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PART III: Application of the lent particle to prove
existence of density of Poisson functionals.

In this part, we shall:

I Give some first examples;

I Apply the lent particle method to the case of sde’s driven by
Lévy measure.
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Adaptation of the lent particle method to the case of Lévy
processes

If (Yt) is a Rd -valued centered Lévy process without gaussian part,
we have the representation

Yt =

∫ t

0

∫
Rd

xÑ(ds, dx).

↪→ we have to consider time-space Poisson measures.
So, we consider:
• N: a Poisson random measure on [0,+∞[×X with intensity
dt × ν(du) defined on the probability space (Ω1,A1,P1) where Ω1

is the configuration space, A1 the σ-field generated by N and P1

the law of N.
• (X ,X , ν,d, γ): a local symmetric Dirichlet structure which
admits a carré du champ operator and satisfies property (EID).
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The lent particle method in this setting

The Dirichlet form we consider on the bottom space [0,+∞[×X is
the product form:

(L2(dt), 0)⊗ (d, e)

which satisfies (EID).
Operators:

ε+
(t,u)(w1) = w11{(t,u)∈supp w1} + (w1 + ε(t,u)})1{(t,u)/∈supp w1}
ε−(t,u)(w1) = w11{(t,u)/∈supp w1} + (w1 − ε(t,u)})1{(t,u)∈supp w1}.

ε+H(w1, t, u) = H(ε+
(t,u)w1, t, u) ε−H(w1, t, u) = H(ε−(t,u)w1, t, u).
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Upper Dirichlet structure

Following our construction we obtain a Dirichlet form (D, E) on
L2(Ω1) which carré du champ Γ, gradient operator that we ] and
we know that for F ∈ D:

I F ] =

∫ +∞

0

∫
X×R

ε−((ε+F (t, ·))[(u, r)) dN � ρ(dt, du, dr) ∈

L2(P1 × P̂).

I ∀F ∈ D, Γ[F ] = Ê(F ])2 =

∫ +∞

0

∫
X
ε−(γ[ε+F ]) dN.

I (D, E , Γ) satisfies (EID).
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Let us recall the example
(X ,X ) = (Rr ,B(Rr )), ν = kdx , ξ = (ξij)1≤i ,j≤r . We assume that
there exists an open set O ⊂ Rr and a function ψ continuous on O
and null on Rr \ O such that

1. k > 0 on O ν-a.e. and is locally bounded on O

2. ξ is locally bounded and locally elliptic on O.

3. k ≥ ψ > 0 ν-a.e. on O.

4. for all i , j ∈ {1, · · · , r}, ξi ,jψ belongs to H1
loc(O).

(d, e), the local Dirichlet form which satisfies (EID):

∀f , g ∈ H, e(f , g) =
r∑

i ,j=1

∫
O
ξi ,j(x)∂i f (x)∂jg(x)ψ(x) dx

∀f ∈ d, γ(f )(x) =
r∑

i ,j=1

ξi ,j(x)∂i f (x)∂j f (x)
ψ(x)

k(x)
.
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Application to Lévy’s stochastic area

We consider X (t) = (X1(t),X2(t)) a Lévy process with vakues in
R2 and Lévy measure σ.
↪→ The bottom structure is (R2,B(R2), ν,d, e).
Assume that the gradient is given by the general formula:

γ[f ](x) = α11(x)f ′21 (x) + 2α12(x)f ′1(x)f ′2(x) + α22(x)f ′22 (x),

where f ′i =
∂f

∂xi
.

Let be

V (t) =

(
X1(t),X2(t),

∫ t

0
X1(s−)dX2(s)−

∫ t

0
X2(s−)dX1(s)

)
.
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Let us apply the lent particle method...

We have for 0 < α < t and x = (x1, x2) ∈ R2:
ε+

(α,x)V = V +

(x1, x2,X1(α−)x2 + x1(X2(t)− X2(α))− X2(α−)x1 − x2(X1(t)− X1(α)))

= V + (x1, x2, x1(X2(t)− 2X2(α))− x2(X1(t)− 2X1(α)))

because ε+V is defined P× ν×dα-a.e. and ν × dα is diffuse, so

γ[ε+V ] =

 α11 α12 Aα11 − Bα12

α12 α22 Aα12 − Bα22

Aα11 − Bα12 Aα12 − Bα22 A2α11 − 2ABα12 + B2α22


denoting A = (X2(t)− 2X2(α)) and B = (X1(t)− 2X1(α)).
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The operator ε− gives a functional defined PN -a.e. so that for
example

ε−(α,x1,x2)(X (t)) = X (t)−∆Xα PN(dαdx1dx2)-a.e.

This yields

ε−A = X2(t)−∆X2(α)− 2X2(α−) let us denote it Ã

ε−B = X1(t)−∆X1(α)− 2X1(α−) let us denote it B̃

and eventually Γ[V ] =
∑

α≤t α11(∆Xα) α12(∆Xα) Ãα11(∆Xα)− B̃α12(∆Xα)

∼ α22(∆Xα) Ãα12(∆Xα)− B̃α22(∆Xα)

∼ ∼ Ã2α11(∆Xα)− 2ÃB̃α12(∆Xα) + B̃2α22(∆Xα)


the symbol ∼ denoting the symmetry of the matrix.
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First case: σ = ν = k(x)dx

Let us consider the case α12 = 0, that ν possesses a density k and
that we assume hypotheses of Lemma , and under these
assumptions, with same notation, we may choose
α11(x) = α22(x) = (x2

1 + x2
2 )ψ(x)

k(x) . We have

Γ[V ] =
∑
α≤t

|∆Xα|2
ψ(∆Xα)

k(∆Xα)

 1 0 Ã
0 0 0

Ã 0 Ã2

+

|∆Xα|2
ψ(∆Xα)

k(∆Xα)

 0 0 0

0 1 B̃

0 B̃ B̃2


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Hence X has a density if the dimension of the vector space
spanned by 1

0
X2(t)−∆X2(α)− 2X2(α−)

 ,

 0
1

X1(t)−∆X1(α)− 2X1(α−)

 , α ∈ JT


is equal to 3, where JT = {α ∈ [0, t], ∆Xα ∈ O}.

Proposition

Let us suppose that moreover ν(O) = +∞, then V has a density.
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A case where the Lévy measure is carried by a graph

Assume that the Lévy measure of X1 is k(x1)dx1 and that it
satisfies hypotheses of Lemma .
Take X2 = [X1].
↪→ The Lévy measure of (X1, [X1]) is carried by the curve x2 = x2

1 .

We put λ(x1, x2) = 2x1, α11 = X 2
1
ψ(x)
k(x) , α12 = λα11 and

α22 = λ2α11. We have

Γ[V ] =
∑
α≤t

α11(∆Xα)

 1 λ Ã− λB̃

λ λ2 λÃ− λ2B̃

Ã− λB̃ λÃ− λ2B̃ (Ã− λB̃)2

 .
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V has a density as soon as

dim L

 1
λ

Ã− λB̃

 , α ∈ JT

 = 3 (1)

with Ã− λB̃ = −X2(α−) + λ(∆X (α))X1(α−) + X2(t)− X2(α)−
λ(∆X (α))(X1(t)− X1(α)).

Proposition

V =
(

X1(t), [X1]t ,
∫ t

0 X1(s−)d [X1](s)−
∫ t

0 [X1](s−)dX1(s)
)

has a

density as soon as the Lévy measure of X1 satisfies hypotheses of
Lemma given at the beginning with ν(O) = +∞.
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The SDE we consider

We consider another probability space (Ω2,A2,P2) on which an
Rn-valued semimartingale Z = (Z 1, · · · ,Zn) is defined, n ∈ N∗.
Assumption on Z : There exists a positive constant C such that for
any square integrable Rn-valued predictable process h:

∀t ≥ 0, E[(

∫ t

0
hsdZs)2] ≤ C 2E[

∫ t

0
|hs |2ds]. (2)

We shall work on the product probability space:
(Ω,A,P) = (Ω1 × Ω2,A1 ⊗A2,P1 × P2).
Let d ∈ N∗, we consider the following SDE :

Xt = x +

∫ t

0

∫
X

c(s,Xs− , u)Ñ(ds, du) +

∫ t

0
σ(s,Xs−)dZs (3)

where x ∈ Rd , c : R+ × Rd × X → Rd and σ : R+ × Rd → Rd×n

satisfy the set of hypotheses below denoted (R).
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Hypotheses (R)
For simplicity, we fix a finite terminal time T > 0.
1. There exists η ∈ L2(X , ν) such that:
a) for all t ∈ [0,T ] and u ∈ X , c(t, ·, u) is differentiable with
continuous derivative and

∀u ∈ X , sup
t∈[0,T ],x∈Rd

|Dxc(t, x , u)| ≤ η(u),

b) ∀(t, u) ∈ [0,T ]× U, |c(t, 0, u)| ≤ η(u),
c) for all t ∈ [0,T ] and x ∈ Rd , c(t, x , ·) ∈ d and

sup
t∈[0,T ],x∈Rd

γ[c(t, x , ·)](u) ≤ η(u),

d) for all t ∈ [0,T ], all x ∈ Rd and u ∈ X , the matrix
I + Dxc(t, x , u) is invertible and

sup
t∈[0,T ],x∈Rd

∣∣∣(I + Dxc(t, x , u))−1
∣∣∣ ≤ η(u).
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2. For all t ∈ [0,T ] , σ(t, ·) is differentiable with continuous
derivative and

sup
t∈[0,T ],x∈Rd

|Dxσ(t, x)| < +∞.

3. As a consequence of hypotheses 1. and 2. above, it is well
known that equation (3) admits a unique solution X such that
E[supt∈[0,T ] |Xt |2] < +∞. We suppose that for all t ∈ [0,T ], the

matrix (I +
∑n

j=1 Dxσ·,j(t,Xt−)∆Z j
t ) is invertible and its inverse is

bounded by a deterministic constant uniformly with respect to
t ∈ [0,T ].
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Derivation of the equation
HD : the set of real valued processes (Ht)t∈[0,T ], which belong to
L2([0,T ]; D) i.e. such that

‖H‖2
HD = E[

∫ T

0
|Ht |2dt] +

∫ T

0
E(Ht)dt < +∞.

Proposition

The equation (3) admits a unique solution X in Hd
D. Moreover,

the gradient of X satisfies:

X ]
t =

∫ t

0

∫
U

Dxc(s,Xs−, u) · X ]
s−Ñ(ds, du)

+

∫ t

0

∫
X×R

c[(s,Xs−, u, r)N � ρ(ds, du, dr)

+

∫ t

0
Dxσ(s,Xs−) · X ]

s−dZs
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Derivative of the flow generated by X
Let us define the Rd×d -valued processes U and K by

dUs =
n∑

j=1

Dxσ.,j(s,Xs−)dZ j
s .

Kt = I +

∫ t

0

∫
X

Dxc(s,Xs−, u)Ks−Ñ(ds, du) +

∫ t

0
dUsKs−

Under our hypotheses, for all t ≥ 0, the matrix Kt is invertible and
it inverse K̄t = (Kt)−1 satisfies:

K̄t = I −
∫ t

0

∫
X

K̄s−(I + Dxc(s,Xs−, u))−1Dxc(s,Xs−, u)Ñ(ds, du)

−
∫ t

0
K̄s−dUs +

∑
s≤t

K̄s−(∆Us)2(I + ∆Us)−1

+

∫ t

0
K̄sd < Uc ,Uc >s .
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Obtaining the carré du champ matrix

Theorem
For all t ∈ [0,T ],

Γ[Xt ] = Kt

∫ t

0

∫
X

K̄sγ[c(s,Xs−, ·)]K̄ ∗s N(ds, du)K ∗t .

Proof: Let (α, u) ∈ [0,T ]× X . We put X
(α,u)
t = ε+

(α,u)Xt .

X
(α,u)
t = x +

∫ α

0

∫
X

c(s,X
(α,u)
s− , u′)Ñ(ds, du′)

+

∫ α

0
σ(s,X

(α,u)
s− )dZs + c(α,X

(α,u)
α− , u)

+

∫
]α,t]

∫
X

c(s,X
(α,u)
s− , u′)Ñ(ds, du′) +

∫
]α,t]

σ(s,X
(α,u)
s− )dZs .
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Let us remark that X
(α,u)
t = Xt if t < α so that, taking the

gradient with respect to the variable u, we obtain:

(X
(α,u)
t )[ = (c(α,X

(α,u)
α− , u))[

+

∫
]α,t]

∫
X

Dxc(s,X
(α,u)
s− , u′) · (X

(α,u)
s− )[Ñ(ds, du′)

+

∫
]α,t]

Dxσ(s,X
(α,u)
s− ) · (X

(α,u)
s− )[dZs .

Let us now introduce the process K
(α,u)
t = ε+

(α,u)(Kt) which
satisfies the following SDE:

K
(α,u)
t = I +

∫ t

0

∫
X

Dxc(s,X
(α,u)
s− , u′)K

(α,u)
s− Ñ(ds, du′)+

∫ t

0
dU

(α,u)
s K

(α,u)
s−

and its inverse K̄
(α,u)
t = (K

(α,u)
t )−1. Then, using the flow property,

we have:

∀t ≥ 0, (X
(α,u)
t )[ = K

(α,u)
t K̄ (α,u)

α (c(α,Xα− , u))[.
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Now, we calculate the carré du champ and then we take back the
particle:

∀t ≥ 0, ε−(α,u)γ[(X
(α,u)
t )] = KtK̄αγ[c(α,Xα− , ·)]K̄ ∗αK ∗t

Finally integrating with respect to N we get

∀t ≥ 0, Γ[Xt ] = Kt

∫ t

0

∫
X

K̄sγ[c(s,Xs− , ·)](u)K̄ ∗s N(ds, du)K ∗t .
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First application

Proposition

Assume that X is a topological space, that the intensity measure
ds × ν of N is such that ν has an infinite mass near some point u0

in X . If the matrix (s, y , u)→ γ[c(s, y , ·)](u) is continuous on a
neighborhood of (0, x , u0) and invertible at (0, x , u0), then the
solution Xt of (3) has a density for all t ∈]0,T ].

Proof.
Let us fix t ∈]0,T ]. As ν has infinite mass near u0, as X is right
continuous and γ[c] continuous, N admits almost surely a jump at
time s ∈]0, t] with size u ∈ X such that γ[c(s,Xs− , ·)](u) is
invertible. As a consequence,

Γ[Xt ] ≥ KtK̄sγ[c(s,Xs− , ·)](u)K̄ ∗s K ∗t .

As Γ[Xt ] dominates an invertible matrix, it is also invertible and
this permits to conclude.
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Equation driven by a Lévy process

• Y : Lévy process with values in Rd , independent of X0.
• a: R+ × Rk 7→ Rk×d .
We consider the equation:

Xt = X0 +

∫ t

0
a(s,Xs−) dYs .
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A condition which ensures that Xt ∗ P� λk

Proposition

We assume that:

1. The Lévy measure, ν, of Y satisfies hypotheses of the
example given at the beginning with ν(O) = +∞ and
ξi ,j(x) = x2

i δi ,j . Then we may choose the operator γ to be

γ[f ] =
ψ(x)

k(x)

d∑
i=1

x2
i

d∑
i=1

(∂i f )2 for f ∈ C∞0 (Rd)

2. a is C1 ∩ Lip with respect to the first variable uniformly in s
and supt,x |(I + Dxa)−1(x , t).u| ≤ η(u)

3. a is continuous with respect to the second variable at 0, and
such that the matrix aa∗(X0, 0) is invertible;

then for all t > 0 the law of Xt is absolutely continuous w.r.t. the
Lebesgue measure.
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Idea of the proof (d = 1)

γ[f ] =
ψ(x)

k(x)
x2f ′2(x).

We have the representation: Yt =
∫ t

0

∫
R uÑ(ds, du), so that

Xt = X0 +

∫ t

0

∫
R

a(s,Xs−)u Ñ(ds, du).

The lent particle method yields:

Γ[Xt ] = K 2
t

∫ t

0

∫
X

K̄ 2
s a2(s,Xs−)γ[j ](u)N(ds, du)

where j is the identity application: γ[j ](u) =
ψ(u)

k(u)
u2.

Γ[Xt ] = K 2
t

∫ t

0

∫
X

K̄ 2
s a2(s,Xs−)

ψ(u)

k(u)
u2N(ds, du)

= K 2
t

∑
α<t

K̄ 2
s a2(s,Xs−)

ψ(∆Ys)

k(∆Ys)
∆Y 2

s .
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