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Outline

By P. Carr and J. Picron , under a Black-Scholes environment,
they tried to apply the semi-static hedging formula of barrier
options to hedge a payment at a stopping time. Contrary to
European claims where the payment occurs only at the prescribed
time, there is an extra risk which they call timing risk. They
found that an integral of the barrier option formula provides a
static hedge of the timing risk. The integral (with respect to time)
implies that the static hedge portfolio consists of (infinitesimal
amount of) options with different (continuum of) maturities,
which should be discretized in practice.
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Outline

Timing risk is a risk of uncertain dividend, especially of its
payment time.
Example: Defaultable bond, American option, Insurance, etc...

In the paper by Carr and Picron (1999) they gave a static
hedging of a timing risk under Black-Scholes economy.

We introduce Asymptotic Static Hedging of a barrier
option and its error.

Asymptotic static hedging of barrier options can be applied to
give that of timing risk.
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Black-Scholes Model

Let X to be the solution to the stochastic differential equation

dXt = rXt dt + σXt dBt .

Carr and Picron’s static hedging

E[e−rτ ] = the value of the simplest timing risk.

where E is the expectation under the risk neutral measure P and

τ = inf{t > 0 : Xt ≤ K}, (K > 0).
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Carr and Picron’s static hedging

E[e−rτ ] =

∫ ∞

0
e−rtP(τ ∈ dt)

= [e−rtP(τ < t)]∞0 + r

∫ ∞

0
e−rtP(τ < t)dt

= r

∫ ∞

0
e−rtP(τ < t)dt

= r

∫ ∞

0
e−rtE[(1 + (

Xt

K
)1−

2r
σ2 )I{Xt≤K}]dt.
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Carr and Picron’s static hedging

P(τ < t|Fτ ) = E[(1 + (
Xt

K
)1−

2r
σ2 )I{Xt≤K}|Fτ ]

static hedging of a knock-in option

P(τ < t) = the value of a knock-in option,

Bowie and Carr (1994) showed that it is hedged by two European
options with payoff

I{Xt≤K}, (
Xt

K
)1−

2r
σ2 I{Xt≤K}.

Two keys of their result are the reflection principle of Brownian
motion and Cameron-Martin-Maruyama-Girsanov theorem.
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Static hedging of a knock-in option

static hedging formula

P(τ < t|Fτ ) = E[(1 + (
Xt

K
)1−

2r
σ2 )I{Xt≤K}|Fτ ]

(Xt
K )1−

2r
σ2

If τ ≤ t, then at the hitting time τ the value of the derivative

with payoff I{Xt>K} coinsids to the one of (Xt
K )1−

2r
σ2 I{Xt≤K}.

Hence we can exchange the portfolio each other. Then if
Xt > K , payment becomes 1 and the other case, payment is
zero.

If τ ≤ t, then Xt > K . Therefore payment is zero.

I{Xt≤K}

If Xt ≤ K , then payment is 1.

If Xt ≤ K , payment is nothing.
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Static hedging of a knock-in/knock-out option

Under a general diffusion model, can we get a static hedging
formula?

P(τ < t|Fτ ) = E[FIN(Xt)|Fτ ]

P(τ > t|Fτ ) = E[FOUT (Xt)|Fτ ]

Answer :

no hope!!
But, we have a hope to get an (asymptotic) approximation:

P(τ < t) =
∑
n

∫ t

0
E[F n

IN(Xt)]dt

P(τ > t) =
∑
n

∫ t

0
E[F n

OUT (Xt)]dt

What is the error of asymptotic static hedging?
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The error of asymptotic static hedging

On {τ ≤ t},
Black-Scholes model

E[(1 + (
Xt

K
)1−

2r
σ2 )I{Xt≤K}

∣∣∣Fτ ]− P(τ < t|Fτ )

= −E[(
Xt

K
)1−

2r
σ2 I{Xt≤K}

∣∣∣Fτ ] + P(τ < t, Xt > K |Fτ )

= 0,

E[I{Xt>K} − (
Xt

K
)1−

2r
σ2 I{Xt≤K}

∣∣∣Fτ ]− P(τ > t|Fτ ) = 0.

the error of asymptotic static hedging∑
n≤N

∫ t

0
E[F n

IN(Xt)|Fτ ]dt − P(τ < t|Fτ ) = ErrNIN ,

∑
n≤N

∫ t

0
E[F n

OUT (Xt)|Fτ ]dt − P(τ > t|Fτ ) = ErrNOUT .
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A Generalized Timing Risk

Carr and Picron’s result gives a static hedge of the most
simplest timing risk under Black-Scholes model.

In the following, we give an asymptotic static hedging of
knock-out/knock-in option under a general diffusion model,
which enables the (asymptotic) static hedge of generalized
timing risk by Carr and Picron’s technique.

Our asymptotic static hedging is based on the “parametrix”.
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Parametrix

D: a domain in Rd ,
Tt , St : semigroups acting on C0(D) with the generatorsL, M,
respectively.
Assume that St : C0(D) → D(M) ∩ D(L).

Parametrix
If

∞∑
n=0

S ∗ ((L−M)S)∗nt

is absolutely convergent, then it is the solution of (integral)
equation

Tt = St + Tt ∗ (L−M)St .

Here “∗” is the convolution of semigroups defined by
ϕ(t) ∗ ψ(t)f (x) =

∫ t
0 ϕ(s)ψ(t − s)f (x)ds.
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Parametrix

Parametrix formula

Under suitable conditions, for any N ∈ N and f ∈ C0(D), it holds
that

Tt f =
N−1∑
n=0

St ∗ ((L−M)St)
∗nf + Tt ∗ ((L−M)St)

∗N f .

Let us discuss the above parametrix formula later.
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Asymptotic Static Hedging

L : the infinitesimal generator of d-dim diffusion process X ,
LOUT : the one with absorbed at the halfspace,
HK := {(x1, · · · , xd) ∈ Rd : x1 ≤ K}.

the price of barrier options

etL
OUT

f (x) = E[f (Xt)I{τB>t}|X0 = x ],

“etL
IN
”f (x) = E[f (Xt)I{τB≤t}|X0 = x ]

= etLf (x)− etL
OUT

f (x),

for x ∈ Hc
K , where τB = inf{t ≥ 0 : Xt ∈ HK}.
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Asymptotic Static Hedging

Under Black-Scholes model with generator M, for any x ∈ Hc
B ,

etM
OUT

f (x) = etMπf (x),

etM
IN
f (x) = etMηf (x),

where

πf (x) = f (x)− (
x1
K
)1−

2r
σ2 f ((

K 2

x1
, x2, · · · , xd))

and
ηf (x) = f (x)− πf (x).
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Asymptotic Static Hedging of Knock-Out Option

L : the infinitesimal generator of X ,
M: the infinitesimal generator of Geometric Brownian motion
(Black-Scholes model),
π, η are already defined in the above slide for Black-Scholes model.

Theorem

For any N, the error of an asymptotic static hedging of knock-out
option with maturity t and function
f ∈ C0 := {f ∈ C0(Rd) : ∂i f = 0, i = 2, 3 · · · , d} is{

e(t−τ)Lπf − e(t−τ)L ∗ η
N−1∑
n=1

((L −M)e(t−τ)MOUT
)∗nf

}
− e(t−τ)LOUT

f

= e(t−τ)LIN ∗ ((L −M)e(t−τ)MOUT
)∗N f (K ).
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Sketch of the Asymptotic Static Hedging

etM
OUT

f (x) = etMπf (x),

etM
IN
f (x) = etMηf (x),

etL
OUT

f = etM
OUT

f + etL
OUT ∗ (L −M)etM

OUT
f

= etMπf + etL
OUT ∗ (L −M)etMπf .

etLπf = etMπf + etL ∗ (L −M)etMπf .

etLπf − etL
OUT

f
= etL ∗ (L −M)etMπf − etL

OUT ∗ (L −M)etMπf

= etL
IN ∗ (L −M)etM

OUT
f
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The Error Estimate

The Error Estimate via Parametrix

Tt f =
N−1∑
n=0

St ∗ ((L−M)St)
∗nf + Tt ∗ ((L−M)St)

∗N f .

St ∗ ((L−M)St)
∗nf (x)

≡
∫

· · ·
∫

f (yn)dy1 · · · dyn∫ t

0

∫ s1

0
· · ·

∫ sn−1

0
qs1(x , y1)(Ly1 −My1)qs2−s1(y1, y2) · · ·

· · · (Lyn−1 −Myn−1)qt−sn(yn, y) ds1ds2 · · · dsn,



. . . . . .

The Error Estimate

The solution is given by

Tt f =
∞∑
n=0

S ∗ ((L−M)S)∗nt f ,

if the right-hand-side converges uniformly. A partial sum still gives
the error estimate;

Tt f =
N∑

n=0

S ∗ ((L−M)S)∗nt f + Tt ∗ ((L−M)St)
∗N f
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The Error Estimate

What we need is the integrability in (s1, · · · , sn, y) of the integral

In(s1, · · · , sn, x , y)

=

∫
· · ·

∫
dy1 · · · dyn

qs1(x , y1)(Ly1 −My1)qs2−s1(y1, y2) · · ·
· · · (Lyn −Myn)qt−sn(yn, y) ds1ds2 · · · dsn,

which gives the validity of the expression

S ∗ ((L−M)S)∗nt f (x) =

∫
· · ·

∫
dy1 · · · dyn−1∫ t

0

∫ s1

0
· · ·

∫ sn−1

0
qs1(x , y1)(Ly1 −My1)qs2−s1(y1, y2) · · ·

· · · (Lyn −Myn)qt−sn(yn, y) ds1ds2 · · · dsnf (y)dy .
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The Error Estimate

If the following is satisfied:

sup
n

sup
x∈Rd

|(σ
L(x)− σM(x)

x2
)(n)| <∞, sup

x∈Rd

|µ
L(x)− µM(x)

x
| <∞,

Then we have

|In| ≤ Const.
1

tn
,

and then

|
∫ t

0

∫ s1

0
· · ·

∫ sn−1

0
In(s0, · · · , sn)dsn · · · ds1| ≤ Const.

1

n!
.

Therefore we have the validity of the parametrix:

Tt =
∞∑
n=0

S ∗ ((L−M)S)∗nt .
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Concluding Remark

The hedging error caused by the hedge of a timing risk by a
static portfolio is estimated by a “distance” between the
model and the Black-Scholes one.

We can also get a practical static hedging strategy by the
discretization of the integral.
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