
Transition density of SDEs driven by α-stable Lévy
process with Hölder continuous coefficients

Libo Li
Ritsumeikan University and JST (CREST)

A joint work with A. Kohatsu-Higa

Stochastic processes and their statistics in Finance
Okinawa, Japan, Nov, 2013

Libo Li and Arturo Kohatsu-Higa () Nov, 1, 2013 1 / 24



Introduction

We study the existence and regularities of the transition densities of
the solution to

dXs = σ(Xs−)dZs

where σ are Hölder continuous functions, and Z is stable Lévy process
with stable parameter in (0,1) ∪ (1,2).

Remark
We work in one dimension

Bass et al [BBC], no strong solution in general.
Results on the existence of weak solutions is shown in Zanzotto
[Z].
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Current literature

Debussche and Fournier [DF].

Assumption: The coefficient σ is bounded and Hölder continuous.

Result: The density to X exists and belongs to Besov space of certain
order depending on the parameters.

Remark
The drawback of the their result is that there is only an existence result.
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Current literature

In Konakov and Menozzi [KM].

Assumption:
σ : R→ R are Lipschitz with bounded derivatives.
there exists constants 0 < σ ≤ σ <∞ such that, for all x ∈ R,
0 < σ < σ(x) ≤ σ.

Result: Parametrix method is used to derive an asymptotic expansion
of the transition density.
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Our Setup

We apply a variant of the parametrix method developed in a working
paper of Bally and Kohatsu in [BK]

Assumption:
σ : R→ R is Hölder continuous.
there exists constants 0 < σ ≤ σ <∞ such that, for all x ∈ R,
0 < σ < σ(x) ≤ σ

Result: Using the (backward method) parametrix method.
The transition density exists and is jointly continuous.
The transition density is once differentiable w.r.t to initial point.
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1. Overview of Parametrix Method

Libo Li and Arturo Kohatsu-Higa () Nov, 1, 2013 6 / 24



Notations

For Xt = X0 +
∫
(0,t] b(Xs−)ds +

∫
(0,t] σ(Xs−)dZs, we denote by

(Pt )t≥0, the semigroup and L the infinitesimal generator.
(P∗t )t≥0 and L∗ their dual operators.
pt (x , y), the transition density of X (If exists)

For X z
t = x + b(z)t + σ(z)Zt and denote by

(Pz
t )t≥0 the semigroup Lz the infinitesimal generator.

(Pz,∗
t )t≥0 and Lz,∗ their dual operators.

pz
t (x , y), the transition density of X z (If exists)

Remark
Note that in general, Lz,∗ 6= L∗,z .
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Parametrix Methods - Forward Method

The Forward Method, we compute for g ∈ C∞c (R)

PT g(x)− Pz
T g(x) =

∫ T

0
∂t (Pz

T−tPt )g(x)dt

=

∫ T

0
Pz

T−t (L − Lz)Ptg(x)dt

and by expanding again using Ptg(x), we can derive a ’formal’
expansion of the semigroup.

PT g(x) = Pz
T g(x) +

N∑
n=1

Jn
T (g)(x) + RN(x)
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Parametrix Methods - Backward Method

For g ∈ C∞c (R). We present the ’Backward Method’.

Step 1. The Backward Method is the expansion of the dual operator

P∗T g(y)− Py ,∗
T g(y) =

∫ T

0
∂t (P

y ,∗
T−tP

∗
t )g(y)dt

=

∫ T

0
Py ,∗

T−t (L
∗ − Ly ,∗)P∗t g(y)dt

and by expanding again using P∗t g(x), we can derive a ’formal’
expansion of the dual semigroup.

P∗t g =
N∑

n=0

In
t (g) + RN(g)
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Backward Method - Continued

Step 2. To obtain an expansion of the semigroup itself, one use duality
and write

〈PT h,g〉 = 〈h,P∗T g〉

=
N∑
n

〈h, In
T (g)〉+ 〈h,RN

T (g)〉

(Fubini + Duality) =
N∑
n

〈In,∗
T (h),g〉+ 〈RN,∗

T (h),g〉

Remark
In the series converges, then 〈PT h,g〉 =

∑∞
n 〈I

n,∗
T (h),g〉, gives only the

form of PT in the ’weak sense’.
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Backward Method - Continued

Step 4. The form of the density function is retrieved by identification.

pt (x , y) =
∞∑
n

In,∗
t (x , y)

Step 5. The continuity and differentiability of the density follow from
showing the uniform convergence of the following sums.

∞∑
n

In,∗
t (x , y) and

∞∑
n

∂x In,∗
t (x , y)
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1. Representation of The Semigroup
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Setup and Notation

Notation:
µ(dc) = 1

c1+αdc, α ∈ (0,1).
q(c, x) is the gaussian density with mean 0 and variance c
N (dc,dx ,ds) is an Poisson random measure such that

N (dc,dx ,ds)− q(c, x)dxµ(dc)ds

is a martingale.
The auxiliary process V ,

Vt :=

∫
R+×R×(0,t]

cN (dc,dx ,ds),

V is a stable subordinator with parameter between (0,1).
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Process Z

Our methodology:

If α ∈ (0, 1
2), we set the driving process Z to be

Zt =

∫
(0,t]×R+×R

xN (dc,dx ,ds)

If α ∈ (1
2 ,1), we set the driving process Z to be

Zt =

∫
(0,t]×R+×R

x
[
N (dc,dx ,ds)− 1[−1,1](x)q(c, x)dxµ(dc)ds

]
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Process Z

To see the connection between Z and the stable processes. Apply
Fubini’s theorem and power mix equality. E.g. in the case, α ∈ (0, 1

2),

EP

(
eiθZt

)
= exp

(
t
∫
R×R+

(ei〈θ,x〉 − 1)q(c, x)dxµ(dc)

)
= exp

(
Ct
∫
R+

(ei〈θ,x〉 − 1)
1

x1+2αdx
)
.

The process Z corresponds to a true 2α-stable Lévy process where
2α ∈ (0,2) \ {1}.

Lemma (Schröenbergs theorem)

Power mixing equality, K
x1+2α =

∫
R q(c, x) 1

c1+α .
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Notation

For g ∈ C∞c (R), we set

Ŝ∗t g(x) :=

∫
R

g(y)py
t (x , y)θ̂t (x , y)dy

Q∗t g(x) :=

∫
g(y)py

t (x , y)dy .

and θ̂t (x , y) satisfies

(Ly1 − Ly )(py
t (·, y))(x)

∣∣∣
y1=x

= py
t (x , y)θ̂t (x , y)
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Notation

We can derive the formal expansion

Pt (g) =
∑

n

In,∗
t (g) + Rn,∗

t (g)

where the terms of the expansion can written into

In,∗
t (g) =

∫ t

0
dt1 · · ·

∫ tN−1

0
dtN Qtn Ŝ∗tN−1−tN . . . Ŝ

∗
t0−t1g(x)

Rn,∗
t (g) =

∫ t

0
dt1 · · ·

∫ tN−1

0
dtN Ptn Ŝ∗tN−1−tN . . . Ŝ

∗
t0−t1g(x)
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Lemma
The transition probability of the process X z is given by

pz
t (x , y) = E

(
q(Vtσ

2(z), x − y)
)

for t > 0.

Lemma
In our case

py
t (x , y)θ̂t (x , y) =

∫
R+

E (q(Σ(x), x − y)− q(Σ(y), x − y))µ(dc)

where Σ(x) := σ2(x)c + σ2(y)Vt .
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Lemma
For g ∈ C∞c (R), there exists γ̂. such that 0 ≤ γ̂ < α

|RN,∗
t0 (g)(x)| ≤ C

∫ t0

0
dt1 · · ·

∫ tN−1

0
dtN

N−1∏
i=0

[
(ti − ti+1)−

γ̂
α + 1

]

Lemma
If for all j = 1, . . . ,m, 0 ≤ b < 1, 0 ≤ γj < 1, then

∫ t1

0
dt0 . . .

∫ tN−1

0
dtN tb

N

N−1∏
i=0

 m∑
j=1

(ti − ti+1)−γj


=
∑
|k |=N

(
N

k1 . . . kl

) [
Γ(1− γj)t

−γj
0

]kj

Γ(1 + b +
∑l

j=1 kj(1− γj))
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Convergence

To see the series converges, we note that

RN(g) ≤

[∑m
j=1 Γ(1− γj)t

−γj
0

]N

b(1− γj∗)Nc!
≈ cN

N!

where γj∗ = max(γj).
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Stochastic Representation

Lemma
Let N be a standard Poisson process with jumps (τi)i∈N and τT is the
last jump before T . where Xπ,y is the Euler scheme with grids (τi)i∈N
and initial point y.

P∗t g(y) = eTEP

g(Xπ,y
T )

NT−1∏
j=0

θ̂τj+1−τj (X
π,y
τj+1

,Xπ,y
τj

)


By duality, for h ∈ L1(R) and Z an independent random variable with
density h, then

Pth(x) = E

p
Xπ,ZτT
T−τT

(Xπ,Z , x)

NT−1∏
i=0

θ̂τj+1−τj (X
π,Z
τj+1

,Xπ,Z
τj

)
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Conclusion

Comments:
Similar representation of the density can be obtained
The proof of convergence uses similar idea, accept one step
iteration does not work.

Future work:
Z is multidimensional.
Z is multidimensional symmetric stable Lévy.
Simulation.
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Thank you all for listening!
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