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Stable distributions

Real stable distributions were introduced by P. Lévy in the thirties under the

denomination ”exceptional laws”, in the context of central limit theorems without

finite variance. Since then they have appeared in uncountably many papers. We

focus here on the analytical properties of these laws, in the spirit of the books by

Gnedenko and Kolmogorov (1949), and Zolotarev (1983).
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Stable distributions

Real stable distributions were introduced by P. Lévy in the thirties under the

denomination ”exceptional laws”, in the context of central limit theorems without

finite variance. Since then they have appeared in uncountably many papers. We

focus here on the analytical properties of these laws, in the spirit of the books by

Gnedenko and Kolmogorov (1949), and Zolotarev (1983).

We will exclude the explicit normal case in the sequel. Stable distributions that are

non-normal are often called stable Paretian distributions in the economic literature,

because of their power law behaviour.

It is known that stable distributions have smooth densities which solve differential

or integro-differential equations. Besides, there exist series representations.

Zolotarev said in 1995 that these densities should be included in the family of

special functions. The difficulty in analyzing stable densities comes from the

absence of explicit formulæ, except in two particular cases (Lévy and Cauchy).
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ρ = P[X > 0] is the positivity parameter.
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where α ∈ (0, 2) is the self-similarity parameter, c > 0 is a scaling parameter and

ρ = P[X > 0] is the positivity parameter. It can be shown that ρ ∈ [1− 1/α, 1/α]

if α ∈ (1, 2) and ρ ∈ [0, 1] if α ∈ (0, 1]. In the following we will take c = 1 and set

X(α, ρ) for the above random variable. One can also write

log[E[eiλX(α,ρ)]] = κα,ρ |λ|α(1− iθ tan(πα/2) sgn(λ)), λ ∈ R,

with ρ = 1/2 + (1/πα) tan−1(θ tan(πα/2)) and κα,ρ = cos(πα(ρ− 1/2)).
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Strictly stable distributions are such that the underlying Lévy process is self-similar.

If X is strictly stable and non-normal, then one has

log[E[eiλX ]] = −c(iλ)αe−iπαρ sgn(λ), λ ∈ R,

where α ∈ (0, 2) is the self-similarity parameter, c > 0 is a scaling parameter and

ρ = P[X > 0] is the positivity parameter. It can be shown that ρ ∈ [1− 1/α, 1/α]

if α ∈ (1, 2) and ρ ∈ [0, 1] if α ∈ (0, 1]. In the following we will take c = 1 and set

X(α, ρ) for the above random variable. One can also write

log[E[eiλX(α,ρ)]] = κα,ρ |λ|α(1− iθ tan(πα/2) sgn(λ)), λ ∈ R,

with ρ = 1/2 + (1/πα) tan−1(θ tan(πα/2)) and κα,ρ = cos(πα(ρ− 1/2)).

Non-strictly stable laws are obtained from strict ones in adding a drift for α 6= 1. If

α = 1 (the exotic class of skewed Cauchy distributions) they can be recovered by a

limit in law. Recall that drifted Cauchy distributions are strictly stable.
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The positive one-sided branch of X(α, ρ) is the conditioned random variable

X+(α, ρ) = X(α, ρ) | X(α, ρ) ≥ 0.

Since X(α, ρ)
d
= −X(α, 1− ρ), the density of X(α, ρ) can be plotted in pasting

together those of X+(α, ρ) and of X+(α, 1− ρ). This explains the interest in the

variable X+(α, ρ), which is the matter of Chapter 3 in Zolotarev (1983). In the

positive case {α ≤ 1, ρ = 1}, we set Zα = X(α, 1) = X+(α, 1).
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X+(α, ρ) = X(α, ρ) | X(α, ρ) ≥ 0.

Since X(α, ρ)
d
= −X(α, 1− ρ), the density of X(α, ρ) can be plotted in pasting

together those of X+(α, ρ) and of X+(α, 1− ρ). This explains the interest in the

variable X+(α, ρ), which is the matter of Chapter 3 in Zolotarev (1983). In the

positive case {α ≤ 1, ρ = 1}, we set Zα = X(α, 1) = X+(α, 1).

Theorem (Zolotarev) One has

X+(α, ρ)
d
=

(
Zαρ
Zρ

)ρ
.

This result is actually equivalent to Zolotarev’s duality, although this is not

apparent from his book. In a sense, this reduces the analysis of the density of

X(α, ρ) to a better understanding of the positive case.
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Positive stable densities

With our normalization, the density fα of the positive stable random variable Zα is

such that

E[e−λZα ] =

∫ ∞
0

fα(x)e−λx dx = e−λ
α

∀λ ≥ 0.
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such that

E[e−λZα ] =

∫ ∞
0

fα(x)e−λx dx = e−λ
α

∀λ ≥ 0.

One has the explicit formulæ

• f1/2(x) = 1

2
√
πx3

e−1/4x

• f1/3(x) = 1
3πx3/2K1/3(2/3

√
3x) where K1/3 is a MacDonald function.

• f2/3(x) =
√

3
πxe
−2/27x2

W1/2,1/6(4/27x2) where W1/2,1/6 is a Whittaker

function.
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e−1/4x

• f1/3(x) = 1
3πx3/2K1/3(2/3

√
3x) where K1/3 is a MacDonald function.

• f2/3(x) =
√

3
πxe
−2/27x2

W1/2,1/6(4/27x2) where W1/2,1/6 is a Whittaker

function.

For α = p/q rational, one can express fα with the help of the solution on R+ to a

certain ODE of order q − 1, as explained in Zolotarev (1983). Those analytical

expressions become however untractable for q ≥ 4.
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The Kanter factorization

Kanter (1975) observed the following identity in law, as a consequence of a Laplace

inversion of e−λ
α

due to Chernin & Ibragimov (1959).

Zα
d
= L−(1−α)/α × b−1/αα (U)

where L ∼ Exp(1), U ∼ Unif(0, π) independent of L, and

bα(u) = (sinu/ sin(αu))α(sinu/ sin((1− α)u))1−α, u ∈ (0, π).
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α

has an unbounded support not containing zero and a decreasing density.
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Kanter (1975) observed the following identity in law, as a consequence of a Laplace

inversion of e−λ
α

due to Chernin & Ibragimov (1959).

Zα
d
= L−(1−α)/α × b−1/αα (U)

where L ∼ Exp(1), U ∼ Unif(0, π) independent of L, and

bα(u) = (sinu/ sin(αu))α(sinu/ sin((1− α)u))1−α, u ∈ (0, π).

We set Kα = b
−1/α
α (U). The function bα is bounded, decreasing and strictly

concave. This shows that Kα is bounded with increasing density and that K
−1/α
α

has an unbounded support not containing zero and a decreasing density. When

α = 1/2, the above factorization is equivalent to

Γ1/2
d
= Γ1 × B1/2,1/2,

which is a particular instance of the so-called Beta-Gamma algebra.
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An absolutely continuous positive random variable X is said to be an exponential

mixture (ME) if its density is completely monotonic. This is equivalent to the

mutiplicative factorization

X
d
= L × Y

for some positive random variable Y .
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exponent λα shows that Zα is the sum of an exponential mixture and of an

exponential sum:
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Yα,n,

with Yα,n ∼ Exp((nπ/ sin(πα))1/α) for every n ≥ 1 and Yα ∈ ME.
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for some positive random variable Y . A suitable decomposition of the log-Laplace

exponent λα shows that Zα is the sum of an exponential mixture and of an

exponential sum:

Proposition (Yamazato) One has the independent factorization

Zα
d
= Yα +

∑
n≥1

Yα,n,

with Yα,n ∼ Exp((nπ/ sin(πα))1/α) for every n ≥ 1 and Yα ∈ ME.

Such additive factorizations can actually be extended to all stable densities.
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The Beta factorization

If n > p ≥ 1 are two integers, define the following indices: q0 = 0, qp = n and if

p ≥ 2,

qj = sup{i ≥ 1, ip < jn}

for all j = 1, . . . p− 1.
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If n > p ≥ 1 are two integers, define the following indices: q0 = 0, qp = n and if

p ≥ 2,

qj = sup{i ≥ 1, ip < jn}

for all j = 1, . . . p− 1. Using the explicit fractional moments of Zα :

E[Zsα] =

∫ ∞
0

fα(x)xs dx =
Γ(1− s/α)

Γ(1− s)

and Legendre-Gauss multiplication formula, it is possible to show (S. 2013) that

Z−pp
n

d
=

nn

pp(n− p)n−p
Ln−p ×

p−1∏
j=0

qj+1−1∏
i=qj+1

B i
n ,

i−j
n−p−

i
n

 × p−1∏
j=1

B qj
n ,

j
p−

qj
n
.
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i−j
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 × p−1∏
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B qj
n ,

j
p−
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By Zolotarev’s duality and since L
d
= − log[B1,1], all one-sided strictly stable

branches with rational parameters can be factorized with the sole Beta distribution.
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A variation of the above formula is the following

Z−pp
n
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n
·
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a formula originally due to Williams (1977). When p > 1 there are (p− 1) Beta

factors and (n− p) Gamma factors in the product. For example

4 Z−22/3

d
= 27 B1/3,1/6 × Γ2/3 and 4 Z−22/5

d
= 3125 B2/5,1/10 × Γ1/5 × Γ3/5 × Γ4/5.
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A variation of the above formula is the following
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When p = 1, this boils down to

Z−11
n

d
= nn Γ 1

n
× · · · × Γn−1

n
,

a formula originally due to Williams (1977). When p > 1 there are (p− 1) Beta

factors and (n− p) Gamma factors in the product. For example

4 Z−22/3

d
= 27 B1/3,1/6 × Γ2/3 and 4 Z−22/5

d
= 3125 B2/5,1/10 × Γ1/5 × Γ3/5 × Γ4/5.

Beta-Gamma factorizations are not canonical, contrary to the Beta factorization

and its interpretation in terms of the Meijer G-function, but they are more useful.

9



A short proof of Yamazato’s theorem

10



A short proof of Yamazato’s theorem

The strict unimodality of the stable densities means that their first derivative

vanishes only once.

10



A short proof of Yamazato’s theorem

The strict unimodality of the stable densities means that their first derivative

vanishes only once. This was raised as an open problem by Gnedenko in 1939 and

finally proved in 1978 by Yamazato. His argument is robust and extends to all

self-decomposable distributions.

10



A short proof of Yamazato’s theorem

The strict unimodality of the stable densities means that their first derivative

vanishes only once. This was raised as an open problem by Gnedenko in 1939 and

finally proved in 1978 by Yamazato. His argument is robust and extends to all

self-decomposable distributions. In the stable case, a short proof can be obtained

by Zolotarev’s duality and Kanter’s factorization (S. 2011). Writing

X+(α, ρ)
d
=

(
Zαρ
Zρ

)ρ
d
= L(αρ−1)/α × L1−ρ × K−1/ααρ × Kρ,

shows the unimodality of X+(α, ρ). Indeed, K
−1/α
αρ ×Kρ is unimodal and the

property is stable by independent multiplication with exponential powers

(Cuculescu and Theodorescu, 1998).
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vanishes only once. This was raised as an open problem by Gnedenko in 1939 and

finally proved in 1978 by Yamazato. His argument is robust and extends to all

self-decomposable distributions. In the stable case, a short proof can be obtained

by Zolotarev’s duality and Kanter’s factorization (S. 2011). Writing

X+(α, ρ)
d
=

(
Zαρ
Zρ

)ρ
d
= L(αρ−1)/α × L1−ρ × K−1/ααρ × Kρ,

shows the unimodality of X+(α, ρ). Indeed, K
−1/α
αρ ×Kρ is unimodal and the

property is stable by independent multiplication with exponential powers

(Cuculescu and Theodorescu, 1998). The unimodality of X(α, ρ) follows by

pasting, and the non strictly stable case (skewed Cauchy) is obtained by

approximation. The strict unimodality is a consequence of the real-analyticity of all

stable densities (Kolmogorov, 1939) and of the principle of isolated zeroes.
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because of the Hermite polynomials, whose zeroes are simple and real. It is known

that the derivatives of a stable density all vanish on both ends of the support, and

Rolle’s theorem entails that the n−th derivative vanishes at least n times.
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The fact that it vanishes exactly n times is claimed by Gawronski (1984) but his

proof is erroneous, also at the level of unimodality. Using the Yamazato

factorization and Schoenberg’s variation-diminishing property as explained in Karlin

(1968), the property can be showed rigorously at least for all Zα’s.

Theorem (S., 2013) The densities fα are bell-shaped.

11



Positive stable densities and the bell-shape
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derivative vanishes exactly n times for all n ≥ 1. Taking n = 2 means that the

density is convex, concave, and convex. This is a property of the normal density

because of the Hermite polynomials, whose zeroes are simple and real. It is known

that the derivatives of a stable density all vanish on both ends of the support, and

Rolle’s theorem entails that the n−th derivative vanishes at least n times.

The fact that it vanishes exactly n times is claimed by Gawronski (1984) but his

proof is erroneous, also at the level of unimodality. Using the Yamazato

factorization and Schoenberg’s variation-diminishing property as explained in Karlin

(1968), the property can be showed rigorously at least for all Zα’s.

Theorem (S., 2013) The densities fα are bell-shaped.

This property is false for positive self-decomposable laws in general, but it is

conjectured to hold true as soon as the spectral function is infinite at zero.

11



Stochastic orderings

12



Stochastic orderings

If X,Y are real random variables, one says that Y dominates X if for all x ∈ R
one has P[X ≥ x] ≤ P[Y ≥ x].

12



Stochastic orderings

If X,Y are real random variables, one says that Y dominates X if for all x ∈ R
one has P[X ≥ x] ≤ P[Y ≥ x]. In the positive case, we will use the notation

X≺st Y if Y dominates X but not any cX, c > 1 (optimal stochastic ordering).

12



Stochastic orderings

If X,Y are real random variables, one says that Y dominates X if for all x ∈ R
one has P[X ≥ x] ≤ P[Y ≥ x]. In the positive case, we will use the notation

X≺st Y if Y dominates X but not any cX, c > 1 (optimal stochastic ordering).

Using the Kanter factorization, it is possible to show (S. 2013) that

S ≺st (1− α)α
α
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β
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−β
1−β
β ≺st L

for all 0 < β < α < 1, with S = eX and X the spectrally negative Cauchy random

variable with characteristic exponent logE[eiλX] = iλ(log |λ| − 1)− π|λ|/2.
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α ≺st Zα and Γ(1− α)−
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for all α ∈ (0, 1).
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variable with characteristic exponent logE[eiλX] = iλ(log |λ| − 1)− π|λ|/2. Using

the Beta-Gamma factorization, one obtains Z−αα ≺st Γ(1− α)L. This yields

α(1− α)
1−α
α L−

1−α
α ≺st Zα and Γ(1− α)−

1
αL−

1
α ≺st Zα

for all α ∈ (0, 1). This is a comparison of Zα with the two extremal Fréchet

distributions corresponding to the behaviour of its density at zero and at infinity.
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These bounds show that mα → +∞ at exponential speed when α→ 0+.
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α

(
1− α
log(2)

) 1−α
α

∨
(

1

log(2)Γ(1− α)

) 1
α

≤ mα ≤ α

(
1− α
mS

) 1−α
α

·

These bounds show that mα → +∞ at exponential speed when α→ 0+. A further

analysis entails that α 7→ mα increases on (1−mS, 1). Overall we observe the

curious fact that the function α 7→ mα is not monotonic on (0, 1), in sharp

contrast with the mode Mα of Zα which is an increasing function of α, at least

heuristically (Nagaev and Shkolnik, 1985). These bounds also entail the

mean-median-mode inequality

Mα < mα < E[Zα] (= +∞)

as soon as α < 1/(1 + log(2)) ∼ 0.5906 or α is close enough to 1.
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order (X≺cx Y ) if E[ϕ(X)] ≤ E[ϕ(Y )] for all ϕ convex such that the expectations

exist. When X and Y are integrable with E[X] = E[Y ], then X≺cx Y is equivalent

to ∫ +∞

x

P[X ≥ y] dy ≤
∫ +∞

x

P[Y ≥ y] dy

for all x ∈ R. Using the Kanter factorization, one can show (S. 2013) that

L ≺cx (1− β)Z
−β
1−β
β ≺cx (1− α)Z

−α
1−α
α ≺cx eS

for all 0 < β < α < 1, and that

Γ(1 + α)Z−αα ≺cx Γ(1 + β)Z−ββ

for every 1/2 ≤ β < α < 1.
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It is well-known that for 1/2 ≤ α < 1, one has Z−αα
d
= sup{X(α)

t , t ≤ 1} where

{X(α)
t , t ≥ 0} is a spectrally negative strictly (1/α)−stable Lévy process

(Mittag-Leffler distributions).

15



Three tentative martingales

It is well-known that for 1/2 ≤ α < 1, one has Z−αα
d
= sup{X(α)

t , t ≤ 1} where

{X(α)
t , t ≥ 0} is a spectrally negative strictly (1/α)−stable Lévy process
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1−α
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It is well-known that for 1/2 ≤ α < 1, one has Z−αα
d
= sup{X(α)

t , t ≤ 1} where

{X(α)
t , t ≥ 0} is a spectrally negative strictly (1/α)−stable Lévy process

(Mittag-Leffler distributions). Kellerer’s theorem (1972) and the above second

convex ordering shows that the laws of the above suprema are the marginals of a

certain martingale. It seems that this martingale could be extended in a larger time

interval, through three different families.

• The family {Γ(1 + α)Z−αα , 1/2 ≥ α > 0} (further Mittag-Leffler distributions).

• The family {Γ(1 +α)2Γ(2−α)−1Z−αα × Zαα
1−α

, 1/2 ≥ α > 0} (negative stable

branches).

• The family {Γ(1 + α) inf{X(α)
t , t ≤ 1}, 1/2 ≤ α < 1} (infima of spectrally

negative stable Lévy processes, see S. 2010).

Observe that the normalization is the same for the first and the third family.
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There are three interesting conjectures on real stable densities which are still

unsolved in general.

• The bell-shape, even in the visual case n = 2 (Gawronski’s claim, 1984).

• The perfect skewness. This means that the quantity fα(M + x)− fα(M − x)

has a constant sign over R+, where M is the mode. This is conjectured by P.

Hall (1982), in the context of central limit theorems.

• The median-mode or mean-median-mode inequality (in one or another

direction). As observed by Dharmadikari and Joag-dev (1988), this inequality

would be a consequence of the perfect skewness. But it should be less difficult

to obtain. By the way, I do not know any infinitely divisible counterexample to

the median-mode or mean-median-mode inequality and this is another open

question.

16



Moving along Asian roofs

17



Moving along Asian roofs

Plotting the set of admissible parameters of X+(α, ρ) with ρ on the x−coordinate
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Plotting the set of admissible parameters of X+(α, ρ) with ρ on the x−coordinate

and α on the y−coordinate yields the sketch of a house with a roof of the Asian

type. With this sketch in mind, the above second convex ordering shows that

moving along the top of the roof from left to right, we get on [1/2, 1] a decreasing

family for the convex order after suitable normalization. This phenomenon also

occurs when moving along the lintel of the house.

Proposition The map ρ 7→ Γ(1 + ρ)Γ(1− ρ)X+(1, ρ) is non-increasing for the

convex order on (0, 1).

A conjecture is that for every α ∈ (1, 2), there exists an Asian subroof connecting

the parameters (1, 0), (α, 1/2) and (1, 1) such that moving along the top of this

subroof from left to right, we get a family of one-sided stable branches which is

non-increasing for the convex order after suitable normalization.
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