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Modeling SPX and VIX

It is well-known that the empirically observed implied volatility
surface is not consistent with Black-Scholes.

Many models have been proposed proposed to fit market
implied volatilities better and describe the dynamics of the
volatility surface.

For example, local volatility models, Lévy models, stochastic
volatility models, stochastic volatility models with jumps and
so on.

With the advent of trading in VIX options in 2006 however,
marginal risk-neutral densities of forward volatilities of SPX
became effectively observable, substantially constraining
possible choices of volatility dynamics.

Various authors have since proposed models that price both
options on SPX and options on VIX more or less consistently
with the market.



Specification Calibration Ninomiya-Victoir DMR simulation Daily fitting

The DMR model

In [my Bachelier 2008 presentation], a specific three factor
variance curve model was introduced with dynamics motivated
by economic intuition for the empirical dynamics of the
variance.

In this double-mean-reverting or DMR model, the dynamics
are given by

dSt =
√

vtStdW 1
t , (1a)

dvt = κ1 (v ′t − vt) dt + ξ1 vα1
t dW 2

t , (1b)

dv ′t = κ2 (θ − v ′t) dt + ξ2 v ′t
α2 dW 3

t , (1c)

where the Brownian motions Wi are all in general correlated
with E[dW i

t dW j
t ] = ρij dt.
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Qualitative features of the DMR model

Instantaneous variance v mean-reverts to a level v ′ that itself
moves slowly over time with the state of the economy,
mean-reverting to the long-term mean level θ.

Also, it is a stylized fact that the distribution of volatility
(whether realized or implied) should be roughly lognormal

When the model is calibrated to market option prices, we find
that indeed α1 ≈ 1 consistent with this stylized fact.

As we will see later, the DMR model calibrated jointly to SPX
and VIX options markets fits pretty well.
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Computations in the DMR model

One drawback of the DMR model is that calibration is not
easy

No closed-form solution for European options exists so finite
difference or Monte Carlo methods need to be used to price
options.
Calibration is therefore slow.

In [my Bachelier 2008 presentation], the DMR model is
calibrated using an Euler-Maruyama Monte Carlo scheme with
the partial truncation step of [Lord, Koekkoek, and van Dijk].

In this talk, we show how to apply the Monte Carlo scheme of
[Ninomiya and Victoir] to the calibration of the DMR model,
substantially improving calibration time.
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Model calibration

The DMR model has many parameters:

One could argue that it is both mis-specified and
over-parameterized.

In [my Bachelier 2008 presentation], the parameters of the
DMR model were calibrated to the VIX and SPX options
markets with a sequence of steps that we will now individually
describe.
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Variance swaps from the log-strip

Under diffusion assumptions, the fair value of a variance swap
is given by evaluating the so-called log-strip of European puts
and calls (see Chapter 11 of [The Volatility Surface] for
example):

E
[∫ T

t
vs ds

∣∣∣∣Ft

]
= 2

{∫ 0

−∞
p(k) dk +

∫ ∞
0

c(k) dk

}
,

(2)
where k = log(K/Ft,T ) is the log-strike and p and c
respectively are put and call prices expressed as a fraction of
the strike price.

Variance swaps may thus be estimated from historical option
prices by interpolation, extrapolation and integration.
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Estimation of κ1, κ2, θ and ρ23

In the DMR model, the fair strike of a variance swap is given
by the expression

E
[∫ T

t
vs ds

∣∣∣∣Ft

]
= θ τ + (vt − θ)

1− e−κ1 τ

κ1

+ (v ′t − θ)
κ1

κ1 − κ2

{
1− e−κ2 τ

κ2
− 1− e−κ1 τ

κ1

}
(3)

which is affine in the state variables vt and v ′t .

Fixing θ, κ1 and κ2, and given daily variance swap estimates,
time series of vt and v ′t may be imputed by linear regression.

Optimal values of θ, κ1 and κ2 are obtained by minimizing
mean squared differences between the fitted and actual
variance swap curves.
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Calibrated parameters

With daily data from January 2001 to April 2008, the optimal
choice of parameters was found to be

θ = 0.078,

κ1 = 5.5,

κ2 = 0.10.

The correlation ρ23 between W 2
t and W 3

t was then estimated
as the historical correlation between the series vt and v ′t . The
estimated value was

ρ23 = 0.59.
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Motivation for fitting SABR

It seems that volatility dynamics are roughly lognormal
Option prices and time series analysis lead us to the same
conclusion.

The SABR model of
[Hagan, Kumar, Lesniewski, and Woodward] is the simplest
possible lognormal stochastic volatility model

And there is an accurate closed-form approximation to implied
volatility.

The lognormal SABR process is:

dS

S
= Σ dZ

dΣ

Σ
= ν dW (4)

with 〈dZ , dW 〉 = ρ dT .
Fitting SABR might allow us to impute effective parameters
for a more complicated model.
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The SABR formula

As shown originally by Hagan et al., to lowest order in time to
expiration, the solution to (4) in terms of the Black-Scholes
implied volatility σBS is approximated by:

σBS (k) = σ0 f

(
k

σ0

)
where k := log(K/F ) is the log-strike and

f (y) = − ν y

log

(√
ν2 y2+2 ρ ν y+1−ν y−ρ

1−ρ

)
It turns out that this simple formula is reasonably accurate for
longer expirations too.

Note that the formula is independent of time to expiration T .
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The term structure of ν

As of 25-Apr-2008, plot fitted ν for each slice against Texp:
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Estimation of the exponents α1 and α2

The exponents α1 and α2 control how volatility of volatility
changes with the volatility level.

To obtain a proxy for the volatility of volatility we note that
the lognormal SABR model (with β = 1) tends to fit the smile
at any given expiration very well.

One of the SABR parameters is the volatility of volatility ν.

We note further that empirically, the term structure of ν is
given by

ν(τ) ≈ νeff√
τ

νeff may then be used as a proxy for volatility of volatility.

We use VIX as a proxy for the level of volatility.
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SABR fits to SPX: νeff

Figure 1: Computing νeff every day for seven years gives the following
time-series plot:
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Observations from νeff time-series

Lognormal volatility of volatility νeff is empirically rather
stable

The dynamics of the volatility surface imply that volatility is
roughly lognormal.

Can we see any patterns in the plot?

For example, does νeff depend on the level of volatility?
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Regression of νeff vs VIX

Figure 2: Regression does show a pattern!
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Daily calibration of remaining parameters

Although the volatility of volatility parameters ξ1 and ξ2 are in
principle constants of the DMR model, it is clear from
Figure 1 that they are not constant in the data.

And of course, VIX option prices fluctuate from day to day.
The implied volatility of VIX options is like volatility of
volatility.

This leads to the following daily procedure:
1 Calibrate vt and v ′t to variance swaps (from SPX option prices)

using linear regression.
2 Calibrate ξ1 and ξ2 to VIX options data.
3 Calibrate the correlations ρ12 and ρ13 to the SPX volatility

surface.

In steps 2 and 3, we need to use numerical techniques to
compute VIX and SPX options prices respectively.
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The LKV scheme

In [my Bachelier 2008 presentation], calibration of ξ1, ξ2, ρ12

and ρ13 was performed using Monte-Carlo simulation.

The chosen scheme was Euler-Maruyama with partial
truncation as in [Lord, Koekkoek, and van Dijk]:

x((k + 1)∆) = −1

2
v(k∆)∆ +

√
v(k∆)Z 1

k

ṽ((k + 1)∆) = ṽ(k∆) + κ2 (ṽ ′(k∆)− ṽ(k∆)) ∆ +
(
ṽ(k∆)+

)α1 Z 2
k

ṽ ′((k + 1)∆) = ṽ ′(k∆) + κ2 (θ − ṽ ′(k∆)) ∆ +
(
ṽ ′(k∆)+

)α2 Z 3
k .

In the above, ∆ is the time step, v(k∆) = ṽ(k∆)+,
v ′(k∆) = ṽ ′(k∆)+, x(k∆) = log(S(k∆)), Z i

k ∼ N(0,∆) and

E[Z i
k Z j

k ] = ρij ∆.

Calibration of the DMR model with this scheme is slow!
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The Ninomiya-Victoir scheme

In [Ninomiya and Victoir], a general second order weak
discretization scheme for stochastic differential equations was
introduced.

Consider a multi-dimensional stochastic differential equation
in Stratonovich form

dX(t, x) = V0(X(t, x))dt +
d∑

i=1

Vi (X(t, x)) ◦ dB i
t , (5)

where X(0, x) = x ∈ RN , B1
t , . . . ,B

d
t are d independent

standard Brownian motions and Vi : RN → RN , i = 0, . . . , d ,
are sufficiently regular vector fields.
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The Ninomiya-Victoir scheme

The Ninomiya-Victoir scheme is given by

X(NV )(0, x) = x,

X(NV )((k + 1)∆, x)

=

{
e

∆
2 V0 eZ 1

k V1 · · · eZ d
k Vd e

∆
2 V0X(NV ) (k∆, x) , Λk = −1,

e
∆
2 V0 eZ d

k Vd · · · eZ 1
k V1 e

∆
2 V0X(NV ) (k∆, x) , Λk = +1.

(6)

etV x ∈ RN denotes the solution at time t ∈ R to the ODE

ẏ = V (y) , y (0) = x,

i.e. the flow of the vector field.

The Λk take values ±1 with probability 1/2, the Z j
k are

independent N (0,∆) random variables.
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Features of the Ninomiya-Victoir scheme

One step in the NV scheme corresponds to a (non-discrete)
cubature formula of order m = 5 in the sense of
[Lyons and Victoir].

One can also interpret the NV scheme as the stochastic
version of a classical operator splitting scheme, where the
infinitesimal generator L = V0 + 1

2

∑d
i=1 V 2

i of the diffusion is
split into the first order differential operator V0 and the
second order differential operators 1

2 V 2
1 , . . . , 1

2 V 2
d .

The NV scheme is now widely used in applications such as
Inria’s software PREMIA for financial option computations.

In particular, a variant of the NV scheme due to [Alfonsi] can
be used to simulate the Heston model.
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Solving the ODEs

Cubature methods, and the Ninomiya-Victoir scheme in
particular, need us to solve ODEs quickly and accurately.

General cubature methods involve ODEs with a rather
complicated structure, involving all vector-fields at all times.

Numerical ODE methods such as Runge-Kutta are typically
required.

If we are very lucky, all of the ODE flows may be solved
exactly – in terms of easy-to-evaluate expressions.

In such a case, one has effectively found a second order weak
approximation method which can be implemented without
relying on numerical ODE solvers

The Ninomiya-Victoir method can be expected to perform
especially well in such cases.
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The Drift Trick

The Heston model is one of the lucky cases where all of the
ODEs may be solved in closed form.

However, one soon encounters models where the ODEs have
no closed-form solution

For example, the SABR model.

[Bayer, Friz, and Loeffen] observed that the class of favorable
models can be significantly enlarged by working with an
almost trivial modification of the NV scheme.
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The idea of the Drift Trick

We can rewrite the SDE as

dX(t, x) =

V0(X(t, x))−
d∑

j=1

γj Vj (X(t, x))

dt

+
d∑

j=1

Vj (X(t, x)) ◦ d
(

B j
t + γj t

)

=:V
(γ)
0 (X(t, x)) dt +

d∑
j=1

Vj (X(t, x)) ◦ d
(

B j
t + γj t

)
whatever the choice of drift parameters γ1, . . . , γd .
In many cases of interest, it’s possible to choose the γi so as
to permit the solution of all ODEs in closed-form.

In particular, the DMR model with α1 = α2 = 1, the Double
Lognormal model.
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The NV scheme with drift trick

The Ninomiya-Victoir scheme with drift trick is now given by

XNVd) (0, x) = x,

X(NVd) ((k + 1)∆, x) ={
e

∆
2 V

(γ)
0 eZ 1

k V1 · · · eZ d
k Vd e

∆
2 V

(γ)
0 X(NVd) (k∆, x) , Λk = −1,

e
∆
2 V

(γ)
0 eZ d

k Vd · · · eZ 1
k V1 e

∆
2 V

(γ)
0 X(NVd) (k∆, x) , Λk = +1,

(7)

where the Z i
k ∼ N (∆γi ,∆) are again independent of each other.

This amended scheme corresponds to splitting L according to

L = V0 +
1

2

d∑
i=1

V 2
i = V

(γ)
0 +

d∑
i=1

{
1

2
V 2

i + γi Vi

}
.
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More operator splitting

In models such as the DMR model with α1, α2 6= 1, the drift
trick is not enough to permit closed-form solution of the drift
ODE.

We may then try to find vector fields V0,1 and V0,2 such that
V0 = V0,1 + V0,2 and the ODEs driven by V0,1 and V0,2 have
(closed-form) solutions etV0,1 and etV0,2 , respectively.

In that case, the solution e∆V0 of the ODE driven by the
vector field V0 at time ∆ can be approximated by

e∆V0x = e∆V0,2e∆V0,1x +O(∆2),

a method sometimes known as the symplectic Euler scheme.

One contribution of the present work is to show that the NV
scheme can be further extended in this way whilst maintaining
second order weak convergence.



Specification Calibration Ninomiya-Victoir DMR simulation Daily fitting

Our modified Ninomiya Victoir (NVs) scheme

In our modification of the NV scheme, applying the
symplectic Euler scheme to the solution of the drift ODE, we
iterate according to

X(NVs)((k + 1)∆, x) ={
e

∆
2 V0,1 e

∆
2 V0,2 eZ 1

k V1 · · · eZ d
k Vd e

∆
2 V0,2 e

∆
2 V0,1X(NVs) (k∆, x) , Λk = −1,

e
∆
2 V0,1 e

∆
2 V0,2 eZ d

k Vd · · · eZ 1
k V1 e

∆
2 V0,2 e

∆
2 V0,1X(NVs) (k∆, x) , Λk = +1.

(8)

This modified NVs scheme again has second order
convergence in the weak sense.

In the case of the DMR model with α1, α2 6= 1, this further
splitting of the drift operator V0 is sufficient to permit us to
solve all of the ODEs in closed form.
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Itô formulation of the DMR model

The DMR model (1) re-expressed in terms of independent
Brownian motions B i reads:

dSt =
√

vt St dB1
t ,

dvt = κ1 (v ′t − vt) dt + ξ1vα1
t

(
ρ̃1,2dB1

t +
√

1− ρ̃2
1,2dB2

t

)
,

dv ′t = κ2 (θ − v ′t ) dt + ξ2v ′α2
t

(
ρ̃1,3dB1

t + ρ̃2,3dB2
t +

√
1− ρ̃2

1,3 − ρ̃2
2,3 dB3

t

)
,

(9)

where ρ̃12 = ρ12, ρ̃13 = ρ13 and ρ̃23 = ρ23−ρ12ρ13√
1−ρ2

12

.
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Stratonovich formulation of the DMR model

To apply NVs, we need the Stratonovich formulation:

X(t, x) = x +

∫ t

0
V0 (X(s, x)) ds +

3∑
j=1

∫ t

0
Vj (X(s, x)) ◦ dB j

s

(10)
where the state vector X(t, x) = (St , vt , v

′
t)T , and the initial

condition is x = (S0, v0, v
′
0)T .

The driving vector fields {V0,V1,V2,V3} are given explicitly
in the following slide.
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Explicit expressions for the vector fields

We have

V0(x) =

−
1
2

(
1
2 ξ1 ρ̃1,2 x

α1− 1
2

2 x1 + x2 x1

)
−κ1 (x2 − x3)− 1

2 ξ
2
1 α1 x2α1−1

2

−κ2(x3 − θ)− 1
2 ξ

2
2 α2 x2α2−1

3


and also

V1(x) =
(√

x2 x1 ρ̃1,2 ξ1 xα1
2 ρ̃1,3 ξ2 xα2

3

)T

V2(x) =
(

0
√

1− ρ̃2
1,2 ξ1 xα1

2 ρ̃2,3 ξ2 xα2
3

)T

V3(x) =
(

0 0
√

1− ρ̃2
1,3 − ρ̃2

2,3 ξ2 xα2
3

)T
.
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Solving the ODEs

In order to implement the NVs scheme, we thus need to solve
the ODEs

d
dt

x(t) = Vi (x(t))

for all i ∈ {0, 1, 2, 3} and t ∈ R with some given boundary
condition.

It is relatively straightforward to solve the ODEs for
i ∈ {1, 2, 3} in closed form.

Solving the ODE
d
dt

x(t) = V0(x(t))

requires further splitting.
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The flow of the Stratonovich drift vector field

To solve the ODE for i = 0, we write

V0 = V0,1 + V0,2

with

V0,1(x) =

 −1
2 x2 x1

−κ1 (x2 − x3)
−κ2 (x3 − θ)

 ,

V0,2(x) =

 −1
4 ξ1 ρ̃1,2 x

α1− 1
2

2 x1

−1
2 ξ

2
1 α1 x2α1−1

2

−1
2 ξ

2
2 α2 x2α2−1

3

 .

It is again straightforward to solve the corresponding ODEs in
closed form.
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The double lognormal case: α1 = α2 = 1

In the Double Lognormal case with α1 = 1, α2 = 1, we may
applying the drift trick to get closed-form ODE solutions.

Specifically, with

V γ
0 = V0 − γ1V1 − γ2V2 − γ3V3,

and choosing

γ1 = −ξ1 ρ̃1,2,

γ2 = −
κ1 + 1

2ξ
2
1 + γ1 ρ̃1,2 ξ1

ξ1

√
1− ρ̃2

1,2

,

γ3 = −
κ2 + 1

2 ξ
2
2 − ρ̃1,3 ξ2 γ1 − ρ̃2,3 ξ2 γ2

ξ2

√
1− ρ̃2

1,3 − ρ̃2
2,3

,

we end up with much simpler expressions for the vector fields.
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The adjusted drift vector field

Explicitly, after applying the drift trick, we get

V γ
0 =

 −1
2 x2 x1

κ1 x3

κ2 θ


which is much simpler than the original

V0(x) =

−1
2

(
1
2 ξ1 ρ̃1,2

√
x2 x1 + x2 x1

)
−κ1 (x2 − x3)− 1

2 ξ
2
1 x2

−κ2(x3 − θ)− 1
2 ξ

2
2 x3


It is again straightforward to compute solutions to these
ODEs in closed-form.
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Daily model fitting

Once again, the model parameters κ1, κ2, θ and ρ23 are
considered fixed.

The state variables vt and v ′t are obtained by linear regression
against the fair values of variance swaps proxied by the
log-strip.

Arbitrage-free interpolation and extrapolation of the volatility
surface is achieved using the SVI parameterization in
[Gatheral and Jacquier].

The volatility-of-volatility parameters ξ1 and ξ2 are obtained
by calibrating the DMR model to the market prices of VIX
options (using NVs).

The correlation parameters ρ12 and ρ13 are then calibrated to
SPX options.



Specification Calibration Ninomiya-Victoir DMR simulation Daily fitting

Pricing VIX options

The payoff of a call option on the VIX index with strike K
expiring at time T may be written as√E

[∫ T +∆

T
vsds

∣∣∣∣ FT

]
− K

+

where ∆ is is roughly one month.

Each Monte Carlo path generates a value for vT and v ′T , so

the expected forward variance E
[∫ T +∆

T vsds
∣∣∣ FT

]
is given

by equation (3).

Averaging over all paths gives the model price of the VIX
option.
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Calibration to VIX options

Our chosen objective function is the sum of squared
differences between market VIX implied volatilities and model
VIX implied volatilities. Errors are weighted by the reciprocal
of the bid-ask spread:√√√√∑

i

(
σmid

i − σmodel
i

σask
i − σbid

i

)2

.
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Calibration to SPX options

We are then left with the correlation parameters ρ12 and ρ13

to calibrate to the SPX volatility surface.

Note only two parameters to fit the entire volatility surface!

Our objective function is again the sum of squared differences
between market SPX implied volatilities and model SPX
implied volatilities, weighted by the reciprocal of the bid-ask
spread.
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Two days in history

We pick two days in history to fit the DMR model, one before
the 2008 financial crisis, and one after:

April 3, 2007 and September 15, 2011.

Recall that fixed model parameters were as follows:

θ 0.078
κ1 5.5
κ2 0.10
ρ23 0.59
α1 0.94
α2 0.94
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Fitted parameters

With vt , v ′t from variance swaps, ξ1, ξ2 from VIX options, and
ρ12, ρ13 from SPX options we obtain:

03-Apr-2007 15-Sep-2011

v 0.0153 0.114
v ′ 0.0224 0.110
ξ1 2.873 2.689
ξ2 0.302 0.502
ρ12 -0.992 -0.982
ρ13 -0.615 -0.727

Note that fitted parameters from two very different market
environments are very similar.
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Variance swap fit as of April 3, 2007

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
01

5
0.

02
0

0.
02

5
0.

03
0

Maturity

V
ar

 s
w

ap

●

●

●

●
●

●
● ●

●
●
●

●

●

●

Figure 3: The points are SPX variance swaps (from the log-strip), the solid
curve is the DMR model fit.
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Figure 4: VIX smiles as of April 3, 2007: Bid vols in red, ask vols in blue, mid
vols in green, and model fits in orange.
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−1.0 −0.5 0.0 0.5 1.0

1
2

3
4

5
T = 0.016

Log−Strike

Im
pl

ie
d 

V
ol

.

−1.0 −0.5 0.0 0.5 1.0

1
2

3
4

5

−1.0 −0.5 0.0 0.5 1.0

1.
0

1.
5

2.
0

T = 0.093

Log−Strike
Im

pl
ie

d 
V

ol
.

−1.0 −0.5 0.0 0.5 1.0

1.
0

1.
5

2.
0

−1.0 −0.5 0.0 0.5 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6 T = 0.17

Log−Strike

Im
pl

ie
d 

V
ol

.

−1.0 −0.5 0.0 0.5 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

−1.0 −0.5 0.0 0.5 1.0

0.
4

0.
6

0.
8

1.
0

1.
2

T = 0.27

Log−Strike

Im
pl

ie
d 

V
ol

.

−1.0 −0.5 0.0 0.5 1.0

0.
4

0.
6

0.
8

1.
0

1.
2

−1.0 −0.5 0.0 0.5 1.0

0.
4

0.
6

0.
8

1.
0

1.
2

T = 0.34

Log−Strike

Im
pl

ie
d 

V
ol

.

−1.0 −0.5 0.0 0.5 1.0

0.
4

0.
6

0.
8

1.
0

1.
2

−1.0 −0.5 0.0 0.5 1.0

0.
4

0.
6

0.
8

1.
0

1.
2 T = 0.42

Log−Strike

Im
pl

ie
d 

V
ol

.

−1.0 −0.5 0.0 0.5 1.0

0.
4

0.
6

0.
8

1.
0

1.
2

Figure 5: VIX smiles as of September 15, 2011: Bid vols in red, ask vols in
blue, and model fits in orange. Note that the fitted smiles seem a little too flat.
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Double Lognormal model calibration to 2011 data

In Figure , we saw that the DMR model with α1 = α2 = 0.94
generates VIX option smiles that are too flat.

This motivates us to calibrate the simpler Double Lognormal
version of the DMR model with α1 = α2 = 1.

Simulation is also faster because we use the drift trick. Each
time step is less complex.
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VIX fit of Double Lognormal as of September 15, 2011
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Figure 6: VIX smiles as of September 15, 2011: Bid vols in red, ask vols in
blue, and Double Lognormal model fits in orange.
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Remarks on the Double Lognormal fit

The smiles got a little steeper.

The algorithm (with the drift trick) is less complex.

And the model with α1 = α2 = 1 is more parsimonious.

Double Lognormal seems like the better choice!
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Performance tradeoff between NV and EM

The Ninomiya-Victoir (NV) scheme permits us to achieve a
given target RMSE with fewer time steps than
Euler-Maruyama (EM).
However, the computational cost of each NV time step is
greater than EM.
The tradeoff between NV and EM must therefore be assessed
experimentally.

2D 3D

α1 = α2 = 0.94 4.55 6.84

α1 = α2 = 1 1.81 3.08

Table 1: Relative computation times for NV steps in terms of EM steps. 2D
means simulation of the variance process only (i.e. for VIX options); 3D means
simulation of the full model. The values are obtained by simulating with 90
time steps and 218 QMC paths using the parameters obtained in the 2011
calibrations.
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Optimal calibration recipe

From experiment, we conclude that it is better to use the EM
discretization when calibrating to SPX options where there is
little if any RMSE reduction benefit from using the NV step.

However, for VIX options, we can achieve a speedup of 3− 4
times in the 2007 example, 2 in the 2011 example and 5 in
the 2011 lognormal DMR example.

The optimal calibration recipe appears to be:

Calibrate ξ1 and ξ2 with a Ninomiya-Victoir scheme.
Calibrate ρ12 and ρ13 with an Euler-Maruyama scheme.

Using Java code with 30 time steps and 211 paths we can
typically calibrate the model to both SPX and VIX option
markets in less than 5 seconds.
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Conclusion

We have presented two straightforward modifications of the
standard Ninomiya-Victoir discretization scheme that conserve
second order weak convergence but permit simple closed-form
solutions to the ODE’s.

NV with drift trick, and NV with extra splitting of the drift
vector field.

Using these schemes for VIX options and the simpler
Euler-Maruyama scheme for SPX options, we demonstrated
that it is possible to achieve fast and accurate calibration of
the DMR model to both SPX and VIX options markets
simultaneously.
Moreover, we demonstrated that the DMR model fits SPX
and VIX options market data well for two particular dates
chosen to represent two very different market environments
from before and after the 2008 financial crisis.

The fitted parameters of the model over time appear to be
remarkably stable.
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