Generalized Gamma Convolutions

Makoto Maejima

Keio University, Yokohama, Japan

October 30, 2013 Okinawa

3

Outline

- 1 Generalized Gamma Convolutions (GGCs)
- 2 The infinite divisibility of the log-normal distribution and the Pareto distribution
- (3) A characterization of the class $T(\mathbb{R}_+)$ in terms of Laplace transform
- (4) A characterization of the class $T(\mathbb{R}^d)$ in terms of characteristic function
 - 5 The Rosenblatt process
- 6 More about second Weiner chaos
- Stochastic integral representations with respect to Lévy process of the Rosenblatt distribution
- Other recent examples of GGC distributions
 - GGC in finance

Generalized Gamma Convolutions (GGCs)

We first define the Thorin class of probability distributions on $\mathbb{R}_+.$

Originally this class was studied by Thorin(1977, two papers) when he wanted to prove the infinite divisibility of the Pareto distribution and of the log-normal distribution.

The Thorin class on \mathbb{R}_+ , denoted by $T(\mathbb{R}_+)$, is the smallest class of distributions on \mathbb{R}_+ that contains all gamma distributions and is closed under convolution and weak convergence.

In other word, any element of $T(\mathbb{R}_+)$ is the weak limit of finite convolutions of gamma distributions. A probability distribution in $T(\mathbb{R}_+)$ is called generalized gamma convolution (GGC).

イロト 不得 トイヨト イヨト 二日

This class was extended to \mathbb{R}^d by Barndorff-Nielsen-M.-Sato(2006) as follows:

Call Γx an elementary gamma random variable in \mathbb{R}^d if x is a non-random non-zero vector in \mathbb{R}^d and Γ is a gamma random variable on \mathbb{R}_+ .

Then the Thorin class on \mathbb{R}^d , denoted by $T(\mathbb{R}^d)$, is defined as the smallest class of distributions on \mathbb{R}^d that contains all elementary gamma distributions on \mathbb{R}^d and is closed under convolution and weak convergence.

(The Thorin class on \mathbb{R} is already defined by Thorin(1978) as the name of the extended generalized gamma convolutions (EGGC).)

GGC is selfdecomposable and hence infinitely divisible

Definition

A probability distribution μ on \mathbb{R}^d is *infinitely divisible* if, for any $n \in \mathbb{N}$, there exists a probability distribution μ_n on \mathbb{R}^d such that $\hat{\mu}(z) = \hat{\mu}_n(z)^n$. $I(\mathbb{R}^d)$ denotes the class of all infinitely divisible distributions on \mathbb{R}^d .

 $\mu \in I(\mathbb{R}^d)$ is called *selfdecomposable* if for any $b \in (0, 1)$, there exists some $\rho_b \in I(\mathbb{R}^d)$ such that $\widehat{\mu}(z) = \widehat{\mu}(bz)\widehat{\rho}_b(z)$. ($\exists X_b \text{ s.t. } X \stackrel{d}{=} bX + X_b, \ X, X_b$: indep.)

 $L(\mathbb{R}^d)$ denotes the class of selfdecomposable distributions.

• Any selfdecomposable distribution can be obtained as the limiting distribution of suitably normalized partial sums of independent (not necessarily identically distributed) random variables with infinitesimal condition.

• $L(\mathbb{R}^d)$ is one of important subclasses of infinitely divisible distributions. Maejima (Keio) GGC October 30, 2013 5 / 33

Fact

Any gamma distribution is selfdecomposable.

The support of gamma distribution is $[0,\infty)$. So, we can use the Laplace transform (LT) $\pi(s) = \int_0^\infty e^{-sx} \mu(dx), s \ge 0$.

Definition

A nonnegative function g(x) on $(0,\infty)$ is completely monotone (c.m.) if it is of class C^{∞} and for any $n \ge 1$ and x > 0, $(-1)^n g^{(n)}(x) \ge 0$.

• Examples of c.m. functions are $f(x) = e^{-x}; f(x) = (a + x)^{-\gamma}, a \in \mathbb{R}, \gamma > 0.$

Fact

 $\mu \in I(\mathbb{R}_+)$ is selfdecomposable ($\Leftrightarrow \pi_{\mu}(s) = \pi_{\mu}(bs)\pi_{\mu_b}(s)$) iff for any $b \in (0, 1), \pi_{\mu_b}(s)$ is c.m.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The density function of gamma distribution (with two parameters $(r, \lambda), r > 0, \lambda > 0$) is

$$f(x) = \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x}.$$

and its LT is $\left(\frac{\lambda}{\lambda+s}\right)^r$. For $b\in(0,1)$, $\pi_{\mu_b}(s)$ can be written as

$$\pi_{\mu_b}(s) = \left(\frac{\lambda + bs}{\lambda + s}\right)^r = \left(b + (1 - b)\frac{\lambda}{\lambda + s}\right)^r,$$

which is completely monotone.

(二回) (三) (三) (三)

It is easily seen that $L(\mathbb{R}_+)$ is closed under convolution and weak convergence. Thus, any GGC is also selfdecomposable.

Theorem

$$I(\mathbb{R}_+) \supset L(\mathbb{R}_+) \supset T(\mathbb{R}_+)$$

It will be seen how rich the class $T(\mathbb{R})$ is.

- L. Bondesson, Generalized Gamma Convolutions and Related Classes of Distributions and Densities. Lecture Notes in Statistics 76, Springer, 1992.
- L.F. James, B. Roynette and M. Yor, Generalized gamma convolutions, Dirichlet means, Thorin measures, with explicit examples, *Probability Surveys* 5 (2008), 341-415.
- F.W. Steutel and K. Van Haan, Infinite Divisibility of Probability Distributions on the Real Line, Dekker, 2004, Chapter VI, Section 6.

(日) (周) (三) (三)

The infinite divisibility of the log-normal distribution and the Pareto distribution

The log-normal distribution is the distribution of the random variable e^Z with Z standard normal, and its density function f is

$$f(x) = \frac{1}{\sqrt{2\pi}} \frac{1}{x} \exp\left\{-\frac{1}{2} (\log x)^2\right\}, \ x > 0.$$

The density of the Pareto distribution is

$$f(x) = \left(\frac{1}{a+x}\right)^a, \ a > 1.$$

Theorem

The log-normal distribution is a GGC, and thus is selfdecomposable and infinitely divisible.

Maejima (Keio)

Definition

A nonnegative function $\psi(u)$ on $(0,\infty)$ is hyperbolically complete monotone (h.c.m.) if for every u > 0 the function

$$v \mapsto \psi(uv)\psi\left(\frac{u}{v}\right), \ v > 0$$

is c.m. (on $(2,\infty)$) as a function of $w := v + \frac{1}{v}$.

< 🗇 🕨 < 🖃 🕨

• Examples of h.c.m. functions are

$$\begin{split} \psi(s) &= s^{\alpha}; \alpha \in \mathbb{R}; \\ \psi(s) &= e^{-s}; \ \psi(s) = e^{-1/s}; \\ \psi(s) &= \exp\{-s^{\alpha}\}, |\alpha| \leq 1; \\ \psi(s) &= (1+s)^{-\gamma}, \gamma > 0. \end{split}$$

• The set of h.c.m. functions is closed under each of the following operations:

(i) scale transformation; (ii) point wise multiplication;

(iii) point wise limit; (iv) composition with the function $s \mapsto s^{\alpha}, |\alpha| \leq 1$.

The density function of gamma distribution (with two parameters $(r,\lambda), r>0, \lambda>0)$ is

$$f(x) = \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x}.$$

Note that the gamma density is h.c.m.

Proof of the infinite divisibility of log-normal distribution

The density function of log-normal distribution is

$$f(x) = \frac{1}{\sqrt{2\pi}} \frac{1}{x} \exp\left\{-\frac{1}{2} (\log x)^2\right\}, x > 0.$$

Theorem 5.18 of [Steutel and van Harn] says

Theorem

If $\mu \in \mathcal{P}(\mathbb{R}_+)$ has a h.c.m. density, then μ is a GGC and is hence selfdecomposable and infinitely divisible.

It is not difficult to see that $g(x) := \exp\left\{-\frac{1}{2}(\log x)^2\right\}$ is h.c.m.

For the Pareto distribution, see [Steutel and van Harn]. (Note that again the concept of hyperbolic complete monotonicity has to be used.)

A characterization of the class $T(\mathbb{R}_+)$ in terms of LT $\pi(s)$ $\mu \in T(\mathbb{R}_+)$ has the Laplace transform:

$$\pi(s) := \int_0^\infty e^{-sx} \mu(dx), \quad s > 0,$$
$$= \exp\left\{-\gamma s - \int_0^\infty (1 - e^{-sx})\nu(dx)\right\},$$

where $\gamma \ge 0$ and $\int_0^\infty (1 \wedge x) \nu(dx) < \infty$.

Note that

$$\mu \in T(\mathbb{R}_+) \Leftrightarrow \nu(dx) = \frac{k(x)}{x} dx \text{ and } k(x) \text{ is c.m. on } (0,\infty).$$

Since the c.m. function is the LT of some σ -finite and positive measure (let's say, σ) by Bernstein's theorem, we have

$$k(x) = \int_0^\infty e^{-xy} \sigma(dy),$$

where σ is called the Thorin measure.

Maejima (Keio)

A characterization of the class $T(\mathbb{R}^d)$ in terms of characteristic function $\widehat{\mu}(z)$

For any infinitely divisible distribution μ on \mathbb{R}^d , we have the following Lévy-Khintchine representation of the characteristic function $\hat{\mu}(z), z \in \mathbb{R}^d$, of μ :

$$\widehat{\mu}(z) = \exp\left\{-\frac{1}{2}\langle z, Az \rangle + i\langle \gamma, z \rangle + \int_{\mathbb{R}^d} \left(e^{i\langle z, x \rangle} - 1 - \frac{i\langle z, x \rangle}{1 + |x|^2}\right)\nu(dx)\right\},$$

where A is a symmetric nonnegative-definite $d \times d$ matrix, ν is a measure on \mathbb{R}^d (called Lévy measure) satisfying

$$\nu(\{0\})=0 \quad \text{and} \quad \int_{\mathbb{R}^d} (1\wedge |x|^2)\nu(dx)<\infty,$$

and $\gamma \in \mathbb{R}^d$.

• Polar decomposition of Lévy measure ν

$$\nu(B) = \int_{S} \lambda(d\xi) \int_{0}^{\infty} \mathbb{1}_{B}(r\xi) \nu_{\xi}(dr), \quad B \in \mathcal{B}(\mathbb{R}^{d} \setminus \{0\}),$$

where λ is a measure on $S = \{\xi \in \mathbb{R}^d : |\xi| = 1\}$, $\{\nu_{\xi} : \xi \in S\}$ is a family of positive measures on $(0, \infty)$, We call ν_{ξ} the radial component of ν .

 $\mu \in T(\mathbb{R}^d)$ if and only if

$$\nu_{\xi}(dr) = \frac{k_{\xi}(r)}{r} dr, r > 0,$$

and $k_{\xi}(r)$ is completely monotone.

Note: $\mu \in L(\mathbb{R}^d)$ if and only if

$$\nu_{\xi}(dr) = \frac{k_{\xi}(r)}{r}dr, r > 0,$$

and $k_{\xi}(r)$ is decreasing.

The Rosenblatt process (Joint work with C.A. Tudor) Let $0 < D < \frac{1}{2}$. The Rosenblatt process is defined, for $t \ge 0$, as

$$Z_D(t) = C(D) \int_{\mathbb{R}^2}^{t} \left(\int_0^t (u - s_1)_+^{-(1+D)/2} (u - s_2)_+^{-(1+D)/2} du \right) \\ dB(s_1) dB(s_2),$$

where $\{B(s), s \in \mathbb{R}\}\$ is a standard Brownian motion, $\int_{\mathbb{R}^2}' s$ is the integral over \mathbb{R}^2 except the hyperplane $s_1 = s_2$ and C(D) is a normalizing constant. The distribution of $Z_D(1)$ is called the Rosenblatt distribution.

The Rosenblatt process is $H\mbox{-selfsimilar}$ with H=1-D and has stationary increments.

The Rosenblatt process lives in the so-called second Wiener chaos.

Consequently, it is not a Gaussian process.

In the last few years, this stochastic process has been the object of several papers. (See Pipiras-Taqqu(2010), Tudor(2008), Tudor-Viens(2009), Veillette-Taqqu(2012) among others.)

Our first theorem is as follows.

Theorem (1)

For every $t_1, ..., t_d \ge 0$,

$$(Z_D(t_1), ..., Z_D(t_d)) \stackrel{\mathrm{d}}{=} \left(\sum_{n=1}^{\infty} \lambda_n(t_1)(\varepsilon_n^2 - 1), ..., \sum_{n=1}^{\infty} \lambda_n(t_d)(\varepsilon_n^2 - 1) \right),$$

where $\{\varepsilon_n\}$ are *i.i.d.* N(0,1) random variables.

The case d = 1 was shown by Taqqu (see Proposition 2 of Dobrushin-Major(1979)).

The proof is enough to extend the idea of Taqqu from one dimension to multi-dimension.

イロト イポト イヨト イヨト 二日

Theorem (2)

For every $t_1, ..., t_d \ge 0$, the law of $(Z_D(t_1), ..., Z_D(t_d))$ belongs to $T(\mathbb{R}^d)$.

Proof. By Theorem (1),

$$(Z_D(t_1),...,Z_D(t_d))$$

$$\stackrel{d}{=} \left(\sum_{n=1}^{\infty} \lambda_n(t_1)(\varepsilon_n^2 - 1),...,\sum_{n=1}^{\infty} \lambda_n(t_d)(\varepsilon_n^2 - 1)\right)$$

$$= \sum_{n=1}^{\infty} \varepsilon_n^2(\lambda_n(t_1),...,\lambda_n(t_d)) - \left(\sum_{n=1}^{\infty} \lambda_n(t_1),...,\sum_{n=1}^{\infty} \lambda_n(t_d)\right),$$

where $\varepsilon_n^2(\lambda_n(t_1),...,\lambda_n(t_d)), n = 1, 2, ...,$ are the elementary gamma random variables in \mathbb{R}^d . Since they are independent, by the properties of the class $T(\mathbb{R}^d)$ that the class is closed under convolution and weak convergence, we see that $\sum_{n=1}^{\infty} \varepsilon_n^2(\lambda_n(t_1),...,\lambda_n(t_d))$ belongs to $T(\mathbb{R}^d)$, and so does $(Z_D(t_1),...,Z_D(t_d))$. This completes the proof.

More about second Weiner chaos

Let $I_2^B(f)$ be a double Wiener-Itô integral with respect to standard Brownian motion B, where $f \in L^2_{sym}(\mathbb{R}^2_+)$.

Proposition

$$I_2^B(f) \stackrel{\mathrm{d}}{=} \sum_{n=1}^{\infty} \lambda_n(f)(\varepsilon_n^2 - 1),$$

where the series converges in $L^2(\Omega)$ and almost surely. Also

$$\widehat{\mu}_{I_2^B(f)}(z) = \exp\left\{\frac{1}{2}\int_{\mathbb{R}_+} (e^{izx} - 1 - izx)\frac{1}{x}\left(\sum_{n=1}^{\infty} e^{-x/\lambda_n}\right)dx\right\}.$$

Thus $\mathcal{L}\left(I_2^B(f)\right) \in T(\mathbb{R}).$

(For the proof, see, e.g. I. Nourdin and G. Prccati, Normal approximations with Malliavin Calculus, 2012.)

Stochastic integral representations with respect to Lévy process of the Rosenblatt distribution

The Rosenblatt distribution is represented by double Wiener-Itô integral. However, the distributions in $T(\mathbb{R})$ have several stochastic integral representations with respect to Lévy processes.

We regard them as members of the class of selfdecomposable distributions, which is a larger class than the Thorin class.

This allows us to obtain a new result related to the Rosenblatt distribution.

We know that any selfdecomposable random variable X has the stochastic integral representation with respect to some Lévy process $\{X_t\}$ in law. Namely, $X \stackrel{d}{=} \int_0^\infty e^{-t} dZ_t$. However, for the Rosenblatt distribution, we can give an explicit form of $\{X_t\}$.

Theorem

$$Z_D(1) \stackrel{\mathrm{d}}{=} \int_0^\infty e^{-t} dX_t,$$

where $\{X_t\}$ is a Lévy process.

Other recent examples of GGC.

(1) Bertoin-Fujita-Roynette-Yor(2006) (Random excursion of Bessel processes) Let $\{R_t, t \ge 0\}$ be a Bessel process with $R_0 = 0$, with dimension $d = 2(1 - \alpha)$. ($0 < \alpha < 1$, equivalently 0 < d < 2.) When $\alpha = \frac{1}{2}$, $\{R_t\}$ is a Brownian motion. Let

$$g_t^{(\alpha)} := \sup\{s \le t : R_s = 0\},\$$
$$d_t^{(\alpha)} := \inf\{s \ge t : R_s = 0\}$$

and

$$\Delta_t^{(\alpha)} := d_t^{(\alpha)} - g_t^{(\alpha)},$$

which is the length of the excursion above 0, straddling t, for the process $\{R_u, u \ge 0\}$, and let ε be a standard exponential random variable independent of $\{R_u, u \ge 0\}$. Let $\Delta_{\alpha} := \Delta_{\varepsilon}^{(\alpha)}$. Then

$$\mathcal{L}(\Delta_{\alpha}) \in T(\mathbb{R}_+) (\subset L(\mathbb{R}_+)).$$

They showed that

$$E\left[e^{-s\Delta_{\alpha}}\right] = \exp\left\{-(1-\alpha)\int_{0}^{\infty} \left(1-e^{-sx}\right)\frac{E\left[e^{-xG_{\alpha}}\right]}{x}dx\right\}, \ s > 0,$$

with a random variable G_{α} . (The density function of G_{α} is explicitly given.) Since $k(x) := E[e^{-xG_{\alpha}}]$ is completely monotone by Bernstein's theorem, $\mathcal{L}(\Delta_{\alpha})$ belongs to $T(\mathbb{R}_+)$.

(日) (周) (三) (三)

(2) Handa(2012)(Continuous state branching processes with immigration)

CBCI-process with quadruplet (a, b, n, δ) :

Continuous state Branching process with Continuous Immigration with the generator

$$L_{\delta}f(x) = \frac{a}{x}f''(x) - \frac{b}{x}f'(x) + x\int_{0}^{\infty} [f(x+y) - f(x) - yf'(x)]n(dy) + \frac{\delta}{\delta}f'(x),$$

where *n* is a measure on $(0,\infty)$ satisfying $\int_0^\infty (y \wedge y^2) \mathbf{n}(dy) < \infty$.

Let $\mu \in T(\mathbb{R}_+)$. Then

$$\begin{aligned} \pi(s) &= \int_0^\infty e^{-sx} \mu(dx), \quad s > 0, \\ &= \exp\left\{-\gamma s - \int_0^\infty (1 - e^{-sx})\nu(dx)\right\} \\ &= \exp\left\{-\gamma s - \int_0^\infty (1 - e^{-sx})\frac{1}{x}\left(\int_0^\infty e^{-xy} \sigma(dy)\right)dx\right\}. \end{aligned}$$

Since GGC on \mathbb{R}_+ is determined by γ and σ , we call it the GGC with pair (γ, σ) .

3

(日) (周) (三) (三)

Theorem

Let $\gamma \geq 0$ and suppose that σ is a non-zero Thorn measure.

(1) There exist (a, b, M) such that

$$\gamma + \int \frac{1}{s+u} \sigma(du) = \frac{1}{as+b + \int \frac{s}{s+u} M(du)}, s > 0.$$

(2) Any GGC with pair (γ, σ) is a unique stationary solution of CBCI-process with quadruplet (a, b, n, 1), where n is a measure on $(0, \infty)$ defined by

$$\mathbf{n}(dy) = \left(\int_0^\infty u^2 e^{-yu} \mathbf{M}(du)\right) dy.$$

- 3

(3) Takemura-Tomisaki(2012)(Lévy density of inverse local time of some diffusion processes)

Example (Also, Shilling-Song-Vondraček(2010),p.201)

Let
$$I = (0, \infty)$$
 and $-1 < \nu < 0$.
Let $\mathcal{G}^{(\nu)} = \frac{1}{2} \frac{d^2}{dx^2} + \frac{2\nu+1}{2x} \frac{d}{dx}$.
Assume 0 is reflecting.
 $\mathbb{D}^{(\nu)}$: the diffusion process on I with the generator $\mathcal{G}^{(\nu)}$
 $n^{(\nu)}$: the Lévy density of the inverse local time at 0 for $\mathbb{D}^{(\nu)}$

$$\implies \qquad n^{(\nu)}(x) = C\frac{1}{x}x^{-|\nu|} \quad (\text{GGC})$$

Example

Let
$$I = (0, \infty)$$
 and $-1 < \nu < 0$.
 $\mathcal{G}^{(\nu)} = 2x \frac{d^2}{dx^2} + (2\nu + 2) \frac{d}{dx}$
 $\mathbb{D}^{(\nu)}$: the diffusion process with the generator $\mathcal{G}^{(\nu)}$
and the end point 0 being reflecting.
 $n^{(\nu)}$: the Lévy density of the inverse local time at 0 for $\mathbb{D}^{(\nu)}$

$$\implies \qquad n^{(\nu)}(x) = C\frac{1}{x}x^{-|\nu|} \quad (\text{GGC})$$

・ロト・(局)・(目)・(目)・(日)・(の)

Example

Let $-1 < \nu < 1$ and $\beta > 0$. Let

$$\mathcal{G}^{(\nu,\beta)} = \frac{1}{2} \frac{d^2}{dx^2} + \left\{ \frac{1}{2x} + \sqrt{2\beta} \frac{K'_{\nu}(\sqrt{2\beta}x)}{K_{\nu}(\sqrt{2\beta}x)} \right\} \frac{d}{dx},$$

where $K_{\nu}(x)$ is the modified Bessel function. $\mathbb{D}^{(\nu,\beta)}$: the diffusion process on I with the generator $\mathcal{G}^{(\nu,\beta)}$ and the end point 0 being reflecting.

 $n^{(
u,eta)}$: the Lévy density of the inverse local time at 0 for $\mathbb{D}^{(
u,eta)}$

$$\implies \qquad n^{(\nu,\beta)}(x) = C\frac{1}{x}x^{-|\nu|}e^{-\beta x}. \quad (\text{GGC})$$

(When $\nu = 0$, Shilling-Song-Vondraček(2010),p.202.)

Example (Shilling-Song-Vondraček(2010),p.201)

Let $0 < \nu < 1$ and $\beta > 0$. Let

$$\mathcal{G}^{(\nu,\beta)} = \frac{1}{2} \frac{d^2}{dx^2} + \left\{ \frac{\beta - 1}{2x} + \sqrt{2\beta} \frac{K'_{\nu}(\sqrt{2\beta}x)}{K_{\nu}(\sqrt{2\beta}x)} \right\} \frac{d}{dx},$$

where $K_{\nu}(x)$ is the modified Bessel function. $\mathbb{D}^{(\nu,\beta)}$: the diffusion process on I with the generator $\mathcal{G}^{(\nu,\beta)}$ and the end point 0 being reflecting. $r_{\nu}^{(\nu,\beta)}$: the Lévy density of the inverse level time at 0 for $\mathbb{D}^{(\nu,\beta)}$

 $n^{(\nu,\beta)}$: the Lévy density of the inverse local time at 0 for $\mathbb{D}^{(\nu,\beta)}$

$$\implies \qquad n^{(\nu,\beta)}(x) = C\frac{1}{x}x^{-\nu}e^{-\beta x}. \quad (\text{GGC})$$

化橡胶 化医胶 化医胶 一座

Example

Let $-1 < \nu < 1$ and $\beta > 0$. Let

$$\mathcal{G}^{(\nu,\beta)} = 2x\frac{d^2}{dx^2} + 2\left\{1 + \sqrt{2\beta x}\frac{K'_{\nu}(\sqrt{2\beta x})}{K_{\nu}(\sqrt{2\beta x})}\right\}\frac{d}{dx}$$

 $\mathbb{D}^{(\nu,\beta)}$: the diffusion process with the generator $\mathcal{G}^{(\nu,\beta)}$ and the end point 0 being reflecting.

 $n^{(\nu,\beta)}$: the Lévy density of the inverse local time at 0 for $\mathbb{D}^{(\nu,\beta)}$

$$\implies \qquad n^{(\nu,\beta)}(x) = C\frac{1}{x}x^{-|\nu|}e^{-\beta x}. \quad (GGC)$$

- 3

- 4 週 ト - 4 三 ト - 4 三 ト

GGC in finance

Lévy process plays an important role in asset modelling, and among others a typical pure jump Lévy process is a subordination of Brownian motion.

One of them is Variance-gamma process $\{Y_t\}$ by Madan and Seneta (1990), which is a time-changed Brownian motion $B = \{B(t)\}$ subordinated by Gamma process $G = \{G(t)\}$; namely

 $Y_t = B(G(t)).$

(*Note*: Gamma process $\{G(t)\}$ is a Lévy process such that $\mathcal{L}(G(1))$ is a gamma distribution, and GGC process $\widetilde{G} = \{\widetilde{G}(t)\}$ is a Lévy process such that $\mathcal{L}(\widetilde{G}(1))$ is a GGC.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• Variance-gamma process \Rightarrow Variance-GGC process, where G is replaced by $\widetilde{G}.$

(1) Case that B is a standard Brownian motion is treated by Geman, Madan and Yor (1999).

(2) Case that B is a Brownian motion with drift is treated recently by Privault and Yang (2013).

Proposition

 Y_t is decomposed as $Y_t = U_t - W_t$, where $\{U_t\}$ and $\{W_t\}$ are two independent GGC process, and thus $\mathcal{L}(Y_t) \in T(\mathbb{R})$ (EGGC).

イロト 不得下 イヨト イヨト 二日

Thank you very much!

3

• • • •