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I. A multi-asset Black-Scholes Market

e Risky assets: (S},....,5%), t € [0,T]

| | dy .
dS} = \(t,Sp)Sidt + > ~*(t,S)SEdWE, i=1,...d
k=1
S > 0,

W is a di-dimensional Wiener process, A = (¢, z), ¥4 =
~% (t, z) are bounded measurable functions on [0, T] xR?.
e Bank account: (B;), t € [0,T]

dB; = X(t,Sy)Bydt, Bg =1,

A = A\(t,z) is non-negative measurable and bounded.
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Assumption 1. For f = (\,v)
(i) there is a constant C s.t.

ft,z)| <C zeRY tel0,T].

(ii) For each R > 0O there is a constant Cp s.t.

f(t,2) — f(t,y)| <CRrlz—y| =z,y€eRY tel0,T].
Proposition 1. Let Assumption 1 hold. Then there is
a unique solution (Bi, St)sc(o,r], and a.s. By >0, 5{ >0
forall te [0,T], 1 =1,...,d.

Proof: By It0's theorem there is a unique solution
(B,S), and by Itdé’'s formula

t ) ) t . t .
By=oxp([ Ardr), i =shexp([ phdr+ [ Fawh),

Where >‘7“ — )\(7“, ST)! /772“k — ’yz‘k(ra ST)! p%‘ — AT—% Zk |/7?72k|2
[]
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European type option:

A contract which can be exercised at T' by the holder
and at time T makes a loss of h(Sp) to the seller, where
h=h(x), x € IR%‘_il_ iS @ non-negative function, the pay-off
function, given in the contract.

Examples: d = 1, \(t,x) = constant, K is a constant,

e European Call: h(z) = (z — K)T,

e European Put: h(z) = (K —z)T, z€R,.

American type option:

A contract exercised at any stopping time » < T by the
holder of the contract, and when it is exercised at 7 it
causes a loss of h(Sr) to the seller of the contract.

Aim: Calculate numerically the ‘fair price’ of European
and American type options.



2. Calculation of prices. Smooth data

Set Hp = [0,T] x R%. Let m > 0 be and integer.
Assumption 2. X,y € CO™(Hp), h € C™(R%), and there
are constants ', n > 0 such that for k=0,1,....m

IDE(O\ v, R)| <O+ |=|™) te[0,T], z € RY

Theorem 2. Let Assumptions 1 and 2 hold with m > 2.
Then Cy = v(t,St), where for ¢t € [0,T]

T t,x
v(t,z) = E{e” J& ACrSy )drh(Sélx)}, r € RY.

(Sﬁ’x)re[t7T]: solution with initial condition S; = x.

M. Giles, K. Ritter,..



Set £ = z'al o (4, ZU)Dij+£Ci)\(t, x)D;—X(t,x), aa = ~vy*/2

Theorem 3. Let Assumptions 1-3 hold with m > 2.
Then v is the unique classical solution of

Dw(t,z) 4+ Lo(t,z) =0, (t,z) €[0,T] x RY=: Hy (1)
(T, z) = h(z), =z eR% (2)

Proof: v € CL2(Hy), |(v, Dyv, D2v)| < N(1 + |z|P). By
It6’'s formula with 7 =7 = inf{r > ¢: |S}§’x| >r} AT
T T
By e Ji As WSy, Sr) = v(t,z) + Et,a:/ Div(s, Ss) + Lv(s, Ss) ds
t
= v(t, )

: : —fT)\ ds
Letting r — oo gives E; ze™ Jt 5h(S7) = u(t, x). ]



Challenges:

e Growing coefficients: a®*zizl, Az’

e Growing terminal data: h

e Infinite domain: RY

e Equation (1) may degenerate

e In important cases h is only Lipschitz continuous



e LOog transformation

Consider the process X; = log Sy := (log Sf, ..., log S¢).
By It0's formula

dXi = (A(t, Sp) — a(t, Sp) dt + 3 (¢, Sp) AW,
k

where a¥ = (yy*)%/2.

Hence Sﬁ_ eXt = (eXl X2 t) and u(t,x) = v(t, e*),

et = (e, ... e ), z € RY, is the cIaSS|caI solution of
Duu(t,z) + Lu(t,z) =0, (t,z) € [0,T] x R* =: Hy (3)
u(T,x) = g(z) := h(e®), xR, (4)

where L .= a,ijDz-j +b'D; —e, oY(t,x) 1= ~Y(t,er),
a = %00*, bi(t, z) 1= A, e%)—a"(t,z), c(t,z) = At ).

Notice: a¥, b%, ¢ are bounded, g is unbounded.



e Truncation

Let R > 0, k = kr(x) ‘smooth indicator’ of Bpg,
k(z) €[0,1], k(z) =1 z € B = {z € R : |z| < R},
k(x) =0 for |z| > R+ 1.

Set (op,bp,cr,9r) = k(o,b,c,g) and consider

Diu(t,z) + Lpu(t,z) =0, (t,xz) € Hp (5)
u(T,z) = gp(x), x¢€ Rd, (6)

where
LR:a%Dij_l_bjf{Di_cRa CLR:%O'RO'E.
Then (5)-(6) has a unique classical solution upg.
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e Localisation error

Theorem 4. There is v = v(K,T) such that for r =vR
1r2
sup sup |u(t,z) —ugr(t,xz)| < Ne 3l tpvit
te[0,T7] |z|<r
with N = N(K,p,T).
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Proof:

T t,x
u(t,z) = E{e” Ji (s, Xs )drg(X%x)} =: EU,

T t,x
up(t,z) = E{e” )i REXDdrg (vETYY = BUp,

where (Xt’x,YSt’x)SE[t,T] solve
dXs = b(s, Xs)ds + o(s, Xs) dWs,

dYS — bR(S, Ys) ds _I_ UR(S, Ys) dWS

with X% = Yt% = z. Notice that X, = Y,* for ¢t < 7p,
where

p = inf{s € [t,T] : | X\%| > R}.

Hence

|'U/(t, CU)—UR<t, 33)| S QE(U]'TRST) — QE(UlsuDSE[t,T] |X§733|2R)
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E(U1 . can be estimated by the help of
( SUD e[, 7] | Xs IZR) Y P

the following lemma.

Lemma. Consider dZ; = B¢ dt + o dWh,
where |B| < K, |o| < K. Then there is v = v(K,T) such
that

E sup e’%i < NEe%6
te[0,T]

with N = N(K). If X; is one-dimensional, then

Esup et < NEe?0
t<T

with N = N(K,T).
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e Finite difference approximations

We consider finite difference schemes for u := up,

Dyu+ Lu =0 (7)
u(T,z) = g(x), (8)

where g :==gp, L := L = aijDij + D, — ¢,

(a,b,c) ;= (ap,bgr,cRr).

For simplicity of presentation we consider finite differ-
ence schemes in the spatial variable x € R4,
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Let Ay C R\ 0, A:=A;U—A;. For h # 0 define
Gh={hO1+ X+ ... +X):NeEAR=1,2 ..}

and the difference operators

Shpap(z) = (p(x+ hX) —o(x))/h
for A € A. Consider

Dtuh(t, x) + Lyup, =0, te& [0,T],x € Gy, (9)
up(T,z) = g(z) =€ Gp, (10)

where Lj, is a differential operator with coefficients van-
ishing for |z| > R.

Notice that (9) is a finite system of ODEs for (uy, (-, z))zeq, -
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(a) Monotone schemes

Assume A1 = —A71. Consider
L= > @0_pr0pr+ D, padpr—c
AEN A€

with some functions ¢y, py on Hp = [0,T] x R%.

Assumption 1. (consistency) ¢, = p) = 0 for |z| > R,

¥y = Z q>\)\i)\j, bl = Z p>\)\i, 1,7 =1,..,d,
AEN AEN

Assumption 2. (regularity) gy, py,c, g € CO™([0, T] xR%),
S (ID7qy|* 4+ |DPpy|?) + |DIc|* + |DIgl* < K, j<m
AeNq

Assumption 3. gy + hpy > 0 for all h € (0, hg], XA € N\1.
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e Rate of convergence, Richardson extrapolation

Aim: For k>0, h € (0, hg]
—ul) 4 pFtly, (11)

for x € Gy, t € [0,T], where 1(0) is the solution of (7)-
(8), vV, ... k) and r are some functions on [0, T] x R4
u(l),...,u(k), are independent of A and

sup sup [rp| < Nlg|m (12)
tc[0,T] x€Gy,

with a constant N independent of h.
Here

™m
2 12
lgl;m = sup ) |D’g|”.



T his implies

(i) k= 0 gives sup,cio 7 SUPzeq), lup — uf < Nh

(ii) £k > 1 gives Richardson extrapolation: take mesh-
sizes h,h/2,...,h/2%, calculate uy, Up 21+, ok AN set

k

up = ), AjUp /255
=0

where (\g, ..., \r) = (1,0,..0) V-1, vii = 2=(=1)(-1)
Then SUptE[O,T] SquEGh |’ljh — u\ < Nhk_l_l

(iii) If u(?) = 0 for odd j < k, we set @i, = XF_o Xjuy, oy,
where k= [(k—1)/2], Qo, ..., A\x) = (1,...,00V 1,

Vil = 4—(=1)G-1) Then

sup sup |a, —u| < NRFTL,
te[0,T] zelGy,
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Theorem 5. (I1.G & N.V. Krylov 2011) Let Assump-
tions (1)-(3) hold. Let K> 0. Then

(a) expansion (11) holds provided m > 2k + 3,

(b) if kis odd, m > 2k + 2 and p_, = —p, for A € Ay,
then expansion (11) holds and «() = 0 for odd
J < k.

Proof: We consider finite difference schemes
Dyup,(t,2) + Lpup, + f =0, t€[0,T],z € R
up(T,z) = g(z) =z €RY,

The key step in the proof is to prove the following
estimate: there is N = N(K,d,T, m,/\1) such that

[uplm < N[ flm + |glm),
where |uplm 1= Y7o SUPc(o 77 pcrd | DRy |.
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e Other schemes

A €N CRAN\ {0}, 6% = (Spn+0_n1)/2,

Lp= S oM+ Y oMol —c
A\, ueN] AeN
Diup(t,x) + Lpup, =0, te€[0,T],z € Gy, (13)
up(T,x) = g(x) =€ Gy, (14)
Assumptions:
(i) aM =bp*}=0 for || > R, X\ pu€N
a = Y ep, HPAN, b= T\ cp, BN

(i) |Dic*| < K, |DIb < K, |Dle| < K, |Dlg| < K
for : < max(m,?2), max(m,1), I <m.

(i) |glm = lglgm < oo
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Theorem 6. (I.G. 2013) Let £ > 0. If Assumptions
(i)-(iii) hold with with m > 2k + 3+ d/2 then expansion
(11) holds. If k is odd and Assumptions (i)-(iii) hold
with m > 2k + 2 4 d/2, then expansion (11) holds and
u(J) = 0 for odd j < m.
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e Rate of convergence. Lipschitz continuous data

Monotone schemes, A\ = —/\q
L= > @0_p 0=+ D padpr—c
AeN1 AEN

Assumptions

(1) Consistency

(2) for f = (\/qx,px 9,c) we have |f| < K,
1f(z) — f(y)| < K|lx—y| forte[0,T] and z € R?

(3) g\ > 0, py >0 for all A e A\q
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Theorem 7. Assumptions (1), (2') and (3) hold.

sup sup |up —u| < Nh1/2  for all h >0,
te[0,T] xeGy,

where N = N(K,d,T,N\) and
T t,x
u(t,z) = B{e™ i (XD drg(yhoyy
where (Yst’””)se[t,T] solves
dYS — b(S, Ys) dS _I_ O'(S, Ys) dWS

with Y% = z.

(H. Dong and N.V. Krylov (2005))

then



II. Finite difference schemes for American options

For the price A; of an American type option with pay-off
function we have A; = w(t, St), where

T t,x
w(t,x) = sup E{e” Ji ACr,S; )drh(Swa)}, r e R3.

where T,I' is the set of stopping time 7 € [t,T]. After
the log transformation we get

T t,x
u(t,z) .= w(t,e®) = E sup E{e_ft e(rXr )drg(Xf.’x)}
TEET

where, as before, Xﬁ’x = |log Sﬁ’ex, satisfies for s € [¢,T]

dXs = b(s,X)dt 4+ o(s, Xs)dWs, X" =z
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Truncation: (op,bp,cr,9r) = kg(o,b,c,g).

T t,x
up(t,x) == E sup E{e” i cr(nYr™)drgpytayy,
TEET

where Y% satisfies
dYs = op(s,Ys) ds + bp(s, Xs) dWs, Y/" ==
Localisation error:
There is v = v(K,T) such that for r = vR
150
sup sup |u(t,z) —ugr(t,z)| < Ne 3t v
te[0,T] [z[<r

with N = N(K,p, T).
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Finite difference approximations for up

Notation: f := (o,b,¢,9) .= (oR,br,cRr, 9gR).

Let 7>0. Set T :={itANT ::i=0,1,2...}.
Define 6 by

éro(t,z) = (et +7,2) —p(t,z)) /7 Ift+7<T
oro(t,z) = (p(T,z) —p(t,x))/7 ift+7>T
Monotone fully discretised scheme:

max[érurp + Lpurpg —urp]l =0, teTr e Gy
urp(T,2) = g(z) € Gy,
where

L= > @0_p 0nr+ D, padpr—c
AEN AENL
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Assumptions:
(1) Consistency: a¥ = S\ ¢y A A, b = 3\ pr X!

(2) Regularity: for f = (y/qx,Px, ¢, g) we have |f| < K,

f(t2)—f(s,2)| < |t—s|Y2,  |Fz)—F(y)| < Klz—y
(2) g» >0, py=>0.

Theorem 8. Let Assumptions (1)-(3) hold. Then

max max |u, ,(t,z) — u(t,z)| < N(r1/% 4+ h1/?).
telr zeGy, ’

The proof is an adaptation of N.V. Krylov method from
Krylov (2005). See 1.G. & D. Siska (2009), D. Siska
(2012).
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