ε
−2 ≤ comp(ε,Lip(1)) ≤ c2 · ε

−2 · (log ε−1)2.

Remark

• The upper bound is achieved by the multi-level Euler algorithm.

• Deterministic algorithms merely yield exp(ε−2).
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Let F = Lip(1), i.e.,

|f(x)−f(y)| ≤ ‖x−y‖∞, x, y ∈ C([0, T ],Rd).

Theorem Creutzig, Dereich, Müller-Gronbach, R (2009)

There exist c1, c2 > 0, which only depend on the coefficients and the initial

value of the SDE, such that for every ε ∈ ]0, 1/2[

c1 · ε
−2 ≤ comp(ε,Lip(1)) ≤ c2 · ε

−2 · (log ε−1)2.

Remark General result for

• every probability measure µ on any separable Banach space X and

• F = Lip(1).

Upper and lower bounds for comp(ε,Lip(1)) in terms of

• quantization numbers and Kolmogorov widths of µ.
28/1


	I. The Computational Problem
	I. The Computational Problem
	I. The Computational Problem
	I. The Computational Problem

	II. Single-level MC for Real-valued Functionals
	III. Multi-level MC for Real-valued Functionals
	III. Multi-level MC for Real-valued Functionals
	III. Multi-level MC for Real-valued Functionals

	IV. Multi-level MC for Distribution Functions
	IV. Multi-level MC for Distribution Functions
	IV. Multi-level MC for Distribution Functions

	V. Complexity of Infinite-Dimensional Integration
	V. Complexity of Infinite-Dimensional Integration


