Stochastic Processes and their Statistics in Finance Naha, Okinawa

November 1, 2013

On finite difference approximations in option pricing

István Gyöngy

School of Mathematics and Maxwell Institute Edinburgh University

Based on joint works with N.V. Krylov, with D. Šiška and with M. Gerencsér

- I. A multi-asset Black-Scholes market
- Case 1. Smooth coefficients and smooth data
- Finite difference schemes. European options
- Rate of convergence,
- Richardson extrapolation
- Case 2. Lipschitz continuous data
- II. Finite diff. schemes for American options

I. A multi-asset Black-Scholes Market

• Risky assets: $(S_t^1, ..., S_t^d)$, $t \in [0, T]$

$$dS_t^i = \lambda(t, S_t) S_t^i dt + \sum_{k=1}^{d_1} \gamma^{ik}(t, S_t) S_t^i dW_t^k, \quad i = 1, ..., d$$

$$S_0^i > 0,$$

W is a d_1 -dimensional Wiener process, $\lambda = \lambda(t, x)$, $\gamma^{ij} = \gamma^{ij}(t, x)$ are bounded measurable functions on $[0, T] \times \mathbb{R}^d$.

• Bank account: $(B_t), t \in [0, T]$

$$dB_t = \lambda(t, S_t)B_t dt, \quad B_0 = 1,$$

 $\lambda = \lambda(t, x)$ is non-negative measurable and bounded.

Assumption 1. For $f = (\lambda, \gamma)$ (i) there is a constant *C* s.t.

$$|f(t,x)| \le C$$
 $x \in \mathbb{R}^d$, $t \in [0,T]$.

(ii) For each R > 0 there is a constant C_R s.t.

$$|f(t,x) - f(t,y)| \le C_R |x-y| \quad x,y \in \mathbb{R}^d, \quad t \in [0,T].$$

Proposition 1. Let Assumption 1 hold. Then there is a unique solution $(B_t, S_t)_{t \in [0,T]}$, and a.s. $B_t > 0$, $S_t^i > 0$ for all $t \in [0,T]$, i = 1, ..., d.

Proof: By Itô's theorem there is a unique solution (B, S), and by Itô's formula

$$B_{t} = \exp(\int_{0}^{t} \lambda_{r} dr), \quad S_{t}^{i} = S_{0}^{i} \exp(\int_{0}^{t} \rho_{r}^{i} dr + \int_{0}^{t} \gamma_{r}^{ik} dW_{r}^{k}),$$

where $\lambda_{r} = \lambda(r, S_{r}), \ \gamma_{r}^{ik} = \gamma^{ik}(r, S_{r}), \ \rho_{r}^{i} = \lambda_{r} - \frac{1}{2} \sum_{k} |\gamma_{r}^{ik}|^{2}.$

European type option:

A contract which can be exercised at T by the holder and at time T makes a loss of $h(S_T)$ to the seller, where $h = h(x), x \in \mathbb{R}^d_+$ is a non-negative function, the *pay-off* function, given in the contract.

Examples: d = 1, $\lambda(t, x) = constant$, K is a constant,

- European Call: $h(x) = (x K)^+$,
- European Put: $h(x) = (K x)^+$, $x \in \mathbb{R}_+$.

American type option:

A contract exercised at any stopping time $\tau \leq T$ by the holder of the contract, and when it is exercised at τ it causes a loss of $h(S_{\tau})$ to the seller of the contract.

Aim: Calculate numerically the 'fair price' of European and American type options.

2. Calculation of prices. Smooth data

Set $H_T = [0,T] \times \mathbb{R}^d$. Let $m \ge 0$ be and integer. Assumption 2. $\lambda, \gamma \in C^{0,m}(H_T)$, $h \in C^m(\mathbb{R}^d)$, and there are constants C, $n \ge 0$ such that for k = 0, 1, ..., m

$$|D_x^k(\lambda,\gamma,h)| \le C(1+|x|^n)$$
 $t \in [0,T], x \in \mathbb{R}^d$

Theorem 2. Let Assumptions 1 and 2 hold with $m \ge 2$. Then $C_t = v(t, S_t)$, where for $t \in [0, T]$

$$v(t,x) = E\{e^{-\int_t^T \lambda(r,S_r^{t,x}) dr} h(S_T^{t,x})\}, \quad x \in \mathbb{R}^d_+.$$

 $(S_r^{t,x})_{r \in [t,T]}$: solution with initial condition $S_t = x$.

Monte Carlo, Multi-level Monte Carlo methods. M. Giles, K. Ritter,..

Set
$$\mathcal{L} = x^i x^j \alpha^{ij}(t, x) D_{ij} + x^i \lambda(t, x) D_i - \lambda(t, x)$$
, $\alpha = \gamma \gamma^*/2$

Theorem 3. Let Assumptions 1-3 hold with $m \ge 2$. Then v is the unique classical solution of

$$D_t v(t, x) + \mathcal{L}v(t, x) = 0, \quad (t, x) \in [0, T] \times \mathbb{R}^d =: H_T \quad (1)$$
$$v(T, x) = h(x), \quad x \in \mathbb{R}^d. \tag{2}$$

Proof: $v \in C^{1,2}(H_T)$, $|(v, D_x v, D_x^2 v)| \leq N(1 + |x|^p)$. By Itô's formula with $\tau = \tau_r = \inf\{r \geq t : |S_r^{t,x}| \geq r\} \wedge T$

$$E_{t,x}e^{-\int_t^\tau \lambda_s \, ds} v(\tau, S_\tau) = v(t,x) + E_{t,x} \int_t^\tau D_t v(s, S_s) + Lv(s, S_s) \, ds$$
$$= v(t,x)$$

Letting $r \to \infty$ gives $E_{t,x}e^{-\int_t^T \lambda_s \, ds}h(S_T) = u(t,x).$

Use finite differences to solve (1)-(2).

7

Challenges:

- Growing coefficients: $lpha^{ik}x^ix^j$, λx^i
- Growing terminal data: *h*
- Infinite domain: \mathbb{R}^d
- Equation (1) may degenerate
- In important cases h is only Lipschitz continuous

Log transformation

Consider the process $X_t = \log S_t := (\log S_t^1, ..., \log S_t^d)$. By Itô's formula

$$dX_t^i = (\lambda(t, S_t) - \alpha^{ii}(t, S_t)) dt + \sum_k \gamma^{ik}(t, S_t) dW_t^k,$$

where $\alpha^{ii} = (\gamma \gamma^*)^{ii}/2$. Hence $S_t = e^{X_t} := (e^{X_t^1}, e^{X_t^2}, ..., e^{X_t^d})$ and $u(t, x) = v(t, e^x)$, $e^x = (e^{x^1}, ..., e^{x^d})$, $x \in \mathbb{R}^d$, is the classical solution of

$$D_t u(t, x) + Lu(t, x) = 0, \quad (t, x) \in [0, T] \times \mathbb{R}^d =: H_T \quad (3)$$
$$u(T, x) = g(x) := h(e^x), \quad x \in \mathbb{R}^d, \quad (4)$$

where $L := a^{ij}D_{ij} + b^iD_i - c$, $\sigma^{ij}(t, x) := \gamma^{ij}(t, e^x)$,

$$a = \frac{1}{2}\sigma\sigma^*, \quad b^i(t,x) := \lambda(t,e^x) - a^{ii}(t,x), \quad c(t,x) := \lambda(t,e^x).$$

Notice: a^{ij} , b^i , c are bounded, g is unbounded.

Truncation

Let R > 0, $\kappa = \kappa_R(x)$ 'smooth indicator' of B_R , $\kappa(x) \in [0, 1]$, $\kappa(x) = 1$ $x \in B_R = \{x \in \mathbb{R}^d : |x| \le R\}$, $\kappa(x) = 0$ for $|x| \ge R + 1$.

Set $(\sigma_R, b_R, c_R, g_R) = \kappa(\sigma, b, c, g)$ and consider

$$D_t u(t,x) + L_R u(t,x) = 0, \quad (t,x) \in H_T$$
 (5)

$$u(T,x) = g_R(x), \quad x \in \mathbb{R}^d, \tag{6}$$

where

$$L_R = a_R^{ij} D_{ij} + b_R^i D_i - c_R, \quad a_R = \frac{1}{2} \sigma_R \sigma_R^*.$$

Then (5)-(6) has a unique classical solution u_R .

• Localisation error

Theorem 4. There is $\nu = \nu(K,T)$ such that for $r = \nu R$ $\sup_{t \in [0,T]} \sup_{|x| \le r} |u(t,x) - u_R(t,x)| \le N e^{-\frac{1}{3}R^2 + p\nu R}$ with N = N(K, p, T). Proof:

$$\begin{split} u(t,x) &= E\{e^{-\int_t^T c(s,X_s^{t,x})\,dr}g(X_T^{t,x})\} =: EU, \\ u_R(t,x) &= E\{e^{-\int_t^T c_R(s,Y_s^{t,x})\,dr}g_R(Y_T^{t,x})\} =: EU_R, \\ \text{where } (X^{t,x},Y_s^{t,x})_{s\in[t,T]} \text{ solve} \\ dX_s &= b(s,X_s)\,ds + \sigma(s,X_s)\,dW_s, \\ dY_s &= b_R(s,Y_s)\,ds + \sigma_R(s,Y_s)\,dW_s. \\ \text{with } X^{t,x} &= Y^{t,x} = x. \text{ Notice that } X_t^{t,x} = Y_t^{t,x} \text{ for } t \leq \tau_R, \\ \text{where} \end{split}$$

$$\tau_R = \inf\{s \in [t, T] : |X_s^{t, x}| \ge R\}.$$

Hence

$$|u(t,x)-u_R(t,x)| \le 2E(U\mathbf{1}_{\tau_R \le T}) = 2E(U\mathbf{1}_{\sup_{s \in [t,T]} |X_s^{t,x}| \ge R}).$$

 $E(U1_{\sup_{s\in[t,T]}|X_s^{t,x}|\geq R})$ can be estimated by the help of the following lemma.

Lemma. Consider $dZ_t = \beta_t dt + \sigma_t dW_t$, where $|\beta| \le K$, $|\sigma| \le K$. Then there is $\nu = \nu(K, T)$ such that

$$E \sup_{t \in [0,T]} e^{\nu Z_t^2} \le N E e^{Z_0^2}$$

with N = N(K). If X_t is one-dimensional, then

$$E\sup_{t\leq T}e^{Z_t}\leq NEe^{Z_0}$$

with N = N(K, T).

• Finite difference approximations

We consider finite difference schemes for $u := u_R$,

$$D_t u + L u = 0 \tag{7}$$

$$u(T,x) = g(x), \tag{8}$$

where $g := g_R$, $L := L_R = a^{ij}D_{ij} + b^iD_i - c$, $(a, b, c) := (a_R, b_R, c_R)$.

For simplicity of presentation we consider finite difference schemes in the spatial variable $x \in \mathbb{R}^d$.

Let $\Lambda_1 \subset \mathbb{R}^d \setminus 0$, $\Lambda := \Lambda_1 \cup -\Lambda_1$. For $h \neq 0$ define

$$G_h = \{h(\lambda_1 + \lambda_2 + \dots + \lambda_n) : \lambda_i \in \Lambda, n = 1, 2, \dots\}.$$

and the difference operators

$$\delta_{h,\lambda}\varphi(x) = (\varphi(x+h\lambda) - \varphi(x))/h$$

for $\lambda \in \Lambda$. Consider

$$D_t u_h(t, x) + L_h u_h = 0, \quad t \in [0, T], x \in G_h$$
(9)
$$u_h(T, x) = g(x) \quad x \in G_h,$$
(10)

where L_h is a differential operator with coefficients vanishing for $|x| \ge R$.

Notice that (9) is a finite system of ODEs for $(u_h(\cdot, x))_{x \in G_h}$.

(a) Monotone schemes

Assume $\Lambda_1 = -\Lambda_1$. Consider

$$L_{h} = \sum_{\lambda \in \Lambda_{1}} q_{\lambda} \delta_{-h,\lambda} \delta_{h,\lambda} + \sum_{\lambda \in \Lambda_{1}} p_{\lambda} \delta_{h,\lambda} - c$$

with some functions q_{λ} , p_{λ} on $H_T = [0, T] \times \mathbb{R}^d$.

Assumption 1. (consistency) $q_{\lambda} = p_{\lambda} = 0$ for $|x| \ge R$,

$$a^{ij} = \sum_{\lambda \in \Lambda_1} q_\lambda \lambda^i \lambda^j, \quad b^i = \sum_{\lambda \in \Lambda_1} p_\lambda \lambda^i, \quad i, j = 1, .., d,$$

Assumption 2. (regularity) $q_{\lambda}, p_{\lambda}, c, g \in C^{0,m}([0,T] \times \mathbb{R}^d)$,

$$\sum_{\lambda \in \Lambda_1} (|D^j q_\lambda|^2 + |D^j p_\lambda|^2) + |D^j c|^2 + |D^j g|^2 \le K, \quad j \le m$$

Assumption 3. $q_{\lambda} + hp_{\lambda} \ge 0$ for all $h \in (0, h_0]$, $\lambda \in \Lambda_1$.

Rate of convergence, Richardson extrapolation

Aim: For $k \ge 0$, $h \in (0, h_0]$

$$u_h = u^{(0)} + \sum_{j=1}^k \frac{h^j}{j!} u^{(j)} + h^{k+1} r_h, \qquad (11)$$

for $x \in \mathbb{G}_h$, $t \in [0,T]$, where $u^{(0)}$ is the solution of (7)-(8), $u^{(1)}, \ldots, u^{(k)}$ and r^h are some functions on $[0,T] \times \mathbb{R}^d$ $u^{(1)}, \ldots, u^{(k)}$, are independent of h and

$$\sup_{t \in [0,T]} \sup_{x \in \mathbb{G}_h} |r_h| \le N |g|_m \tag{12}$$

with a constant N independent of h. Here

$$|g|_m^2 = \sup_{x \in \mathbb{R}^d} \sum_{j=0}^m |D^j g|^2.$$

This implies

(i) k = 0 gives $\sup_{t \in [0,T]} \sup_{x \in G_h} |u_h - u| \le Nh$

(ii) $k \ge 1$ gives Richardson extrapolation: take meshsizes $h, h/2, ..., h/2^k$, calculate u_h , $u_{h/2}, ..., u_{h/2^k}$ and set

$$\bar{u}_h = \sum_{j=0}^k \lambda_j u_{h/2^j},$$

where $(\lambda_0, ..., \lambda_k) = (1, 0, ...0)V^{-1}$, $V^{ij} = 2^{-(i-1)(j-1)}$. Then $\sup_{t \in [0,T]} \sup_{x \in G_h} |\bar{u}_h - u| \le Nh^{k+1}$

(iii) If $u^{(j)} = 0$ for odd $j \le k$, we set $\tilde{u}_h = \sum_{j=0}^{\tilde{k}} \tilde{\lambda}_j u_{h/2^j}$, where $\tilde{k} = [(k-1)/2]$, $(\tilde{\lambda}_0, ..., \tilde{\lambda}_k) = (1, ..., 0)\tilde{V}^{-1}$, $\tilde{V}^{ij} = 4^{-(i-1)(j-1)}$. Then

$$\sup_{t \in [0,T]} \sup_{x \in G_h} |\tilde{u}_h - u| \le Nh^{k+1}$$

Theorem 5. (I.G & N.V. Krylov 2011) Let Assumptions (1)-(3) hold. Let $k \ge 0$. Then

(a) expansion (11) holds provided $m \ge 2k + 3$,

(b) if k is odd, $m \ge 2k + 2$ and $p_{-\lambda} = -p_{\lambda}$ for $\lambda \in \Lambda_1$, then expansion (11) holds and $u^{(j)} = 0$ for odd $j \le k$.

Proof: We consider finite difference schemes

$$D_t u_h(t, x) + L_h u_h + f = 0, \quad t \in [0, T], x \in \mathbb{R}^d$$
$$u_h(T, x) = g(x) \quad x \in \mathbb{R}^d,$$

The key step in the proof is to prove the following estimate: there is $N = N(K, d, T, m, \Lambda_1)$ such that

 $|u_h|_m \le N(|f|_m + |g|_m),$ where $|u_h|_m := \sum_{k=0}^m \sup_{t \in [0,T], x \in \mathbb{R}^d} |D^k u_h|.$

• Other schemes

$$\lambda \in \Lambda_{1} \subset \mathbb{R}^{d} \setminus \{0\}, \ \delta_{\lambda}^{h} = (\delta_{h,\lambda} + \delta_{-h,\lambda})/2,$$
$$L_{h} = \sum_{\lambda,\mu \in \Lambda_{1}} \mathfrak{a}^{\lambda\mu} \delta_{\lambda}^{h} + \sum_{\lambda \in \Lambda_{1}} \mathfrak{b}^{\lambda} \delta_{\lambda}^{h} - c$$

$$D_t u_h(t, x) + L_h u_h = 0, \quad t \in [0, T], x \in G_h$$
(13)
$$u_h(T, x) = g(x) \quad x \in G_h,$$
(14)

Assumptions:

(i)
$$\mathfrak{a}^{\lambda\mu} = \mathfrak{b}^{\lambda} = 0$$
 for $|x| \ge R$, $\lambda, \mu \in \Lambda_1$
 $a^{ij} = \sum_{\lambda \in \Lambda_1} \mathfrak{a}^{\lambda\mu} \lambda^i \lambda^j$, $b^i = \sum_{\lambda \in \Lambda_1} \mathfrak{b}^{\lambda} \lambda^i$

(ii)
$$|D^{i}\mathfrak{a}^{\lambda\mu}| \leq K$$
, $|D^{j}\mathfrak{b}^{\lambda}| \leq K$, $|D^{l}c| \leq K$, $|D^{l}g| \leq K$
for $i \leq \max(m, 2)$, $\max(m, 1)$, $l \leq m$.

(iii) $|g|_m := |g|_{H^m} < \infty$

Theorem 6. (I.G. 2013) Let $k \ge 0$. If Assumptions (i)-(iii) hold with with m > 2k + 3 + d/2 then expansion (11) holds. If k is odd and Assumptions (i)-(iii) hold with m > 2k + 2 + d/2, then expansion (11) holds and $u^{(j)} = 0$ for odd $j \le m$.

• Rate of convergence. Lipschitz continuous data

Monotone schemes, $\Lambda_1 = -\Lambda_1$

$$L_{h} = \sum_{\lambda \in \Lambda_{1}} q_{\lambda} \delta_{-h,\lambda} \delta_{h,\lambda} + \sum_{\lambda \in \Lambda} p_{\lambda} \delta_{h,\lambda} - c$$

Assumptions

(1) Consistency

(2) for
$$f = (\sqrt{q_{\lambda}}, p_{\lambda}, g, c)$$
 we have $|f| \le K$,
 $|f(x) - f(y)| \le K|x - y|$ for $t \in [0, T]$ and $x \in \mathbb{R}^d$

(3) $q_{\lambda} \geq 0$, $p_{\lambda} \geq 0$ for all $\lambda \in \Lambda_1$

Theorem 7. Assumptions (1), (2') and (3) hold. then $\sup_{t \in [0,T]} \sup_{x \in G_h} |u_h - u| \le Nh^{1/2} \text{ for all } h > 0,$ where $N = N(K, d, T, \Lambda)$ and $u(t, x) := E\{e^{-\int_t^T c(s, Y_s^{t, x}) dr}g(Y_T^{t, x})\}$ where $(Y_s^{t, x})_{s \in [t, T]}$ solves $dY_s = b(s, Y_s) ds + \sigma(s, Y_s) dW_s.$ with $Y_t^{t, x} = x.$

(H. Dong and N.V. Krylov (2005))

II. Finite difference schemes for American options

For the price A_t of an American type option with pay-off function we have $A_t = w(t, S_t)$, where

$$w(t,x) = \sup_{\tau \in \mathcal{T}_t^T} E\{e^{-\int_t^\tau \lambda(r,S_r^{t,x})\,dr}h(S_\tau^{t,x})\}, \quad x \in \mathbb{R}_+^d.$$

where \mathcal{T}_t^T is the set of stopping time $\tau \in [t, T]$. After the log transformation we get

$$u(t,x) := w(t,e^{x}) = E \sup_{\tau \in \mathcal{T}_{t}^{T}} E\{e^{-\int_{t}^{\tau} c(r,X_{r}^{t,x}) dr} g(X_{\tau}^{t,x})\}$$

where, as before, $X_s^{t,x} = \log S_s^{t,e^x}$, satisfies for $s \in [t,T]$

$$dX_s = b(s, X) dt + \sigma(s, X_s) dW_s, \quad X_t^{t,x} = x.$$

Truncation: $(\sigma_R, b_R, c_R, g_R) = \kappa_R(\sigma, b, c, g).$ $u_R(t, x) := E \sup_{\tau \in \mathcal{T}_t^T} E\{e^{-\int_t^\tau c_R(r, Y_r^{t, x}) dr} g_R(Y_\tau^{t, x})\},$

where $Y^{t,x}$ satisfies

$$dY_s = \sigma_R(s, Y_s) \, ds + b_R(s, X_s) \, dW_s, \quad Y_t^{t,x} = x.$$

Localisation error:

There is $\nu = \nu(K,T)$ such that for $r = \nu R$

$$\sup_{t \in [0,T]} \sup_{|x| \le r} |u(t,x) - u_R(t,x)| \le N e^{-\frac{1}{3}R^2 + p\nu R}$$

with $N = N(K, p, T)$.

Finite difference approximations for u_R

Notation:
$$f := (\sigma, b, c, g) := (\sigma_R, b_R, c_R, g_R)$$

Let $\tau > 0$. Set $T_{\tau} := \{i\tau \land T : i = 0, 1, 2...\}$. Define δ_{τ} by

$$\delta_{\tau}\varphi(t,x) = (\varphi(t+\tau,x) - \varphi(t,x))/\tau \quad \text{if } t+\tau < T$$
$$\delta_{\tau}\varphi(t,x) = (\varphi(T,x) - \varphi(t,x))/\tau \quad \text{if } t+\tau \ge T$$

Monotone fully discretised scheme:

$$\max[\delta_{\tau}u_{\tau,h} + L_h u_{\tau,h}g - u_{\tau,h}] = 0, \quad t \in T_{\tau}, \ x \in G_h$$
$$u_{\tau,h}(T,x) = g(x) \quad x \in G_h,$$

where

$$L_{h} = \sum_{\lambda \in \Lambda_{1}} q_{\lambda} \delta_{-h,\lambda} \delta_{h,\lambda} + \sum_{\lambda \in \Lambda_{1}} p_{\lambda} \delta_{h,\lambda} - c$$

24

Assumptions:

(1) Consistency: $a^{ij} = \sum_{\lambda} q_{\lambda} \lambda^i \lambda^j$, $b^i = \sum_{\lambda} p_{\lambda} \lambda^i$

(2) Regularity: for $f = (\sqrt{q_{\lambda}}, p_{\lambda}, c, g)$ we have $|f| \leq K$, $|f(t, x) - f(s, x)| \leq |t-s|^{1/2}, \quad |f(t, x) - f(t, y)| \leq K|x-y|$ (2) $q_{\lambda} \geq 0, \quad p_{\lambda} \geq 0.$

Theorem 8. Let Assumptions (1)-(3) hold. Then $\max_{t \in T_{\tau}} \max_{x \in G_{h}} |u_{\tau,h}(t,x) - u(t,x)| \le N(\tau^{1/4} + h^{1/2}).$

The proof is an adaptation of N.V. Krylov method from Krylov (2005). See I.G. & D. Šiška (2009), D. Šiška (2012).

References

[D-K 05] H. Dong and N.V. Krylov, On the rate of convergence of finite-difference approximations for degenerate linear parabolic equations with C^1 and C^2 coefficients, Electron J. Diff. Eqn. 102 (2005), 1-25.

[G-G 13] M. Gerencsér and I. Gyöngy. *Finite difference schemes for Stochastic partial differential equations in Sobolev spaces* arXiv:1308.4614, 2013.

[G 12] I. Gyöngy, *On finite difference schemes for degenerate stochastic parabolic partial differential equations*, arXiv:1309.7610, 2013. [G-K 11] I. Gyöngy and N.V. Krylov, Accelerated finite difference schemes for second order degenerate elliptic and parabolic problems in the whole space, Math. Comp. 80 (2011), 1431-1458.

[G-S 08] I. Gyöngy and D. Šiška, *On finite difference approximations for normalized Bellman equations*, Appl. Math. Optim. 60 (2009), 297-339.

[K 05] N.V. Krylov, *The rate of convergence of finitedifference approximations for Bellman equations with Lipschitz coefficients*, Appl. Math. and Optimiz., Vol. 52 (2005), No. 3, 365-399.

[S 12] D. Šiška, *Error estimates for Approximations of American Put Option Price*, Comp. Methods in Applied Mathematics, 12 (2012), 108-120.