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1 Introduction
1.1 Motivation and Problem

We consider a numerical characteristic of

random numbers. Especially,

“ Extremely large random numbers
or small random numbers”.



Classification of normal random numbers

by the first figure

[0, 1) : 0.59922, 0.39319, 0.11950, 0.01336

[1, 2) : 1.04194, 1.43943, 1.38955, 1.66662

[2, 3) : 2.19377, 2.40794, 2.14139, 2.32582

[3, 4) : 3.06956, 3.86446, 3.20402, 3.04337,

3.07787, 3.16713, 3.45392, 3.04813



1.2 Mathematical setting

【Transformation on [1,∞) to [0, 1)】
We consider a transformation from a large

number to a number in [0, 1), which moves the

decimal point and excludes the first figure.

d1d2d3 . . . dn . dn+1 . . . in [10n−1, 10n)

→ 0.d2d3 . . . in [0, 1),

where n is a natural number.

We call dm the mth figure.



Let F be a distribution on real line with infinite

end point : sup{x : F (x) < 1} = ∞
and X be a random variable with distribution F .

If X = d1d2d3 . . . dn.dn+1 . . . on [1,∞), then

Y = 0.d2d3 . . . dndn+1 . . . is a random variable

on [0, 1).

We consider the distribution of Y for large X,

which implies the behavior of the large random

number except the first figure.



Define N and K as

N : the number of figures before the decimal

point of X : 10N−1 ≤ X < 10N ,

K : the first figure of X :

K10N−1 ≤ X < (K + 1)10N−1

Then previous transformation is written as

Y = X/10N−1 −K.



Let us consider the conditional distribution.

F k,n(y) = P (Y ≤ y|K = k,N = n),

for k = 1, 2, . . . , 9.

Our main interest is in the behavior of F k,n for

each k as n → ∞.



1.3 Classification of distributions

Denote the tail of a distribution F by

F̄ (x) = 1− F (x).

F is said to have regularly varying tail with

index α > 0 if

lim
x→∞

F̄ (λx)/F̄ (x) = λ−α for each λ > 0.

For example, the Cauchy, the Pareto, the F and

the Ziph distributions have regularly varying tail.



【Regularly varying function】

A positive measurable function f(x) is said to

be regularly varying with exponent (index)

ρ (∈ R) (f ∈ RVρ) if for each λ > 0

lim
x→∞

f(λx)/f(x) = λρ.

In the case of ρ = 0, it is called slowly varying.

f(x) ∈ RVρ is written as f(x) = xρl(x) with a

slowly varying l(x). e.g. f(x) = x2 log x



【Rapidly varying function】

f(x) is said to be a rapidly varying with

exponent ∞ (f ∈ RV∞) if for each λ > 1

lim
x→∞

f(λx)/f(x) = ∞.

For example, f(x) = expx is rapidly varying.

In the same way, f ∈ RV−∞ if for each λ > 1

limx→∞ f(λx)/f(x) = 0.



Rapidly varying tail distributions are various.

· Very rapid tail decay : the normal distribution

and the Rayleigh distribution.

· Middle tail decay: the exponential type, i.e.

the exponential distribution, the Gamma

distribution, the Chi-square distribution, the

generalized inverse Gaussian distribution.

· Little bit heavy tail : the log-normal

distribution.



【Π-varying function】
A positive measurable function f(x) on (0,∞)

is Π-varying if there exists a positive function

a(x) on (0,∞) such that for λ > 0,

lim
x→∞

f(λx)− f(x)

a(x)
= log λ.

We write f ∈ Π or f ∈ Π(a). a(x) is called an

auxiliary function of f(x).



For example,

f(x) = log x is Π-varying with a(x) = 1.

f(x) = log x+ 2−1 sin(log x) is NOT Π-varying.

Roughly speaking, a Π-varying function is

nondecreasing slowly varying with good (local)

property.

Distribution with 1/Π-varying tail is so to speak

”super heavy” and not so familiar.

The log Cauchy distribution is the case.



Thus we have three kind of tail behaviors :

· F̄ (x) ∈ RV−α(α > 0),

· F̄ (x) ∈ RV−∞,

· 1/F̄ (x) ∈ Π (⊂ RV0).

These classes cover most well-known

distributions with infinite endpoint.

Distributions with finite endpoint are classified

in the same way.



Let F be a distribution on (−∞, 0) with the

endpoint 0 : sup{x : F (x) < 1} = 0.

We say that F has regularly varying tail at 0 if

F̄ (−1/x) ∈ RVα(α < 0).

Rapidly varying and 1/Π varying tail at 0 are

defined in a similar way.

The definition for a general finite endpoint is

also done.



【Examples】

(i) Regularly varying tail at their finite endpoint:

The Beta distribution and the Pareto

distribution.

(ii) Rapidly varying tail at their finite endpoint :

The exponential distribution and the

log-normal distribution.



2 Main result
2.1 Large random numbers

Remember

F k,n(y) = P (Y ≤ y|K = k,N = n),

for k = 1, 2, . . . , 9.

Our main interest is in the behavior of F k,n for

each k as n → ∞.



F k,n(y) = P (Y ≤ y|K = k,N = n)

=
P (k10n−1 ≤ X ≤ (k + y)10n−1)

P (k10n−1 ≤ X < (k + 1)10n−1)

=
F̄ (k10n−1)− F̄ ((k + y)10n−1)

F̄ (k10n−1)− F̄ ((k + 1)10n−1)

=
1− F̄ ((k + y)10n−1)/F̄ (k10n−1)

1− F̄ ((k + 1)10n−1)/F̄ (k10n−1)
.



The third equality holds for continuous F , but it

is not essential.

F k,n(y) =
1− F̄ ((k + y)10n−1)/F̄ (k10n−1)

1− F̄ ((k + 1)10n−1)/F̄ (k10n−1)
.

If F̄ (x) ∈ RV−∞, for x > 0

lim
n→∞

F̄ ((k + y)10n−1)/F̄ (k10n−1) = 0.



If F̄ (x) ∈ RV−α(α > 0),

lim
n→∞

F̄ ((k+y)10n−1)/F̄ (k10n−1) = (1+y/k)−α.

If 1/F̄ (x) ∈ Π,

F̄ (k10n−1) − F̄ ((k + y)10n−1)

∼ log(1 +
y

k
)a(k10n−1).



Theorem 1

(i) If F̄ (x) ∈ RV−∞, for every k,

lim
n→∞

F k,n(y) = 1{y≥0},

where 1A denotes the indicator function of a

set A.

Namely, F k,n converges to δ0（a distribution

concentrates at {0} as n → ∞.



(ii) If F̄ (x) ∈ RV−α(α > 0), for 0 ≤ y ≤ 1,

lim
n→∞

F k,n(y) =
1− (1 + y

k )
−α

1− (1 + 1
k )

−α
.

(iii) If 1/F̄ (x) ∈ Π, for 0 ≤ x ≤ 1,

lim
n→∞

F k,n(y) =
log(1 + y

k )

log(1 + 1
k )

.



Let

Gk
α(y) =

1− (1 + y
k )

−α

1− (1 + 1
k )

−α
,

Gk
0(y) =

log(1 + y
k )

log(1 + 1
k )

.

(i) and (iii) are regarded as the limit of (ii) :

Gk
α(y) converges to δ0 and Gk

0 as α → ∞
α → 0, respectively.



We add some secondary results.

First, the tail condition in the case (iii) is

1/Π-varying, not general slowly varying.

The following shows that this restriction is

significant.



Theorem 2 For any distribution F with slowly

varying tail and any distribution G on [0, 1),

there exists a distribution FG such that

lim
x→∞

F̄G(x)/F̄ (x) = 1 and F k,n
G = G.



Proof.

Let X1 = K10N−1 and X2 = X −X1.

Since X1 ≤ X < 2X1, we have

P (X > x) ∼ P (X1 > x).

For Z ∼ G, set Y = X1 + 10N−1Z.

P (X > x) ∼ P (X1 > x) ∼ P (Y > x).



The rate of converge to δ0 in (i) is as follows.

Theorem 3 F̄ (x) ∈ RV−∞ Moreover, assume

that F is absolutely continuous and its hazard

function h(t) belongs to RVρ(ρ ≥ −1).

For 0 ≤ y < 1,

lim
n→∞

1

10n−1h(10n−1)
logF k,n(y) = −c(ρ, k, y),



where

c(ρ, k, y)

=

{
(ρ+ 1)−1{(k + y)ρ+1 − kρ+1} ρ > −1

log(1 + y
k ) ρ = −1

c(ρ, k, y) expresses the rate of convergence to

δ0.



【Property of c(ρ, k, y) as a function of k】

(i) If −1 ≤ ρ < 0, c(ρ, k, y) is a decreasing

function of k.

(ii) c(0, k, y) = (ρ+ 1)−1y does not depend on k

Especially, F k,n does not depend on k if F is

an exponential distribution.

(iii) If ρ > 0, c(ρ, k, y) is an increasing function of

k.



2.2 Small random numbers

From now, we deal with distributions with finite

endpoint. We assume F has finite end point :

xF = sup{x : F (x) < 1} < ∞.

Let X be a random variable with distribution F

and consider the length until the endpoint :

xF −X.



Let xF = 0 for simplicity and transform from

(−∞, 0) to [0, 1):

X = −0.0 · · · 0d1d2d3 . . . ∈ [−∞, 0), d1 ̸= 0

→ Y = 0.d2d3 . . . ∈ [0, 1).



Define a normalized random variable Y as

Y = −10NX −K,

where K is the first non-zero figure of X and N

is the number of zeros before K :

−10−N+1 < X ≤ −10−N

−10NX − 1 < K ≤ −10NX.

Y expresses the behavior of X except the first

non-zero figure.



The following conditional distribution is

considered.

F k,n(y) = P (Y ≤ y|K = k,N = n),

for k = 1, 2, . . . , 9.

As the large case, the behavior of F k,n as

n → ∞ for each k is investigated and similar

results are given.



Theorem 4

(i) If F̄ (−1/x) ∈ RV−∞, then for every

k = 1, 2, . . . , 9,

lim
n→∞

F k,n(y) = 1{y≥1},

where 1A is the indicate function of a set A.



(ii) If F̄ (−1/x) ∈ RVα(α < 0), then for

0 ≤ y ≤ 1,

lim
n→∞

F k,n(y) =
(1 + y

k )
−α − 1

(1 + 1
k )

−α − 1
.

(iii) If 1/F̄ (−1/x) ∈ Π, then for 0 ≤ y ≤ 1,

lim
n→∞

F k,n(y) =
log(1 + y

k )

log(1 + 1
k )

.



These limit distributions for small random

numbers have the same form as ones for large

case.

But the parameter range is different. While the

large case is in α ≥ 0, the small case moves in

α(≤ 0).

Thus we get two parameter distribution class :

Gk
α(α ∈ (−∞,∞), k = 1, 2, . . . , 9.),



Theorem 5 For arbitrary distribution F with

slowly varying tail at 0 and arbitrary distribution

G on [0, 1), there exists a distribution FG such

that

lim
x↑0

F̄G(x)/F̄ (x) = 1 and F k,n
G = G.



Theorem 6 Assume that F̄ (−1/x) ∈ RV−∞
is absolutely continuous and its hazard function

satisfies h(−1/t) ∈ Rρ(ρ ≥ 1). For 0 < y ≤ 1,

lim
n→∞

10n

h(−10−n)
logF k,n(y) = −c̃(ρ, k, y),



where

c̃(ρ, k, y)

=

{
(ρ− 1)−1{(k + y)1−ρ − (k + 1)1−ρ} ρ > 1
log( k+1

k+y ) ρ = 1

In this case, c̃(ρ, k, y) is decreasing on k.



3 Property of limit distributions

3.1 Property variety of α and k

Gk
α (k = 1, 2, . . . , 9, α ∈ (−∞,∞)).

Gk
α(x) =

1− (1 + x
k )

−α

1− (1 + 1
k )

−α
　(α ̸= 0),

Gk
0(x) =

log(1 + x
k )

log(1 + 1
k )

(α = 0).

Note α ≥ 0 : large case. α ≤ 0 : small case.



For each k, Gk
α moves between δ1 and δ0.

Proposition 1

(i) Gk
α converges to δ0 ad α → ∞.

(ii) Gk
α converges to δ1 as α → −∞.

(iii) Gk
−1 is the uniform distribution on [0, 1].



The density functions of Gk
α(α ≥ 0) denoted by

pkα(y) are given as

pkα(y) =
αk−1(1 + y

k )
−α−1

1− (1 + 1
k )

−α
,

pk0(y) =
1

log(1 + 1
k )

1

k + y

for 0 ≤ y ≤ 1.



Proposition 2

(i) For each k, pkα(y) is a decreasing (resp.

constant, increasing) function of y and

α > −1 (resp. α = −1, α < −1).

(ii) pkα(0) is an increasing function of α for each

k. While pkα(1) is decreasing function of α for

each k.



(iii) pkα(0) is a decreasing (resp. constant,

increasing) function of k for

α > −1 (resp. α = −1, α < −1).

pkα(1) is an increasing (resp. constant,

decreasing) function of k for

α > −1 (resp. α = −1, α < −1).

The probability density tends to be flat as k

increases.



The distribution function Gk
α has the following

monotonicity.

Proposition 3

(i) Gk
α(y) is an increasing function of α for each

k and y.

(ii) Gk
α(y) is is a decreasing (resp. constant,

increasing) function of k for

α > −1 (resp. α = −1, α < −1).



Mk
α denotes the mean of Gk

α.

Corollary 1

(i) Mk
α is a decreasing function of α for each k.

(ii) Mk
α is an increasing (resp. constant,

decreasing) function of k for

α > −1 (resp. α = −1, α < −1).



3.2 The limit distribution of m th figure

Hk
m : the distribution of the (m− 1)th figure

after the decimal point of Gk
α (m = 2, 3, . . .).

Hk
m is a distribution on {0, 1, · · · , 9}

Originally, Hk
m implies the distribution of mth

figure of a original random number.

X = d1d2d3 . . . dm . . .

with d1 = k.



Although Hk
m(j) is decreasing for j from

Proposition 2, this property disappears as m

goes to ∞.

Proposition 4 For each k, Hk
m converges to the

uniform distribution on {0, 1, . . . , 9} as m → ∞.

This suggest the distribution of the second

figure expresses the original distribution.



【Distribution of the second figure α = 1】

k = 1 : H1
2 (0) = 2/11 H1

2 (9) = 1/19

k = 9 : H9
2 (0) = 10/91 H9

2 (9) = 1/11

H1
2 (0)/H

1
2 (9) = 38/11 = 3.45 . . .

H9
2 (0)/H

9
2 (9) = 110/91 = 1.20 . . .

The ratio is 2.857 . . ..



【Distribution of the second figure α = 0】

k = 1 : H1
2 (0) = log(11/10)/ log 2

H1
2 (9) = log(20/19)/ log 2

k = 9 : H9
2 (0) = log(91/90)/ log(10/9)

H9
2 (9) = log(100/99)/ log(10/9)

H1
2 (0)/H

1
2 (9) = 1.85 . . .

H9
2 (0)/H

9
2 (9) = 1.10 . . .

The ratio is 1.69 . . ..



4 Summary

· Random numbers have a numerical

characteristic. Especially, it is remarkable in

extreme values.

· An extreme value (conditioned by the first

figure) converges to a limit distribution depends

on each tail behavior.

· The limit distribution depends on the tail

behavior and the first figure.
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Thank you for your attention!


