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I. A multi-asset Black-Scholes Market

• Risky assets: (S1
t , ...., S

d
t ), t ∈ [0, T ]

dSit = λ(t, St)S
i
t dt+

d1∑
k=1

γik(t, St)S
i
t dW

k
t , i = 1, ..., d

Si0 > 0,

W is a d1-dimensional Wiener process, λ = λ(t, x), γij =

γij(t, x) are bounded measurable functions on [0, T ]×Rd.

• Bank account: (Bt), t ∈ [0, T ]

dBt = λ(t, St)Bt dt, B0 = 1,

λ = λ(t, x) is non-negative measurable and bounded.
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Assumption 1. For f = (λ, γ)
(i) there is a constant C s.t.

|f(t, x)| ≤ C x ∈ Rd, t ∈ [0, T ].

(ii) For each R > 0 there is a constant CR s.t.

|f(t, x)− f(t, y)| ≤ CR|x− y| x, y ∈ Rd, t ∈ [0, T ].

Proposition 1. Let Assumption 1 hold. Then there is
a unique solution (Bt, St)t∈[0,T ], and a.s. Bt > 0, Sit > 0
for all t ∈ [0, T ], i = 1, ..., d.
Proof: By Itô’s theorem there is a unique solution
(B,S), and by Itô’s formula

Bt = exp(
∫ t

0
λr dr), Sit = Si0 exp(

∫ t

0
ρir dr+

∫ t

0
γikr dW k

r ),

where λr = λ(r, Sr), γikr = γik(r, Sr), ρir = λr−1
2
∑
k |γikr |2.

�
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European type option:
A contract which can be exercised at T by the holder
and at time T makes a loss of h(ST ) to the seller, where
h = h(x), x ∈ Rd+ is a non-negative function, the pay-off
function, given in the contract.
Examples: d = 1, λ(t, x) = constant, K is a constant,
• European Call: h(x) = (x−K)+,
• European Put: h(x) = (K − x)+, x ∈ R+.

American type option:
A contract exercised at any stopping time τ ≤ T by the
holder of the contract, and when it is exercised at τ it
causes a loss of h(Sτ) to the seller of the contract.

Aim: Calculate numerically the ‘fair price’ of European
and American type options.
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2. Calculation of prices. Smooth data

Set HT = [0, T ]× Rd. Let m ≥ 0 be and integer.
Assumption 2. λ, γ ∈ C0,m(HT ), h ∈ Cm(Rd), and there
are constants C, n ≥ 0 such that for k = 0,1, ...,m

|Dk
x(λ, γ, h)| ≤ C(1 + |x|n) t ∈ [0, T ], x ∈ Rd.

Theorem 2. Let Assumptions 1 and 2 hold with m ≥ 2.
Then Ct = v(t, St), where for t ∈ [0, T ]

v(t, x) = E{e−
∫ T
t λ(r,St,xr ) drh(St,xT )}, x ∈ Rd+.

(St,xr )r∈[t,T ]: solution with initial condition St = x.

Monte Carlo, Multi-level Monte Carlo methods.
M. Giles, K. Ritter,..
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Set L = xixjαij(t, x)Dij+xiλ(t, x)Di−λ(t, x), α = γγ∗/2

Theorem 3. Let Assumptions 1-3 hold with m ≥ 2.
Then v is the unique classical solution of

Dtv(t, x) + Lv(t, x) = 0, (t, x) ∈ [0, T ]× Rd =: HT (1)

v(T, x) = h(x), x ∈ Rd. (2)

Proof: v ∈ C1,2(HT ), |(v,Dxv,D2
xv)| ≤ N(1 + |x|p). By

Itô’s formula with τ = τr = inf{r ≥ t : |St,xr | ≥ r} ∧ T

Et,xe
−
∫ τ
t λs dsv(τ, Sτ) = v(t, x) + Et,x

∫ τ

t
Dtv(s, Ss) + Lv(s, Ss) ds

= v(t, x)

Letting r →∞ gives Et,xe
−
∫ T
t λs dsh(ST ) = u(t, x). �

Use finite differences to solve (1)-(2).
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Challenges:

• Growing coefficients: αikxixj, λxi

• Growing terminal data: h

• Infinite domain: Rd

• Equation (1) may degenerate

• In important cases h is only Lipschitz continuous
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• Log transformation

Consider the process Xt = logSt := (logS1
t , ..., logSdt ).

By Itô’s formula

dXi
t = (λ(t, St)− αii(t, St)) dt+

∑
k

γik(t, St) dW
k
t ,

where αii = (γγ∗)ii/2.
Hence St = eXt := (eX

1
t , eX

2
t , ..., eX

d
t ) and u(t, x) = v(t, ex),

ex = (ex
1
, ..., ex

d
), x ∈ Rd, is the classical solution of

Dtu(t, x) + Lu(t, x) = 0, (t, x) ∈ [0, T ]× Rd =: HT (3)

u(T, x) = g(x) := h(ex), x ∈ Rd, (4)

where L := aijDij + biDi − c, σij(t, x) := γij(t, ex),

a = 1
2σσ

∗, bi(t, x) := λ(t, ex)−aii(t, x), c(t, x) := λ(t, ex).

Notice: aij, bi, c are bounded, g is unbounded.
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• Truncation

Let R > 0, κ = κR(x) ‘smooth indicator’ of BR,

κ(x) ∈ [0,1], κ(x) = 1 x ∈ BR = {x ∈ Rd : |x| ≤ R},
κ(x) = 0 for |x| ≥ R+ 1.

Set (σR, bR, cR, gR) = κ(σ, b, c, g) and consider

Dtu(t, x) + LRu(t, x) = 0, (t, x) ∈ HT (5)

u(T, x) = gR(x), x ∈ Rd, (6)

where

LR = a
ij
RDij + biRDi − cR, aR = 1

2σRσ
∗
R.

Then (5)-(6) has a unique classical solution uR.
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• Localisation error

Theorem 4. There is ν = ν(K,T ) such that for r = νR

sup
t∈[0,T ]

sup
|x|≤r

|u(t, x)− uR(t, x)| ≤ Ne−
1
3R

2+pνR

with N = N(K, p, T ).
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Proof:

u(t, x) = E{e−
∫ T
t c(s,Xt,x

s ) drg(Xt,x
T )} =: EU,

uR(t, x) = E{e−
∫ T
t cR(s,Y t,xs ) drgR(Y t,xT )} =: EUR,

where (Xt,x, Y
t,x
s )s∈[t,T ] solve

dXs = b(s,Xs) ds+ σ(s,Xs) dWs,

dYs = bR(s, Ys) ds+ σR(s, Ys) dWs.

with Xt,x = Y t,x = x. Notice that Xt,x
t = Y

t,x
t for t ≤ τR,

where

τR = inf{s ∈ [t, T ] : |Xt,x
s | ≥ R}.

Hence

|u(t, x)−uR(t, x)| ≤ 2E(U1τR≤T ) = 2E(U1
sups∈[t,T ] |X

t,x
s |≥R

).
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E(U1
sups∈[t,T ] |X

t,x
s |≥R

) can be estimated by the help of

the following lemma.

Lemma. Consider dZt = βt dt+ σt dWt,

where |β| ≤ K, |σ| ≤ K. Then there is ν = ν(K,T ) such

that

E sup
t∈[0,T ]

eνZ
2
t ≤ NEeZ

2
0

with N = N(K). If Xt is one-dimensional, then

E sup
t≤T

eZt ≤ NEeZ0

with N = N(K,T ).
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• Finite difference approximations

We consider finite difference schemes for u := uR,

Dtu+ Lu = 0 (7)

u(T, x) = g(x), (8)

where g := gR, L := LR = aijDij + biDi − c,
(a, b, c) := (aR, bR, cR).

For simplicity of presentation we consider finite differ-

ence schemes in the spatial variable x ∈ Rd.
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Let Λ1 ⊂ Rd \ 0, Λ := Λ1 ∪ −Λ1. For h 6= 0 define

Gh = {h(λ1 + λ2 + ...+ λn) : λi ∈ Λ, n = 1,2, ...}.

and the difference operators

δh,λϕ(x) = (ϕ(x+ hλ)− ϕ(x))/h

for λ ∈ Λ. Consider

Dtuh(t, x) + Lhuh = 0, t ∈ [0, T ], x ∈ Gh (9)

uh(T, x) = g(x) x ∈ Gh, (10)

where Lh is a differential operator with coefficients van-

ishing for |x| ≥ R.

Notice that (9) is a finite system of ODEs for (uh(·, x))x∈Gh.
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(a) Monotone schemes

Assume Λ1 = −Λ1. Consider

Lh =
∑
λ∈Λ1

qλδ−h,λδh,λ +
∑
λ∈Λ1

pλδh,λ − c

with some functions qλ, pλ on HT = [0, T ]× Rd.

Assumption 1. (consistency) qλ = pλ = 0 for |x| ≥ R,

aij =
∑
λ∈Λ1

qλλ
iλj, bi =

∑
λ∈Λ1

pλλ
i, i, j = 1, .., d,

Assumption 2. (regularity) qλ, pλ, c, g ∈ C0,m([0, T ]×Rd),∑
λ∈Λ1

(|Djqλ|2 + |Djpλ|2) + |Djc|2 + |Djg|2 ≤ K, j ≤ m

Assumption 3. qλ + hpλ ≥ 0 for all h ∈ (0, h0], λ ∈ Λ1.

16



• Rate of convergence, Richardson extrapolation

Aim: For k ≥ 0, h ∈ (0, h0]

uh = u(0) +
k∑

j=1

hj

j!
u(j) + hk+1rh, (11)

for x ∈ Gh, t ∈ [0, T ], where u(0) is the solution of (7)-
(8), u(1),...,u(k) and rh are some functions on [0, T ]×Rd
u(1),...,u(k), are independent of h and

sup
t∈[0,T ]

sup
x∈Gh

|rh| ≤ N |g|m (12)

with a constant N independent of h.
Here

|g|2m = sup
x∈Rd

m∑
j=0

|Djg|2.



This implies
(i) k = 0 gives supt∈[0,T ] supx∈Gh |uh − u| ≤ Nh
(ii) k ≥ 1 gives Richardson extrapolation: take mesh-

sizes h, h/2, ..., h/2k, calculate uh, uh/2,...,uh/2k and set

ūh =
k∑

j=0

λjuh/2j ,

where (λ0, ..., λk) = (1,0, ...0)V −1, V ij = 2−(i−1)(j−1).
Then supt∈[0,T ] supx∈Gh |ūh − u| ≤ Nh

k+1

(iii) If u(j) = 0 for odd j ≤ k, we set ũh =
∑k̃
j=0 λ̃juh/2j,

where k̃ = [(k − 1)/2], (λ̃0, ..., λ̃k) = (1, ...,0)Ṽ −1,

Ṽ ij = 4−(i−1)(j−1). Then

sup
t∈[0,T ]

sup
x∈Gh

|ũh − u| ≤ Nhk+1.
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Theorem 5. (I.G & N.V. Krylov 2011) Let Assump-
tions (1)-(3) hold. Let k ≥ 0. Then

(a) expansion (11) holds provided m ≥ 2k + 3,

(b) if k is odd, m ≥ 2k + 2 and p−λ = −pλ for λ ∈ Λ1,
then expansion (11) holds and u(j) = 0 for odd
j ≤ k.

Proof: We consider finite difference schemes

Dtuh(t, x) + Lhuh + f = 0, t ∈ [0, T ], x ∈ Rd

uh(T, x) = g(x) x ∈ Rd,
The key step in the proof is to prove the following
estimate: there is N = N(K, d, T,m,Λ1) such that

|uh|m ≤ N(|f |m + |g|m),

where |uh|m :=
∑m
k=0 supt∈[0,T ],x∈Rd |D

kuh|.
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• Other schemes

λ ∈ Λ1 ⊂ Rd \ {0}, δhλ = (δh,λ + δ−h,λ)/2,

Lh =
∑

λ,µ∈Λ1

aλµδhλ +
∑
λ∈Λ1

bλδhλ − c

Dtuh(t, x) + Lhuh = 0, t ∈ [0, T ], x ∈ Gh (13)

uh(T, x) = g(x) x ∈ Gh, (14)

Assumptions:
(i) aλµ = bλ = 0 for |x| ≥ R, λ, µ ∈ Λ1

aij =
∑
λ∈Λ1

aλµλiλj, bi =
∑
λ∈Λ1

bλλi

(ii) |Diaλµ| ≤ K, |Djbλ| ≤ K, |Dlc| ≤ K, |Dlg| ≤ K
for i ≤ max(m,2), max(m,1), l ≤ m.

(iii) |g|m := |g|Hm <∞
19



Theorem 6. (I.G. 2013) Let k ≥ 0. If Assumptions

(i)-(iii) hold with with m > 2k+ 3 + d/2 then expansion

(11) holds. If k is odd and Assumptions (i)-(iii) hold

with m > 2k + 2 + d/2, then expansion (11) holds and

u(j) = 0 for odd j ≤ m.
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• Rate of convergence. Lipschitz continuous data

Monotone schemes, Λ1 = −Λ1

Lh =
∑
λ∈Λ1

qλδ−h,λδh,λ +
∑
λ∈Λ

pλδh,λ − c

Assumptions

(1) Consistency

(2) for f = (
√
qλ, pλ, g, c) we have |f | ≤ K,

|f(x)− f(y)| ≤ K|x− y| for t ∈ [0, T ] and x ∈ Rd

(3) qλ ≥ 0, pλ ≥ 0 for all λ ∈ Λ1
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Theorem 7. Assumptions (1), (2’) and (3) hold. then

sup
t∈[0,T ]

sup
x∈Gh

|uh − u| ≤ Nh1/2 for all h > 0,

where N = N(K, d, T,Λ) and

u(t, x) := E{e−
∫ T
t c(s,Y t,xs ) drg(Y t,xT )}

where (Y t,xs )s∈[t,T ] solves

dYs = b(s, Ys) ds+ σ(s, Ys) dWs.

with Y
t,x
t = x.

(H. Dong and N.V. Krylov (2005))



II. Finite difference schemes for American options

For the price At of an American type option with pay-off

function we have At = w(t, St), where

w(t, x) = sup
τ∈T Tt

E{e−
∫ τ
t λ(r,St,xr ) drh(St,xτ )}, x ∈ Rd+.

where T Tt is the set of stopping time τ ∈ [t, T ]. After

the log transformation we get

u(t, x) := w(t, ex) = E sup
τ∈T Tt

E{e−
∫ τ
t c(r,X

t,x
r ) drg(Xt,x

τ )}

where, as before, Xt,x
s = logSt,e

x

s , satisfies for s ∈ [t, T ]

dXs = b(s,X) dt+ σ(s,Xs) dWs, X
t,x
t = x.

22



Truncation: (σR, bR, cR, gR) = κR(σ, b, c, g).

uR(t, x) := E sup
τ∈T Tt

E{e−
∫ τ
t cR(r,Y t,xr ) drgR(Y t,xτ )},

where Y t,x satisfies

dYs = σR(s, Ys) ds+ bR(s,Xs) dWs, Y
t,x
t = x.

Localisation error:

There is ν = ν(K,T ) such that for r = νR

sup
t∈[0,T ]

sup
|x|≤r

|u(t, x)− uR(t, x)| ≤ Ne−
1
3R

2+pνR

with N = N(K, p, T ).
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Finite difference approximations for uR

Notation: f := (σ, b, c, g) := (σR, bR, cR, gR).

Let τ > 0. Set Tτ := {iτ ∧ T : i = 0,1,2...}.
Define δτ by

δτϕ(t, x) = (ϕ(t+ τ, x)− ϕ(t, x))/τ if t+ τ < T

δτϕ(t, x) = (ϕ(T, x)− ϕ(t, x))/τ if t+ τ ≥ T

Monotone fully discretised scheme:

max[δτuτ,h + Lhuτ,hg − uτ,h] = 0, t ∈ Tτ , x ∈ Gh
uτ,h(T, x) = g(x) x ∈ Gh,

where

Lh =
∑
λ∈Λ1

qλδ−h,λδh,λ +
∑
λ∈Λ1

pλδh,λ − c
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Assumptions:

(1) Consistency: aij =
∑
λ qλλ

iλj, bi =
∑
λ pλλ

i

(2) Regularity: for f = (
√
qλ, pλ, c, g) we have |f | ≤ K,

|f(t, x)−f(s, x)| ≤ |t−s|1/2, |f(t, x)−f(t, y)| ≤ K|x−y|

(2) qλ ≥ 0, pλ ≥ 0.

Theorem 8. Let Assumptions (1)-(3) hold. Then

max
t∈Tτ

max
x∈Gh

|uτ,h(t, x)− u(t, x)| ≤ N(τ1/4 + h1/2).

The proof is an adaptation of N.V. Krylov method from

Krylov (2005). See I.G. & D. Šǐska (2009), D. Šǐska

(2012).
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