Dirichlet Forms associated to Poisson Measures and Lévy Processes: The Lent Particle Method

Laurent DENIS

Université d'Evry-Val-d'Essonne

University of Osaka, January 2010

Based on joint works with N. Bouleau.

PART IV: Application of the lent particle to prove smoothness of density of Poisson functionals.

In this part, we shall:

- Define higher order Sobolev spaces
- give a criterion which ensures smoothness of density
- apply it to the case of sde's.

Definition and hypotheses on the bottom space

Let *E* be a Hilbert space. We denote by $\mathbf{d}(E)$ the completion of functions of the form

$$u=\sum_{i=1}^{k}\varphi_{i}e_{i}$$

with e_1, \cdots, e_k in E and $\varphi_1, \cdots, \varphi_k$ in **d** w.r.t. the norm

$$\| u \|_{\mathbf{d}(E)}^{2} = \| u \|_{L^{2}(\nu)}^{2} + \| u^{\flat} \|_{L^{2}(\nu; L_{0} \otimes E)}^{2}.$$
 (1)

Here $u^{\flat}(r) = \sum_{i=1}^{k} \varphi_i^{\flat} e_i$. Hypothesis (C): There exists a dense subvector space $\mathbf{d}_0 \subset \mathbf{d}$ such that each element u in \mathbf{d}_0 is such that:

1. $u \in \bigcap_{p \ge 2} L^p(\nu)$.

2. *u* is infinitely differentiable in the sense that $u^{\flat} \in \mathbf{d}(L_0)$, $u^{(2\flat)} = (u^{\flat})^{\flat} \in \mathbf{d}(L_0^{\otimes 2}), ..., u^{((n+1)\flat)} = (u^{(n\flat)})^{\flat} \in \mathbf{d}(L_0^{\otimes (n+1)})...$ 3. For all $n \in \mathbb{N}^*$, $u^{(n\flat)} \in \bigcap_{p \ge 2} L^p(\nu; L_0^{\otimes n})$.

$$\mathbf{d}_0(E) = \{ u = \sum_{i=1}^n \varphi_i e_i | \varphi_i \in \mathbf{d}_0, i = 1, \cdots, n \}.$$

Definition

Let $n \in \mathbb{N}^*$, $p \ge 2$. We denote by $\mathbf{d}^{n,p}(E)$ the completion of $\mathbf{d}_0(E)$ w.r.t. the norm

$$\|u\|_{n,p} = \|u\|_{L^{p}(\nu;E)} + \|u^{\flat}\|_{L^{p}(\nu;L_{0}\otimes E)}\| + \cdots + \|u^{(n\flat)}\|_{L^{p}(\nu;L_{0}^{\otimes n}\otimes E)}.$$

And we set:

$$\mathbf{d}^{\infty}(E) = \bigcap_{n \in \mathbb{N}^*, p \ge 2} \mathbf{d}^{n, p}(E).$$

Definition

We denote by $\bar{\mathbf{d}}^{\infty}$ the subvector space of elements u in \mathbf{d}^{∞} such that u belongs to $\mathcal{D}(a)$ and $a(u) \in \mathbf{d}^{\infty}$ and we consider

$$\bar{\mathbf{d}}_0(E) = \{ u = \sum_{i=1}^n \varphi_i e_i | \varphi_i \in \bar{\mathbf{d}}^\infty, i = 1, \cdots, n \}.$$

Let $n \in \mathbb{N}^*$, $p \ge 2$. We denote by $\overline{\mathbf{d}}^{n,p}(E)$ the completion of $\overline{\mathbf{d}}_0(E)$ w.r.t. the norm

$$\|u\|_{\bar{\mathbf{d}}^{n,p}} = \|u\|_{n,p} + \|a(u)\|_{n,p}$$

And we set:

$$\bar{\mathbf{d}}^{\infty}(E) = \bigcap_{n \in \mathbb{N}^*, p \ge 2} \bar{\mathbf{d}}^{n,p}(E).$$

Sobolev spaces on the upper space

We follow the same construction as on the bottom space, starting from

$$\mathbb{D}_0 = \left\{ \varphi(\tilde{N}(f_1), \cdots, \tilde{N}(f_k)) | \ k \in \mathbb{N}^*, \varphi \in C_c^{\infty}(\mathbb{R}^k), f_i \in \mathbf{d}_{\infty} \ i = 1, \cdots, k \right\}$$
$$\mathbb{D}_0(E) = \left\{ \sum_{i=1}^k G_i e_i | \ k \in \mathbb{N}^*, G_i \in \mathbb{D}_0, \ e_i \in E \ i = 1, \cdots, k \right\}.$$

 $X^{(n\sharp)}$: the derivate of $X^{((n-1)\sharp)} \in \mathbb{D}\left(L^2(\hat{\mathbb{P}}^{(n-1)}; E)\right)$ so it belongs to $\mathbb{D}\left(L^2(\hat{\mathbb{P}}^n; E)\right) \subset L^2(\mathbb{P} \times \hat{\mathbb{P}}^n; E)$. Definition

Let $n \in \mathbb{N}^*$, $p \ge 2$ the Sobolev space $\mathbb{D}^{n,p}(E)$ is the closure of $\mathbb{D}_0(E)$ with respect to the norm

$$\|X\|_{n,p} = \|X\|_{L^p(\mathbb{P};E)} + \|X^{\sharp}\|_{L^p(\mathbb{P}\times\hat{\mathbb{P}};E)}\| + \cdots + \|X^{(n\sharp)}\|_{L^p(\mathbb{P}\times\hat{\mathbb{P}}^n;E)},$$

and $\mathbb{D}^{\infty}(E) = \bigcap_{n \in \mathbb{N}^*, p \ge 2} \mathbb{D}^{n,p}(E).$

In the same way as in the previous subsection, for all $n \in \mathbb{N}^*$, $p \ge 2$ we consider first $\overline{\mathbb{D}}^\infty$, the subvector space of elements in $\mathbb{D}^\infty \bigcap \mathcal{D}(A)$ such that $A(X) \in \mathbb{D}^\infty$, then define in an obvious way $\overline{\mathbb{D}}_0(E)$ by

$$\bar{\mathbb{D}}_0(E) = \{\sum_{i=1}^k G_i e_i | k \in \mathbb{N}^*, G_i \in \bar{\mathbb{D}}^\infty, e_i \in E \ i = 1, \cdots, k\}.$$

and finally we construct space $\overline{\mathbb{D}}^{n,p}(E)$ which is the closure of $\overline{\mathbb{D}}_0(E)$ with repect to the norm

$$\|X\|_{\bar{\mathbb{D}}^{n,p}(E)} = \|X\|_{n,p} + \|A(X)\|_{n,p},$$

and put

$$\overline{\mathbb{D}}^{\infty}(E) = \bigcap_{n \in \mathbb{N}^*, p \ge 2} \overline{\mathbb{D}}^{n, p}(E).$$

ゆう くほう くほう しほ

Representation of the *n*-order derivative

For all $n \in \mathbb{N}^*$, we construct a random Poisson measure $N \odot \rho^n$ on $[0, +\infty[\times X \times R^n \text{ with compensator } dt \times \nu \times \underbrace{\rho \times \cdots \times \rho}_{n \text{ times}} defined$ on the product probability space: $(\Omega, \mathcal{A}, \mathbb{P}) \times (\hat{\Omega}, \hat{\mathcal{A}}, \hat{\mathbb{P}})^{\mathbb{N}^*}$.

Lemma

Let $h \in L^2(\mathbb{R}^+, dt) \otimes \mathbf{d}^{\infty}$, then $\tilde{N}(h) = \int_0^{+\infty} \int_X h(t, u) \tilde{N}(ds, du)$ belongs to \mathbb{D}^{∞} and for all $n \in \mathbb{N}^*$:

$$\tilde{N}(h)^{(n\sharp)} = \int_0^{+\infty} \int_{X \times \mathbb{R}^n} h^{(n\flat)}(t, u, r_1, \cdots, r_n) N \odot \rho^n(dt, du, dr_1, \cdots, r_n).$$

Properties of these Sobolev spaces

•
$$X \in \mathbb{D}^{\infty}$$
, $Y \in \mathbb{D}^{\infty}(E) \Rightarrow XY \in \mathbb{D}^{\infty}(E)$

$$\blacktriangleright X \in \mathbb{D}^{\infty}(E) \Rightarrow Y = \|X\|_{E}^{2} \in \mathbb{D}^{\infty}.$$

$$\triangleright X \in \mathbb{D}^{\infty} \Rightarrow \Gamma[X] \in \mathbb{D}^{\infty}.$$

Let $X \in \mathbb{D}^{\infty}$ be positive and such that $\frac{1}{X} \in \bigcap_{p \ge 2} L^p(\mathbb{P})$, then

$$\frac{1}{X} \in \mathbb{D}^{\infty}$$

Expression for the divergence

The operator $X \mapsto X^{\sharp}$, considered as an unbounded operator with domain $\mathbb{D} \subset L^2(\mathbb{P})$ and values in $L^2(\mathbb{P} \times \hat{\mathbb{P}})$, admits an adjoint operator that we denote by $\delta : \mathcal{D}(\delta) \subset L^2(\mathbb{P} \times \hat{\mathbb{P}}) \to L^2(\mathbb{P})$.

Lemma

Let $X \in \mathbb{D}^{\infty}$ and $Y \in \overline{\mathbb{D}}^{\infty}$ then XY^{\sharp} belongs to $\mathcal{D}(\delta)$ and

$$\delta[XY^{\sharp}] = -2XAY - \Gamma[X, Y].$$

Proof.

Let $Z \in \mathbb{D}^{\infty}$ then $XZ \in \mathbb{D}^{\infty}$ and by definition of A, we have:

$$\mathbb{E}\hat{\mathbb{E}}[(ZX)^{\sharp}Y^{\sharp}] = \mathbb{E}[\Gamma[ZX,Y]] = E[ZX(-2AY)].$$

But $(ZX)^{\sharp} = Z^{\sharp}X + ZX^{\sharp}$ so that

$$\mathbb{E}\hat{\mathbb{E}}[Z^{\sharp}XY^{\sharp}] = E[ZX(-2AY)] - E\hat{\mathbb{E}}[ZX^{\sharp}Y^{\sharp}]$$
$$= E[ZX(-2AY)] - E[Z\Gamma[X, Y]], \quad \text{for all } Y \in \mathbb{C}$$

The main result

Proposition

Let $d \in \mathbb{N}^*$ and X be in $(\overline{\mathbb{D}}^{\infty})^d$. If $(\Gamma[X])^{-1} \in \bigcap_{p \ge 2} L^p(\mathbb{P}; \mathbb{R}^{d \times d})$, then X admits a density which belongs to $C_b^{\infty}(\mathbb{R}^d)$. Idea of the proof: d = 1. Let $f \in C_c^{\infty}(\mathbb{R})$.

$$\Gamma[f(X), X] = f'(X)\Gamma[X, X] \Rightarrow f'(X) = (\Gamma[X])^{-1}\Gamma[f(X), X].$$

$$\mathbb{E}[f'(X)] = \mathbb{E}[\Gamma[f(X), X] (\Gamma[X])^{-1}] = \mathbb{E}\hat{\mathbb{E}}[f(X)^{\sharp}X^{\sharp} (\Gamma[X])^{-1}] \\ = \mathbb{E}\left[f(X)\delta[X^{\sharp} (\Gamma[X])^{-1}]\right]$$

by iteration:

$$\mathbb{E}[f^{(n)}(X)] = \\ \mathbb{E}\left\{f(X)\delta\left[X^{\sharp}\left(\Gamma[X]\right)^{-1}\delta\left[X^{\sharp}\left(\Gamma[X]\right)^{-1}\delta\left[\cdots\delta\left[X^{\sharp}\left(\Gamma[X]\right)^{-1}\right]\cdots\right]\right\}\right.$$

More precisely, we have for all $n \in \mathbb{N}^*$:

$$\mathbb{E}\left[f^{(n)}(X)\right] = \mathbb{E}\left[f(X)Z_n\right],\qquad(2)$$

where $(Z_n)_n$ is defined inductively by :

$$\begin{cases} Z_1 &= \delta[X^{\sharp}\left(\Gamma[X] \right)^{-1}] \\ Z_n &= \delta[X^{\sharp}\left(\Gamma[X] \right)^{-1} Z_{n-1}], \quad n \in \mathbb{N}^*. \end{cases}$$

So that

$$Z_{n} = -2A[X] (\Gamma[X])^{-1} Z_{n-1} - \Gamma[X, \Gamma[X] Z_{n-1}].$$

 Z_n belongs to \mathbb{D}^{∞} hence in $L^1(\mathbb{P})$. So, equality (2) implies that for all $n \in \mathbb{N}^*$ and all $f \in C_c^{\infty}(\mathbb{R}^d)$: $\mathbb{E}[|f^{(n)}(X)|] \leq ||f||_{\infty} \mathbb{E}[|Z_n|].$

ヨト イヨト イヨト - ヨ

Application to SDE's

$$X_{t} = x + \int_{0}^{t} \int_{X} c(s, X_{s^{-}}, u) \tilde{N}(ds, du) + \int_{0}^{t} \sigma(s, X_{s^{-}}) dZ_{s}$$
(3)

where $x \in \mathbb{R}^d$, $c : \mathbb{R}^+ \times \mathbb{R}^d \times X \to \mathbb{R}^d$ and $\sigma : \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^{d \times n}$. We assume that there exists a positive constant C such that for any square integrable \mathbb{R}^n -valued predictable process h:

$$\forall t \ge 0, \ \mathbb{E}[(\int_0^t h_s dZ_s)^2] \leqslant C^2 \mathbb{E}[\int_0^t |h_s|^2 ds].$$
(4)

For simplicity, we fix all along this article a finite terminal time T > 0.

김 글 제 김 제 글 제 글 글

Hypotheses

Assumption (\overline{R}) : 1. There exists $\eta \in \bigcap_{p \ge 2} L^p(X, \nu)$ such that: a) for all $t \in [0, T]$ and $u \in X$, $c(t, \cdot, u)$ is infinitely differentiable and

$$\forall \alpha \in \mathbb{N}^*, \ \sup_{t \in [0,T], x \in \mathbb{R}^d} |D_x^{\alpha} c(t,x,\cdot)| \in \bigcap_{p \ge 2} L^p(X,\nu),$$

b) $\forall (t, u) \in [0, T] \times X$, $|c(t, 0, u)| \leq \eta(u)$, c) for all $t \in [0, T]$, $\alpha \in \mathbb{N}$ and $x \in \mathbb{R}^d$, $D_x^{\alpha} c(t, x, \cdot) \in \overline{\mathbf{d}}^{\infty}$ and

$$\forall n \in \mathbb{N}^*, \ \forall p \ge 2, \ \sup_{t \in [0,T], x \in \mathbb{R}^d} \|D_x^{\alpha} c(t,x,\cdot)\|_{\overline{\mathbf{d}}^{n,p}} < +\infty.$$

2. For all $t \in [0, T]$, $\sigma(t, \cdot)$ is infinitely differentiable and

$$\forall \alpha \in \mathbb{N}^* \sup_{t \in [0,T], x \in \mathbb{R}^d} |D_x^{\alpha} \sigma(t,x)| < +\infty.$$

3. As a consequence of hypotheses 1. and 2. above, it is well known that equation (3) admits a unique solution X such that $\mathbb{E}[\sup_{t\in[0,T]}|X_t|^2] < +\infty$. We suppose that for all $t\in[0,T]$, the matrix $(I + \sum_{j=1}^n D_x \sigma_{\cdot,j}(t, X_{t^-})\Delta Z_t^j)$ is invertible and its inverse is bounded by a deterministic constant uniformly with respect to $t\in[0,T]$.

吊 トイヨト イヨト ニヨ

Spaces of processes

- → H_{D̄^{n,p},P}: the set of predictable real valued processes which belong to L²([0, T]; D̄^{n,p}).
- ► $\mathcal{H}_{\bar{\mathbb{D}}^{n,p}\otimes\bar{\mathbf{d}}^{n,p},\mathcal{P}}$: the set of real valued processes H defined on $[0, T] \times \Omega \times X$ which are predictable and belong to $L^2([0, T]; \bar{\mathbb{D}}^{n,p} \otimes \bar{\mathbf{d}}^{n,p}).$

In a natural way, we set

$$\mathcal{H}_{\bar{\mathbb{D}}^{\infty},\mathcal{P}} = \bigcap_{n \in \mathbb{N}^{*}, p \geqslant 2} \mathcal{H}_{\bar{\mathbb{D}}^{n,p},\mathcal{P}}, \ \mathcal{H}_{\bar{\mathbb{D}}^{\infty} \otimes \bar{\mathbf{d}}^{\infty},\mathcal{P}} = \bigcap_{n \in \mathbb{N}^{*}, p \geqslant 2} \mathcal{H}_{\bar{\mathbb{D}}^{n,p},\mathcal{P}}.$$

• • = • • = •

Functional calculus related to stochastic integrals

Proposition Let $H \in \mathcal{H}_{\bar{\mathbb{D}}^{\infty} \otimes \bar{\mathbf{d}}^{\infty}, \mathcal{P}}$ then for all $t \in [0, T]$

$$X_t = \int_0^t \int_X H(s, u) \tilde{N}(ds, du)$$

belongs to \mathbb{D}^{∞} and we have:

$$\begin{aligned} X_t^{\sharp}(w,w_1) &= \int_0^t \int_X H^{\sharp}(s,u)(w,w_1) \tilde{N}(ds,du)(w) \\ &+ \int_0^t \int_{X \times R} H^{\flat}(s,u,r_1)(w) N \odot \rho(ds,du,dr_1)(w,w_1), \end{aligned}$$

$$\begin{split} X_t^{(2\sharp)}(w,w_1,w_2) &= \int_0^t \int_X H^{2\sharp}(s,u)(w,w_1,w_2) \tilde{N}(ds,du)(w) \\ &+ \int_0^t \int_{X\times R} H^{\sharp,\flat}(s,u,r_1)(w,w_1) N \odot \rho(ds,du,dr_1)(w,w_2) \\ &+ \int_0^t \int_{X\times R} H^{\sharp,\flat}(s,u,r_1)(w,w_2) N \odot \rho(ds,du,dr_1)(w,w_1) \\ &+ \int_0^t \int_{X\times R^2} H^{(2\flat)}(s,u,r_1,r_2)(w) N \odot \rho^2(ds,du,dr_1,dr_2)(w,w_1,w_2). \end{split}$$

etc.....

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

How does the generator operate on stochastic integrals?

Proposition

Let $H \in \mathcal{H}_{\bar{\mathbb{D}}^{\infty} \otimes \bar{\mathbf{d}}^{\infty}, \mathcal{P}}$ then for all $t \in [0, T]$

$$X_t = \int_0^t \int_X H(s, u) \tilde{N}(ds, du)$$

belongs to $\bar{\mathbb{D}}_\infty$ and

$$A[X_t] = \int_0^t \int_X \left(A[H(s, u)] + a[H(s, \cdot)](u) \right) \tilde{N}(ds, du).$$

The case of integrals w.r.t. Z

Proposition Let $G \in \mathcal{H}_{\overline{\mathbb{D}}^{\infty},\mathcal{P}}$ then for all $t \in [0, T]$

$$X_t = \int_0^t \int_X G_s \, dZ_s$$

belongs to $\overline{\mathbb{D}}^{\infty}$, and for all $n \in \mathbb{N}^*$:

$$X_t^{(n\sharp)} = \int_0^t G_s^{(n\sharp)} dZ_s.$$

Moreover,

$$A[X_t] = \int_0^t \int_X A[G_s] \, dZ_s.$$

The criterion

Applying the Picard iteration, we get

Proposition

Under hypotheses (\overline{R}) , the equation (3) admits a unique solution, X, in $(\mathcal{H}_{\mathbb{D}^{\infty},\mathcal{P}})^d$ and we have for all $t \in [0, T]$ and all $i \in \{1, \dots, d\}$:

$$\begin{aligned} A[X_{i,t}] &= \int_0^t \int_X a[c_i(s, X_{s^-}, \cdot)](u) \,\tilde{N}(ds, du) + \\ \int_0^t \int_X \left(\frac{\partial c_i}{\partial x_j}(s, X_{s^-}, u) A[X_{j,s^-}] + \frac{1}{2} \frac{\partial^2 c_i}{\partial x_j \partial x_k}(s, X_{s^-}, u) \Gamma[X_{j,s^-}, X_{k,s^-}] \right) \,\tilde{N}(ds, du) + \\ &+ \int_0^t \left(\frac{\partial \sigma_i}{\partial x_j}(s, X_{s^-}) A[X_{j,s^-}] + \frac{1}{2} \frac{\partial^2 \sigma_i}{\partial x_j \partial x_k}(s, X_{s^-}) \Gamma[X_{j,s^-}, X_{k,s^-}] \right) \, dZ_s \end{aligned}$$

Remember that:

$$\Gamma[X_t] = K_t \int_0^t \int_X \bar{K}_s \gamma[c(s, X_{s-}, \cdot)] \bar{K}_s^* N(ds, du) K_t^*,$$

Theorem

Assume hypotheses (\overline{R}). Let t > 0, if

$$\left(\int_0^t \int_X \bar{K}_s \gamma[c(s, X_{s-}, \cdot)] \bar{K}_s^* N(ds, du)\right)^{-1} \in \bigcap_{p \ge 2} L^p(\mathbb{P}, \mathbb{R}^{d \times d})$$

then X_t admits a density which belongs to $C_b^{\infty}(\mathbb{R}^d)$.

Application: the regular case

Proposition

Assume hypotheses (\overline{R}) , that ν has an infinite mass near some point u_0 in X. Assume that the matrix $(s, y, u) \rightarrow \gamma[c(s, y, \cdot)](u)$ is continuous on a neighborhood of $(0, x, u_0)$ and invertible at $(0, x, u_0)$. Assume moreover that it satisfies the following (local) ellipticity assumption:

$$orall (s',x,u)\in]0,s] imes \mathbb{R}^d imes \mathcal{O}, \ \gamma [c(s',x,u]\geqslant rac{1}{1+|x|^\delta}\Theta(u)I_d,$$

Where $\delta, s > 0$ are constant, \mathcal{O} is a neighborhood of u_0 and $\Theta > 0$ s.t.

$$\left(\int_0^t \int_{\mathcal{O}} \Theta(u) N(ds, du)\right)^{-1} \in \bigcap_{p \ge 2} L^p(\mathbb{P}). \quad (*)$$

Then, for all $t \ge s$ the solution X_t of (3) admits a density in $C_b^{\infty}(\mathbb{R}^d)$.

Lemma

Consider \mathcal{O} and Θ as above and assume that there exists $\alpha \in (0,1)$ such that the limit

$$r_1 = \lim_{\lambda \to +\infty} \frac{1}{\lambda^{lpha}} \int_{\mathcal{O}} (e^{-\lambda \Theta(u)} - 1) \nu(du)$$

exits and belongs to $(-\infty, 0)$ then hypothesis (*) of the previous proposition is fulfilled.

4 B N 4 B N