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Generalized Gamma Convolutions (GGCs)

We first define the Thorin class of probability distributions on R+.

Originally this class was studied by Thorin(1977, two papers) when he
wanted to prove the infinite divisibility of the Pareto distribution and of
the log-normal distribution.

The Thorin class on R+, denoted by T (R+), is the smallest class of
distributions on R+ that contains all gamma distributions and is closed
under convolution and weak convergence.

In other word, any element of T (R+) is the weak limit of finite
convolutions of gamma distributions.
A probability distribution in T (R+) is called generalized gamma
convolution (GGC).
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This class was extended to Rd by Barndorff-Nielsen-M.-Sato(2006) as
follows:

Call Γx an elementary gamma random variable in Rd if x is a non-random
non-zero vector in Rd and Γ is a gamma random variable on R+.

Then the Thorin class on Rd, denoted by T (Rd), is defined as the smallest
class of distributions on Rd that contains all elementary gamma
distributions on Rd and is closed under convolution and weak convergence.

(The Thorin class on R is already defined by Thorin(1978) as the name of
the extended generalized gamma convolutions (EGGC).)
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GGC is selfdecomposable and hence infinitely divisible

Definition

A probability distribution µ on Rd is infinitely divisible if, for any n ∈ N,
there exists a probability distribution µn on Rd such that µ̂(z) = µ̂n(z)n.
I(Rd) denotes the class of all infinitely divisible distributions on Rd.

µ ∈ I(Rd) is called selfdecomposable if for any b ∈ (0, 1), there exists
some ρb ∈ I(Rd) such that µ̂(z) = µ̂(bz)ρ̂b(z).
(∃Xb s.t. X

d= bX +Xb, X,Xb : indep.)

L(Rd) denotes the class of selfdecomposable distributions.

• Any selfdecomposable distribution can be obtained as the limiting
distribution of suitably normalized partial sums of independent (not
necessarily identically distributed) random variables with infinitesimal
condition.

• L(Rd) is one of important subclasses of infinitely divisible distributions.
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Fact

Any gamma distribution is selfdecomposable.

The support of gamma distribution is [0,∞). So, we can use the Laplace
transform (LT) π(s) =

∫∞
0 e−sxµ(dx), s ≥ 0.

Definition

A nonnegative function g(x) on (0,∞) is completely monotone (c.m.) if it
is of class C∞ and for any n ≥ 1 and x > 0, (−1)ng(n)(x) ≥ 0.

• Examples of c.m. functions are
f(x) = e−x; f(x) = (a+ x)−γ , a ∈ R, γ > 0.

Fact

µ ∈ I(R+) is selfdecomposable (⇔ πµ(s) = πµ(bs)πµb
(s)) iff for any

b ∈ (0, 1), πµb
(s) is c.m.
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The density function of gamma distribution (with two parameters
(r, λ), r > 0, λ > 0) is

f(x) =
λr

Γ(r)
xr−1e−λx.

and its LT is
(

λ
λ+s

)r
.

For b ∈ (0, 1), πµb
(s) can be written as

πµb
(s) =

(
λ+ bs

λ+ s

)r

=
(
b+ (1− b)

λ

λ+ s

)r

,

which is completely monotone.
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It is easily seen that L(R+) is closed under convolution and weak
convergence. Thus, any GGC is also selfdecomposable.

Theorem

I(R+) ⊃ L(R+) ⊃ T (R+)

It will be seen how rich the class T (R) is.
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The infinite divisibility of the log-normal distribution and
the Pareto distribution
The log-normal distribution is the distribution of the random variable eZ

with Z standard normal, and its density function f is

f(x) =
1√
2π

1
x

exp
{
−1

2
(log x)2

}
, x > 0.

The density of the Pareto distribution is

f(x) =
(

1
a+ x

)a

, a > 1.

Theorem

The log-normal distribution is a GGC, and thus is selfdecomposable and
infinitely divisible.

It was very hard to prove the infinite divisibility of the log-normal
distribution and the Pareto distribution before the theory on hyperbolic
complete monotonicity which was developed by Thorin.
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Definition

A nonnegative function ψ(u) on (0,∞) is hyperbolically complete
monotone (h.c.m.) if for every u > 0 the function

v 7→ ψ(uv)ψ
(u
v

)
, v > 0

is c.m. (on (2,∞)) as a function of w := v + 1
v .
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• Examples of h.c.m. functions are
ψ(s) = sα;α ∈ R;
ψ(s) = e−s; ψ(s) = e−1/s;
ψ(s) = exp{−sα}, |α| ≤ 1:
ψ(s) = (1 + s)−γ , γ > 0.
• The set of h.c.m. functions is closed under each of the following
operations:
(i) scale transformation; (ii) point wise multiplication;
(iii) point wise limit; (iv) composition with the function s 7→ sα, |α| ≤ 1.

The density function of gamma distribution (with two parameters
(r, λ), r > 0, λ > 0) is

f(x) =
λr

Γ(r)
xr−1e−λx.

Note that the gamma density is h.c.m.
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Proof of the infinite divisibility of log-normal distribution

The density function of log-normal distribution is

f(x) =
1√
2π

1
x

exp
{
−1

2
(log x)2

}
, x > 0.

Theorem 5.18 of [Steutel and van Harn] says

Theorem

If µ ∈ P(R+) has a h.c.m. density, then µ is a GGC and is hence
selfdecomposable and infinitely divisible.

It is not difficult to see that g(x) := exp
{
−1

2(log x)2
}

is h.c.m.

For the Pareto distribution, see [Steutel and van Harn]. (Note that again
the concept of hyperbolic complete monotonicity has to be used.)
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A characterization of the class T (R+) in terms of LT π(s)
µ ∈ T (R+) has the Laplace transform:

π(s) :=
∫ ∞

0
e−sxµ(dx), s > 0,

= exp
{
−γs−

∫ ∞

0
(1− e−sx)ν(dx)

}
,

where γ ≥ 0 and
∫∞
0 (1 ∧ x)ν(dx) <∞.

Note that

µ ∈ T (R+) ⇔ ν(dx) =
k(x)
x

dx and k(x) is c.m. on (0,∞).

Since the c.m. function is the LT of some σ-finite and positive measure
(let’s say, σ) by Bernstein’s theorem, we have

k(x) =
∫ ∞

0
e−xyσ(dy),

where σ is called the Thorin measure.
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A characterization of the class T (Rd) in terms of
characteristic function µ̂(z)

For any infinitely divisible distribution µ on Rd, we have the following
Lévy-Khintchine representation of the characteristic function µ̂(z), z ∈ Rd,
of µ:

µ̂(z) = exp
{
−1

2〈z,Az〉+ i〈γ, z〉+
∫

Rd

(
ei〈z,x〉 − 1− i〈z, x〉

1 + |x|2

)
ν(dx)

}
,

where A is a symmetric nonnegative-definite d× d matrix, ν is a measure
on Rd (called Lévy measure) satisfying

ν({0}) = 0 and

∫
Rd

(1 ∧ |x|2)ν(dx) <∞,

and γ ∈ Rd.
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• Polar decomposition of Lévy measure ν

ν(B) =
∫

S
λ(dξ)

∫ ∞

0
1B(rξ)νξ(dr), B ∈ B(Rd \ {0}),

where λ is a measure on S = {ξ ∈ Rd : |ξ| = 1},
{νξ : ξ ∈ S} is a family of positive measures on (0,∞),
We call νξ the radial component of ν.

µ ∈ T (Rd) if and only if

νξ(dr) =
kξ(r)
r

dr, r > 0,

and kξ(r) is completely monotone.

Note: µ ∈ L(Rd) if and only if

νξ(dr) =
kξ(r)
r

dr, r > 0,

and kξ(r) is decreasing.
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The Rosenblatt process (Joint work with C.A. Tudor)

Let 0 < D < 1
2 . The Rosenblatt process is defined, for t ≥ 0, as

ZD(t) =C(D)
∫ ′

R2

(∫ t

0
(u− s1)

−(1+D)/2
+ (u− s2)

−(1+D)/2
+ du

)
dB(s1)dB(s2),

where {B(s), s ∈ R} is a standard Brownian motion,
∫ ′

R2 is the integral
over R2 except the hyperplane s1 = s2 and C(D) is a normalizing
constant. The distribution of ZD(1) is called the Rosenblatt distribution.

The Rosenblatt process is H-selfsimilar with H = 1−D and has
stationary increments.
The Rosenblatt process lives in the so-called second Wiener chaos.
Consequently, it is not a Gaussian process.
In the last few years, this stochastic process has been the object of several
papers. (See Pipiras-Taqqu(2010), Tudor(2008), Tudor-Viens(2009),
Veillette-Taqqu(2012) among others.)
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Our first theorem is as follows.

Theorem (1)

For every t1, ..., td ≥ 0,

(ZD(t1), ..., ZD(td))
d=

( ∞∑
n=1

λn(t1)(ε2n − 1), ...,
∞∑

n=1

λn(td)(ε2n − 1)

)
,

where {εn} are i.i.d. N(0, 1) random variables.

The case d = 1 was shown by Taqqu (see Proposition 2 of
Dobrushin-Major(1979)).

The proof is enough to extend the idea of Taqqu from one dimension to
multi-dimension.
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Theorem (2)

For every t1, ..., td ≥ 0, the law of (ZD(t1), ..., ZD(td)) belongs to T (Rd).

Proof. By Theorem (1),

(ZD(t1),..., ZD(td))

d=

( ∞∑
n=1

λn(t1)(ε2n − 1), ...,
∞∑

n=1

λn(td)(ε2n − 1)

)

=
∞∑

n=1

ε2n(λn(t1), ..., λn(td))−

( ∞∑
n=1

λn(t1), ...,
∞∑

n=1

λn(td)

)
,

where ε2n(λn(t1), ..., λn(td)), n = 1, 2, ..., are the elementary gamma
random variables in Rd. Since they are independent, by the properties of
the class T (Rd) that the class is closed under convolution and weak
convergence, we see that

∑∞
n=1 ε

2
n(λn(t1), ..., λn(td)) belongs to T (Rd),

and so does (ZD(t1), ..., ZD(td)). This completes the proof.
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More about second Weiner chaos
Let IB

2 (f) be a double Wiener-Itô integral with respect to standard
Brownian motion B, where f ∈ L2

sym(R2
+).

Proposition

IB
2 (f) d=

∞∑
n=1

λn(f)(ε2n − 1),

where the series converges in L2(Ω) and almost surely.
Also

µ̂IB
2 (f)(z) = exp

{
1
2

∫
R+

(eizx − 1− izx)
1
x

( ∞∑
n=1

e−x/λn

)
dx

}
.

Thus L
(
IB
2 (f))

)
∈ T (R).

(For the proof, see, e.g. I. Nourdin and G. Prccati, Normal approximations
with Malliavin Calculus, 2012.)
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Stochastic integral representations with respect to Lévy
process of the Rosenblatt distribution
The Rosenblatt distribution is represented by double Wiener-Itô integral.
However, the distributions in T (R) have several stochastic integral
representations with respect to Lévy processes.
We regard them as members of the class of selfdecomposable
distributions, which is a larger class than the Thorin class.
This allows us to obtain a new result related to the Rosenblatt distribution.

We know that any selfdecomposable random variable X has the stochastic
integral representation with respect to some Lévy process {Xt} in law.

Namely, X
d=
∫∞
0 e−tdZt. However, for the Rosenblatt distribution, we can

give an explicit form of {Xt}.

Theorem

ZD(1) d=
∫ ∞

0
e−tdXt,

where {Xt} is a Lévy process.
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Other recent examples of GGC.

(1) Bertoin-Fujita-Roynette-Yor(2006)
(Random excursion of Bessel processes)
Let {Rt, t ≥ 0} be a Bessel process with R0 = 0, with dimension
d = 2(1− α). (0 < α < 1, equivalently 0 < d < 2.)
When α = 1

2 , {Rt} is a Brownian motion. Let

g
(α)
t := sup{s ≤ t : Rs = 0},

d
(α)
t := inf{s ≥ t : Rs = 0}

and
∆(α)

t := d
(α)
t − g

(α)
t ,

which is the length of the excursion above 0, straddling t, for the process
{Ru, u ≥ 0}, and let ε be a standard exponential random variable

independent of {Ru, u ≥ 0}. Let ∆α := ∆(α)
ε . Then

L(∆α) ∈ T (R+)(⊂ L(R+)).
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They showed that

E
[
e−s∆α

]
= exp

{
−(1− α)

∫ ∞

0

(
1− e−sx

) E[e−xGα ]
x

dx

}
, s > 0,

with a random variable Gα. (The density function of Gα is explicitly
given.) Since k(x) := E[e−xGα ] is completely monotone by Bernstein’s
theorem, L(∆α) belongs to T (R+).
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(2) Handa(2012)
(Continuous state branching processes with immigration)

CBCI-process with quadruplet (a, b, n, δ) :
Continuous state Branching process with Continuous Immigration
with the generator

Lδf(x) = axf ′′(x)−bxf ′(x)+x
∫ ∞

0
[f(x+y)−f(x)−yf ′(x)]n(dy)+δf ′(x),

where n is a measure on (0,∞) satisfying
∫∞
0 (y ∧ y2)n(dy) <∞.
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Let µ ∈ T (R+). Then

π(s) =
∫ ∞

0
e−sxµ(dx), s > 0,

= exp
{
−γs−

∫ ∞

0
(1− e−sx)ν(dx)

}
= exp

{
−γs−

∫ ∞

0
(1− e−sx)

1
x

(∫ ∞

0
e−xyσ(dy)

)
dx

}
.

Since GGC on R+ is determined by γ and σ, we call it the GGC with pair
(γ, σ).
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Theorem

Let γ ≥ 0 and suppose that σ is a non-zero Thorn measure.

(1) There exist (a, b,M) such that

γ +
∫

1
s+ u

σ(du) =
1

as+ b+
∫

s
s+uM(du)

, s > 0.

(2) Any GGC with pair (γ, σ) is a unique stationary solution of
CBCI-process with quadruplet (a, b, n, 1), where n is a measure on (0,∞)
defined by

n(dy) =
(∫ ∞

0
u2e−yuM(du)

)
dy.
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(3) Takemura-Tomisaki(2012)
(Lévy density of inverse local time of some diffusion
processes)

Example (Also, Shilling-Song-Vondraček(2010),p.201)

Let I = (0,∞) and −1 < ν < 0.

Let G(ν) = 1
2

d2

dx2 + 2ν+1
2x

d
dx .

Assume 0 is reflecting.
D(ν) : the diffusion process on I with the generator G(ν)

n(ν) : the Lévy density of the inverse local time at 0 for D(ν)

=⇒ n(ν)(x) = C 1
xx

−|ν| (GGC)
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Example

Let I = (0,∞) and −1 < ν < 0.

G(ν) = 2x d2

dx2 + (2ν + 2) d
dx

D(ν) : the diffusion process with the generator G(ν)

and the end point 0 being reflecting.
n(ν) : the Lévy density of the inverse local time at 0 for D(ν)

=⇒ n(ν)(x) = C 1
xx

−|ν| (GGC)
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Example

Let −1 < ν < 1 and β > 0. Let

G(ν,β) =
1
2
d2

dx2
+
{

1
2x

+
√

2β
K ′

ν(
√

2βx)
Kν(

√
2βx)

}
d

dx
,

where Kν(x) is the modified Bessel function.
D(ν,β) : the diffusion process on I with the generator G(ν,β)

and the end point 0 being reflecting.
n(ν,β) : the Lévy density of the inverse local time at 0 for D(ν,β)

=⇒ n(ν,β)(x) = C 1
xx

−|ν|e−βx. (GGC)

(When ν = 0, Shilling-Song-Vondraček(2010),p.202.)
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Example (Shilling-Song-Vondraček(2010),p.201)

Let 0 < ν < 1 and β > 0. Let

G(ν,β) =
1
2
d2

dx2
+
{
β − 1
2x

+
√

2β
K ′

ν(
√

2βx)
Kν(

√
2βx)

}
d

dx
,

where Kν(x) is the modified Bessel function.
D(ν,β) : the diffusion process on I with the generator G(ν,β)

and the end point 0 being reflecting.
n(ν,β) : the Lévy density of the inverse local time at 0 for D(ν,β)

=⇒ n(ν,β)(x) = C 1
xx

−νe−βx. (GGC)
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Example

Let −1 < ν < 1 and β > 0. Let

G(ν,β) = 2x
d2

dx2
+ 2

{
1 +

√
2βx

K ′
ν(
√

2βx)
Kν(

√
2βx)

}
d

dx
.

D(ν,β) : the diffusion process with the generator G(ν,β)

and the end point 0 being reflecting.
n(ν,β) : the Lévy density of the inverse local time at 0 for D(ν,β)

=⇒ n(ν,β)(x) = C 1
xx

−|ν|e−βx. (GGC)
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GGC in finance

Lévy process plays an important role in asset modelling, and among others
a typical pure jump Lévy process is a subordination of Brownian motion.

One of them is Variance-gamma process {Yt} by Madan and Seneta
(1990), which is a time-changed Brownian motion B = {B(t)}
subordinated by Gamma process G = {G(t)}; namely

Yt = B(G(t)).

(Note: Gamma process {G(t)} is a Lévy process such that L(G(1)) is a
gamma distribution, and GGC process G̃ = {G̃(t)} is a Lévy process such
that L(G̃(1)) is a GGC.)
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• Variance-gamma process ⇒ Variance-GGC process, where G is replaced
by G̃.

(1) Case that B is a standard Brownian motion is treated by Geman,
Madan and Yor (1999).
(2) Case that B is a Brownian motion with drift is treated recently by
Privault and Yang (2013).

Proposition

Yt is decomposed as Yt = Ut −Wt, where {Ut} and {Wt} are two
independent GGC process, and thus L(Yt) ∈ T (R) (EGGC).
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Thank you very much!
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