
Estimating and Backtesting Distortion Risk Measures

Hideatsu Tsukahara

(tsukahar@seijo.ac.jp)

Dept of Economics, Seijo University

November 1, 2013

“Stochastic processes and their statistics in Finance”

in Okinawa



Contents

1. Introduction to Distortion Risk Measures (DRMs)

2. Statistical Estimation

• Asymptotic results

• Estimation of asymptotic variance

• Bias correction

3. Backtesting DRMs

• Unconditional & Conditional approaches

• Backtestability & Elicitability



1. Distrotion Risk Measures

A random variable X represents a loss of some financial position

DRM¶ ³
Any coherent risk measure satisfying law invariance and comonotonic

additivity is a distortion risk measure:

ρ(X) = ρ(F ) :=

∫
[0,1]

F−1(u) dD(u) =

∫
R

x dD ◦ F (x).

where F is the df of X, F−1 is the quantile of X, and D is a convex

distortion, i.e., a df on [0, 1].µ ´
II a.k.a. spectral risk measure (Acerbi), weighted V@R (Cherny)



Example: Expected Shortfall (ES)

The expected loss that is incurred when VaR is exceeded:

ESθ(X) :=
1

θ

∫ 1

1−θ
F−1(u) du

.
= E(X |X ≥ VaRθ(X))

Taking distortion of the form

DES
θ (u) =

1

θ

[
u − (1 − θ)

]
+, 0 < θ < 1

yields ES as a distortion risk measure.

II Typical values for θ are: 0.05, 0.01, . . .



Other Examples of DRM:

• Proportional Hazards:

DPH
θ (u) = 1 − (1 − u)θ,

• Proportional Odds:

DPO
θ (u) =

θu

1 − (1 − θ)u

• Gaussian (Wang transform):

DGA
θ (u) = Φ(Φ−1(u) + log θ)

F See Tsukahara (2009) Mathematical Finance, vol. 19.
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Figure 1: Distortion densities（θ = 0.5，θ = 0.25）
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Figure 2: Distortion densities（θ = 0.1，θ = 0.05）



2. Statistical Estimation

(Xn)n∈N: strictly stationary process with Xn ∼ F

Fn: empirical df based on the sample X1, . . . , Xn

A natural estimator of ρ(F ) is

ρ̂n =

∫ 1

0
F−1

n (u) dD(u)

=

n∑
i=1

cniXn:i, cni := D

(
i − 1

n
,

i

n

]
This type of statistics is called L-statistics



Strong consistency¶ ³

Let d(u) = d
duD(u) for a convex distortion D, and 1 ≤ p ≤ ∞,

1/p + 1/q = 1. Suppose

• (Xn)n∈N is an ergodic stationary sequence

• d ∈ Lp(0, 1) and F−1 ∈ Lq(0, 1)

Then

ρ̂n −→ ρ(F ), a.s.

µ ´

For a proof, see van Zwet (1980, AP)

[All we need is SLLN and Glivenko-Cantelli Theorem].



Assumptions for asymptotic normality:

• (Xn)n∈N is strongly mixing with rate

α(n) = O(n−θ−η) for some θ ≥ 1 +
√

2, η > 0

• For F−1-almost all u, d is continuous at u

• |d| ≤ B, B(u) := Mu−b1(1 − u)−b2,

• |F−1| ≤ H, H(u) := Mu−d1(1 − u)−d2

Assume bi, di & θ satisfy bi + di +
2bi + 1

2θ
<

1

2
, i = 1, 2



Set

σ(u, v) := [u ∧ v − uv] +

∞∑
j=1

[Cj(u, v) − uv] +

∞∑
j=1

[Cj(v, u) − uv],

Cj(u, v) := P(X1 ≤ F−1(u), Xj+1 ≤ F−1(v))

Theorem (Asymptotic Normality)¶ ³
Under the above assumptions, we have

√
n(ρ̂n − ρ(F ))

L−→ N(0, σ2),

where

σ2 :=

∫ 1

0

∫ 1

0
σ(u, v)d(u)d(v) dF−1(u)dF−1(v) < ∞

µ ´



• GARCH model:

Xt = σtZt, (Zt) : i.i.d.

σ2
t = α0 +

∑p
i=1 αiX

2
t−i +

∑q
j=1 βjσ

2
t−j

II If the stationary distribution has a positive density around 0,

then GARCH is strongly mixing with exponentially decaying α(n)

• Stochastic Volatility model:

Xt = σtZt, (Zt) : i.i.d., (σt) : strictly stationary positive

(Zt) and (σt) are assumed to be independent

II The mixing rate of (Xt) is the same as that of (σt)



Estimation of Asymptotic Variance

Let

Yn :=

∫
[1{Xn ≤ x} − F (x)]d(F (x)) dx, n ∈ Z.

Then Yn is also a strictly stationary and strongly mixing sequence with

the same mixing coefficient as Xn. Furthermore

E(Yn) = 0, σ2 =

∞∑
h=−∞

γ(h) < ∞,

where γ(h) := E(YnYn+h).



Let f be the spectral density of (Yn). Then
∞∑

h=−∞
γ(h) = 2πf (0)

=⇒ Use a consistent estimator of f (0) (JHB approach)

The lag window estimator is defined by

f̂n(λ) =
1

2π

∑
|k|<Kn

w(k/Kn)γ̂n(k) cos kλ

where w is a “lag window”, and γ̂n(k) :=
1

n

n−k∑
i=1

YiYi+k



II F in the expression of Yn is unknown, so we replace it with the

empirical df. That is, we use

Yi,n :=

∫
[1{Xi ≤ x} − Fn(x)]d(Fn(x)) dx, i = 1, . . . , n

Let

γ̃n(k) :=
1

n

n−k∑
i=1

Yi,nYi+k,n and f̃n(0) :=
1

2π

∑
|k|<Kn

w(k/Kn)γ̃n(k)

Then 2πf̃n(0) should give a consistent estimator of the asymptotic

variance σ2



Theorem¶ ³
In addition to the conditions assumed in the above theorem, suppose

that J is Lipschitz, w is a bounded even function which is continuous

in [−1, 1] with w(0) = 1 and equals 0 outside [−1, 1]. Also assume

E|Yn|4 < ∞ and the fourth-order cumulants

κ(h, i, j) := E(Y1Y1+hY1+iY1+j) − γ(h)γ(i − j)

− γ(i)γ(h − j) − γ(j)γ(h − i)

are summable:
∑∞

h,i,j=−∞ |κ(h, i, j)| < ∞.

Let Kn be a sequence of integers such that Kn → ∞ and

Kn/
√

n → 0 as n → ∞. Then we have

2πf̃n(0)
L1−→σ2, n → ∞

µ ´



Bias of L-statistics

By Fubini, for any df F and any distortion D,∫
[0,1]

F−1(u) dD(u) = −
∫ 0

∞
D(F (x)) dx +

∫ ∞

0
[1 − D(F (x))] dx

By Fubini and Jensen, for convex D,

E

[∫
[0,1]

F−1
n (u) dD(u)

]
=

∫ 0

∞
E(−D(Fn(x))) dx +

∫ ∞

0
E[1 − D(Fn(x))] dx

≤
∫ 0

∞
−D(E(Fn(x))) dx +

∫ ∞

0
[1 − D(E(Fn(x)))] dx

=

∫
[0,1]

F−1(u) dD(u)



Therefore

E(ρ̂n) − ρ(F ) ≤ 0

=⇒ ρ̂n has a negative bias

Need bias correction methods. For the i.i.d. case,

• Xiang (1995): Modify the form of L-statistics

• Kim (2010): Bootstrap-based method

II The bootstrap methodology is still available in the dependent case

(see Lahiri (2003), Example 4.8).



Moving Block Bootstrap (MBB)

• Data: X1, . . . , Xn

• Block size: `, # of blocks: N := n − ` + 1

• Blocks: Bi = (Xi, . . . , Xi+`−1), i = 1, . . . , N

Resample k = [n/`] blocks from {B1, . . . ,BN} with replacement

to get B∗
1 , . . . ,B

∗
k

Write B∗
i = (X∗

(i−1)`+1
, . . . , X∗

i`)

=⇒ X∗
1 , . . . , X∗

k`: MBB sample



MBB version of ρ̂n is

ρ̂∗n =
1

n

n∑
i=1

cniX
∗
n:i, cni := D

(
i − 1

n
,

i

n

]

Validity of MBB follows from an argument specific to our case.

II The approach based on Hadamard differentiability of L-functional

T (F ) :=

∫ 1

0
h(F−1(u))J(u) du

is not convenient. See Boos (1979, AS), Lahiri (2003), Section 12.3.5.



Simulation example: inverse-gamma SV model

Xt = σtZt

Zt i.i.d. N(0,1) and Vt = 1/σ2
t satisfies

Vt = ρVt−1 + εt,

where Vt ∼ Gamma(a, b) for each t, (εt) i.i.d. rv’s, and 0 ≤ ρ < 1

⇒ Xt has scaled t-distribution with ν = 2a, σ2 = b/a

II Lawrance (1982): the distribution of εt is compound Poisson

II Can be shown that (Xt) is geometrically ergodic



Simulation results for estimating VaR, ES & PO risk measures with

inverse-gamma SV observations (n = 500, # of replications = 1000)

Xt = σtZt, where Vt = 1/σ2
t follows AR(1)

with gamma(2,16000) marginal & ρ = 0.5, Zt i.i.d. N(0,1)

VaR ES PO

θ bias RMSE bias RMSE bias RMSE

0.1 0.0692 10.9303 −2.2629 22.1361 −1.7739 17.5522

SV 0.05 2.5666 17.6755 −1.2168 37.2719 −2.0200 28.5053

0.01 14.9577 61.2290 −11.9600 103.9269 −15.7888 73.7147

0.1 0.7976 10.5893 −1.2914 19.5756 −1.3574 15.3271

i.i.d. 0.05 0.7974 16.1815 −2.6346 31.3166 −2.8342 23.9933

0.01 10.6838 53.2567 −12.9355 95.9070 −15.8086 69.5425



Simulation results for estimating variance and bias of PO risk measure

(n = 500, Kn = 5, Parzen kernel w(x) = 1 − x2, block size= 5,

# of bootstrap replicates = 800, # of replications = 10000)

ρ θ MC bias MC s.e. Â-s.e. BS bias BS s.e.

IG-SV 0.1 −0.8328 15.4456 14.0956 −0.8151 13.9829

α = 2 0.1 0.05 −2.0580 24.6961 20.9719 −1.8170 20.6863

β = 16000 0.01 −13.3608 68.9197 46.6943 −10.2030 46.0788

IG-SV 0.1 −0.3345 10.7979 10.4231 −0.6812 10.3933

α = 4 0.1 0.05 −1.3663 15.1946 14.0623 −1.3511 13.9725

β = 48000 0.01 −6.8659 34.4725 26.4183 −6.0749 26.4446

IG-SV 0.1 −0.5432 9.0853 8.8370 −0.6048 8.8281

α = 10 0.1 0.05 −1.1786 11.7923 11.2289 −1.1263 11.2003

β = 144000 0.01 −5.8673 22.9686 18.7767 −4.4474 18.9614



ρ θ MC bias MC s.e. Â-s.e. BS bias BS s.e.

IG-SV 0.1 −1.0054 17.5469 15.0711 −0.8793 14.6925

α = 2 0.5 0.05 −2.2714 27.1465 22.0852 −1.9450 21.4374

β = 16000 0.01 −13.9208 74.8887 47.7943 −10.6541 46.8379

IG-SV 0.1 −0.5791 11.4856 10.7162 −0.6957 10.5906

α = 4 0.5 0.05 −1.3472 15.7116 14.4718 −1.3994 14.2658

β = 48000 0.01 −7.4680 35.1014 26.7575 −6.1939 26.7115

IG-SV 0.1 −0.8213 9.2632 8.9299 −0.6062 8.8957

α = 10 0.5 0.05 −1.0663 11.9443 11.3608 −1.1368 11.2996

β = 144000 0.01 −5.7987 23.1130 18.8147 −4.4769 18.9896



ρ θ MC bias MC s.e. Â-s.e. BS bias BS s.e.

IG-SV 0.1 −2.0408 28.2224 15.5015 −0.9609 14.7212

α = 2 0.9 0.05 −4.8204 42.1005 22.1388 −2.0483 20.9685

β = 16000 0.01 −23.5844 106.4374 43.6402 −10.1556 42.4681

IG-SV 0.1 −1.1973 14.9586 11.1112 −0.7274 10.8092

α = 4 0.9 0.05 −2.2346 20.8199 14.8937 −1.4366 14.4566

β = 48000 0.01 −10.2968 42.5085 26.3137 −6.1439 26.0855

IG-SV 0.1 −0.5956 10.3666 9.1248 −0.6262 9.0293

α = 10 0.9 0.05 −1.4212 13.6534 11.5934 −1.1609 11.4494

β = 144000 0.01 −6.3827 25.2688 18.8986 −4.4824 19.0079



ρ θ MC bias MC s.e. Â-s.e. BS bias BS s.e.

0.1 −0.5734 8.2886 8.0638 −0.5619 8.0667

N(0, 126.52) iid 0.05 −1.1557 10.1327 9.8175 −1.0116 9.8117

0.01 −4.4730 18.1714 14.9659 −3.6136 15.2192

0.1 −0.9038 15.3536 13.9544 −0.8121 13.8815

t4(0, 126.52) iid 0.05 −1.8468 24.3247 20.8781 −1.7928 20.6468

0.01 −12.5608 73.3170 46.9313 −10.2243 46.3147

0.1 −0.5538 10.7575 10.3154 −0.6687 10.2909

t8(0, 126.52) iid 0.05 −1.4518 14.9271 13.9883 −1.3379 13.9033

0.01 −6.8385 34.8496 26.4076 −6.8385 26.4531

0.1 −0.5470 9.0123 8.8209 −0.5985 8.8127

t20(0, 126.52) iid 0.05 −1.1266 11.6915 11.2178 −1.1176 11.1965

0.01 −5.5631 22.9298 18.7808 −4.4588 18.9697



3. Backtesting

Purpose of Backtesting:

1. Monitor the performance of the model and estimation methods for

risk measurement

2. Compare relative performance of the models and methods

Idea¶ ³
ex ante risk measure forecasts from the model

vs.

ex post realized portfolio loss

µ ´



Setup

Entire observations: X1, . . . , XT

Estimation window size = n, m := T − n

data estimand realized loss

1. X1, . . . , Xn ρ(Xn+1) Xn+1

2. X2, . . . , Xn+1 ρ(Xn+2) Xn+2

... ... ... ...

m. XT−n, . . . , XT−1 ρ(XT ) XT



Two approaches to risk measurement

Assume that the loss process (Xt)t∈Z is a stationary time series with

stationary df F . At time t, we have two options:

I. Unconditional Approach

Look at the risk measure associated with F (x) = P(Xt+1 ≤ x)

(For a large time horizon; credit risk and insurance)

II. Conditional Approach

For a given filtration Ft, look at the risk measure associated with the

conditional df Ft(x) := P(Xt+1 ≤ x |Ft),

(For a short time horizon; market risk)



In the case of VaR

• Unconditional VaR, denoted by VaRα, satisfies

E
(
1{Xt+1 ≥ VaRα}

)
= α

But 1{Xt+1 ≥ VaRα}’s might not be independent

• Conditional VaR, denoted by VaRt
α, satisfies

E
(
1{Xt+1 ≥ VaRt

α} |Ft
)

= α

By Lemma 4.29 of MFE, if (Yt) is a sequence of Bernoulli rv’s adapted

to (Ft) and if E(Yt+1 |Ft) = p > 0, then (Yt) must be i.i.d.



Therefore 1{Xt+1 ≥ VaRt
α}, t = n, . . . , T −1 are i.i.d. Bernoulli rv’s.

⇓

This gives the grounds for backtesting using 1{Xt+1 ≥ V̂aR
t
α}, where

V̂aR
t
α is an estimate of the VaR associated with the conditional df

Ft(x) := P(Xt+1 ≤ x |Ft). Namely,

(i) Test
T−1∑
t=n

1{Xt+1 ≥ V̂aR
t
α} ∼ Bin(m,α)

(ii) Test independence of 1{Xt+1 ≥ V̂aR
t
α}, t = n, . . . , T − 1

(e.g., runs test)



Backtesting DRMs

Note that, with d(u) = d
duD(u) and X ∼ F ,

ρ(X) =

∫ ∞

−∞
x dD ◦ F (x) =

∫ ∞

−∞
xd(F (x)) dF (x)

= E[Xd(F (X))]

Thus Xd(F (X)) − ρ(X) has mean 0 unconditionally.

II In the conditional case, E[Xt+1d(Ft(Xt+1)) |Ft] = ρt(Xt+1),

but this does not help much.



I.I.D. case (rough-and-ready)

If X1, . . . , XT are i.i.d. with df F , then we can base the backtesting

of our method/model on

Xn+1d(F̂1:n(Xn+1)) − ρ̂(1:n),

...

XTd(F̂T−n:T−1(XT )) − ρ̂(T−n:T−1)

where F̂k:l and ρ̂(k:l) are estimates based on the sample Xk, . . . , Xl

II If we have dependent data or we use the conditional approach, it

is necessary to introduce more explicit time series models.



Conditional Approach

Write ρt(Xt+1) for a distortion risk measure with a distortion D for

the conditional df Ft(x) := P(Xt+1 ≤ x |Ft), Ft := σ(Xs : s ≤ t):

ρt(Xt+1) :=

∫
[0,1]

F−1
t (u) dD(u)

Assumption¶ ³
Suppose that for Ft−1-measurable µt and σt,

Xt = µt + σtZt,

where (Zt) is i.i.d. with finite 2nd moment.
µ ´



Example: ARMA(p1, q1) with GARCH(p2, q2) errors

Let (Zt) be i.i.d. with finite 2nd moment.

Xt = µt + σtZt,

µt = µ +

p1∑
i=1

φi(Xt−i − µ) +

q1∑
j=1

θj(Xt−j − µt−j),

σ2
t = α0 +

p2∑
i=1

αi(Xt−i − µt−i)
2 +

q2∑
j=1

βjσ
2
t−j,

where α0 > 0, αi ≥ 0, i = 1, . . . , p2, βj ≥ 0, j = 1, . . . , q2.

Usually, it is assumed that (Xt) is covariance stationary,

and
∑p2

i=1 αi +
∑q2

j=1 βj < 1.



By (conditional) translation equivariance and positive homogeneity,

ρt(Xt+1) = µt+1 + σt+1ρ(Z)

where Z is a generic rv with the same df G as Zt’s.

(i) If G is a known df, ρ(Z) is a known number.

We need to estimate µt+1 and σt+1 based on Xt−n+1, . . . , Xt using

some specific model and method (e.g., ARMA with GARCH errors

using QML). Then the risk measure estimate is given by

ρ̂t(Xt+1) := µ̂t+1 + σ̂t+1ρ(Z)



Observe that

ρ(Z) = E [Zt+1d(G(Zt+1))]

⇓

E [(Zt+1 − ρ(Z))d(G(Zt+1))] = 0

Defining

Rt+1 := Zt+1 − ρ(Z) =
Xt+1 − ρt(Xt+1)

σt+1

one sees that (Rtd(G(Zt)))t∈Z is i.i.d.



This suggests that in practice, we may perform backtesting by examin-

ing mean-zero behavior of R̂t+1d(G(Ẑt+1)), t = n, . . . , T − 1, where

R̂t+1 :=
Xt+1 − ρ̂t(Xt+1)

σ̂t+1

and

Ẑt+1 =
Xt+1 − µ̂t+1

σ̂t+1
= R̂t+1 + ρ(Z)

II Bootstrap test can be used



(ii) When G is unknown, we need to estimate G in addition to µt+1

and σt+1.

In ARMA with GARCH errors model, we could use the empirical df

based on the residuals Z̃s’s: for s = t − n + 1, . . . , t,

Z̃s = ε̃s/σ̃s, ε̃s : residual from ARMA part

and

σ̃2
s = α̂0 +

p2∑
i=1

α̂iε̃
2
s−i +

q2∑
j=1

β̂jσ̂
2
s−j,

Then

G̃t(z) =
1

n

t∑
s=t−n+1

1{Z̃s ≤ z},



Simulation study

Simulate GARCH(1,1) process:

Yt = σtZt, Zt ∼ N(0, 1) i.i.d.

σ2
t = 0.01 + 0.9σ2

t−1 + 0.08Y 2
t−1

Set T = 1000, n = 500 and θ = 0.05

For t = n + 1, . . . , T , plot

(i) Xtd(F̂t−n:t−1(Xt)) − ρ̂(t−n:t−1) (historical, unconditional)

(ii) R̂td(G(Ẑt)) (normal-GARCH based, conditional)

(i) mean = −0.0286, std = 2.073

(ii) mean = −0.0185, std = 1.019
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Figure 3: Backtesting results for expected shortfall (θ = 0.05)
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Figure 4: Backtesting results for proportional odds distortion (θ = 0.05)



Issue: Backtestability

“It is more difficult to backtest a procedure for calculating expected

shortfall than it is to backtest a procedure for calculating VaR” (Yamai

& Yoshiba, Hull, Dańıelsson, among others)

1. Because the existing tests for ES are based on

– parametric assumptions for the null distribution

– asymptotic approximation for the null distribution

2. Because testing an expectation is harder than testing a single quan-

tile.



Elicitability

“Expected shortfall (and spectral risk measures) cannot be backtested

because it fails to satisfy elicitability condition” (Paul Embrechts,

Mar 2013, Risk Magazine)

Def (Osband 1985; Gneiting 2011, JASA)¶ ³

A statistical functional T (F ) is called elicitable r.t. F if T (F ) is a

unique minimizer of t 7→ EF [S(t, Y )] for some scoring function S,

∀F ∈ F .

µ ´



Examples

• VaRθ(F ) = F−1(1 − θ) is the unique minimizer for

S(t, y) = [1{t ≤ y} − θ](y − t)

=

θ|y − t| if t > y

(1 − θ)|y − t| if t ≤ y

F = {F : absolutely continuous,
∫
|y| dF (y) < ∞}.

• Mean functional T (F ) =
∫

y dF (y) is the unique minimizer for

S(t, y) = (y − t)2

F = {F :
∫

y2 dF (y) < ∞}.



It is useful when one wants to compare and rank several estimation

procedures: With forecasts xi and realizations yi, use

1

n

n∑
i=1

S(xi, yi)

as a performance evaluation criterion.

II But there seems to be no clear connection with backtestability

e.g., mean cannot be backtested nonparametrically based on the sum of

squared errors without invoking asymptotic approximation or assuming

parametric distribution.



Concluding Remarks

• Estimation of DRMs is possible with time series data, but for some

DRMs, we do not get nice asymptotic properties.

• Backtesting procedure can be performed with DRMs. May need

more rigorous/effective procedures.

• Euler capital allocation based on DRMs are easy to compute and

widely applicable (with importance sampling)

• Most of the estimation part is published in Journal of Financial

Econometrics (2013, online)


