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Introduction

I Classically, the pricing of credit derivatives is considered
before the default, that is, on the set {τ > t} since the
product no longer exists after the default.

I There exist two main approaches in the credit risk
modelling — the structural approach and the intensity
approach.

I To analyze the credit risks in a much larger context such as
the counterparty risks and the contagious defaults
phenomenon, etc., we need to understand what goes on
after the default, i.e. on the set {τ ≤ t}

I Motivated by the “after-default” studies, we propose a new
approach — the density approach which is based on the
density of the conditional distribution of τ .
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Information and filtration

I The progressive enlargement of filtration plays an essential
role in the credit risk modelling

I On the market (Ω,A,P), the default information σ(τ ∧ t) is
described as an exogenous source of information
compared to the default-free information F = (Ft )t≥0.

I The global information G = (Gt )t≥0 is Gt = Ft ∨ σ(τ ∧ t).
I Remark: any Gt -measurable random variable YG

t is written
in the form

YG
t = Yt1{t<τ} + Yt (τ)1{t≥τ},

where Yt is Ft -measurable and Yt (θ) is
Ft ⊗ B(R+)-measurable.
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Before-default pricing

I For single credit name, the pricing of a default sensitive
claim consists of computing the conditional expectation
w.r.t. G under some risk-neutral probability.

I Most credit derivative ceases to exist once the default
occurs. So classically, the pricing is on the set {τ > t}.

I The idea (e.g. Bielecki-Jeanblanc-Rutkowski) is to
establish an explicit relationship between the G and the F
conditional expectations

I Key Lemma (Jeulin-Yor): for any A-measurable r.v. Y ,

11{τ>t}E[Y |Gt ] = 11{τ>t}
E[Y11{τ>t}|Ft ]

P(τ > t |Ft )
a.s. (1)

on the set A = {St := P(τ > t |Ft ) > 0}.
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Default density approach
I From now on, we are interested in what happens after a

default, i.e. on {τ ≤ t}.
I Similar to Jacod’s hypothesis in the initial enlargement of

filtration, we introduce:

Density Hypothesis
For any t ≥ 0, there exists a family of Ft ⊗ B(R+)-measurable
r.v. αt (θ) s.t. for any bounded Borel function f on R+,

E[f (τ)|Ft ] =

∫ ∞
0

f (θ)αt (θ)dθ a.s.

I In finance, such type of hypotheses appeared in the insider
information problems and in the interest rate modellings
(Brody-Hughston).
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Several simple properties

I The notion of density can be generalized to any
non-negative non-atomic measure instead of the Lebesgue
measure.

I The conditional distribution of τ is characterized by the
survival probability defined by

St (θ) := P(τ > θ|Ft ) =

∫ ∞
θ

αt (u)du

I In particular, the survival process St = St (t) =
∫∞

t αt (u)du.
I For any θ ≥ 0, (St (θ), t ≥ 0) and (αt (θ), t ≥ 0) are

F-martingales: for any θ ≥ t , St (θ) = E[Sθ|Ft ] and
αt (θ) = E[αθ(θ)|Ft ].

I For any t ≥ 0,
∫∞

0 αt (u)du = 1.
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The “after-default” pricing

Theorem
Let YT (θ) be an integrable FT ⊗ B(R+)-measurable random
variable, then for any t < T ,

E [YT (τ)|Gt ] = Y bd
t 11{t<τ} + Y ad

t (T , τ)11{τ≤t} a.s.

where

Y bd
t =

E
[ ∫∞

t YT (u)αT (u)du|Ft ]

St

Y ad
t (T , θ) =

E
[
YT (θ)αT (θ)

∣∣Ft
]

αt (θ)

We observe the after-default density αt (θ) where t ≥ θ.

Ying Jiao Density Approach in Credit Risk Modelling



I The proof is obtained by a simple verification.
Any Gt -measurable random variable can be written on the
set {τ ≤ t} as Ht (τ)11{τ≤t}. Assume that Ht (τ) is positive or
bounded. Using the density αt (θ), we obtain

E[Ht (τ)11{τ≤t}YT (τ)] =

∫
dθ E[Ht (θ)11{θ≤t}YT (θ)αT (θ)]

=

∫
dθ E

[
Ht (θ)11{θ≤t}E[YT (θ)αT (θ)|Ft ]

]
=

∫
dθ E

[
Ht (θ)11{θ≤t}Y ad

t (T , θ)αt (θ)
]

= E
[
Ht (τ)11{τ≤t}Y ad

t (T , τ)
]
,
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Immersion property (H-hypothesis)
I A standard hypothesis in the credit risk modelling is the

immersion property, or the H-hypothesis, which asserts
that any F-martingale remains a G-martingale.

I In the case where

αt (θ) = αθ(θ), ∀θ ≤ t

one has for any T ≥ t ,

St = 1−
∫ t

0
αt (θ)dθ = 1−

∫ t

0
αT (θ)dθ = P(τ > t |FT ).

I This last equality implies

P(τ > t |Ft ) = P(τ > t |F∞).

and is equivalent to the immersion property.
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I Conversely, if immersion property holds, i.e.
P(τ > t |Ft ) = P(τ > t |F∞), then the process S is
decreasing. In addition, for t > θ,

St (θ) = Sθ(θ) and αt (θ) = αθ(θ).

I Under immersion property, we have for any T ≥ t ,

E[YT (τ)|Gt ]11{τ≤t} = 11{τ≤t}E[YT (θ)|Ft ]
∣∣
θ=τ

a.s.

I This implies that H-hypothesis, which is natural and often
supposed for the before-default studies, becomes more
restrictive in the after-default analysis.
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Relationship with the intensity

Definition
Let τ be a G-stopping time. The G-compensator ΛG of τ is the
G-predictable increasing process such that (11{τ≤t} − ΛG

t , t ≥ 0)
is a G-martingale.

I The G-compensator is stopped at τ , i.e., ΛG
t = ΛG

t∧τ .
I ΛG coincides, on the set {τ ≥ t}, with an F-predictable

process ΛF, i.e. ΛG
t 11{τ≥t} = ΛF

t 11{τ≥t}.

I If ΛG is absolutely continuous, i.e., ΛG
t =

∫ t
0 λ

G
s ds, then λG

is called the G-intensity of τ . The F-intensity λF is defined
in a similar way.
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Proposition (density and intensity)

I Under the density hypothesis, the G-compensator ΛG of τ
admits a density given by

λGt = 11{τ>t}λ
F
t = 11{τ>t}

αt (t)dt
St−

a.s.

I Conversely, for any T ≥ t ,

αt (T ) = E[λGT |Ft ] a.s.

Remark
I Given the density αt (t), we obtain the intensity process

since St =
∫∞

t αt (u)du =
∫∞

t E[αu(u)|Ft ]du.
I From the intensity process, we deduce the density αt (θ)

only for θ ≥ t . The intensity contains no information on
θ < t , which is important for the after-default case.
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Density modelling

I We search for models of the default density αt (θ), which
satisfies both the martingale property and the probability
property, i.e.

∫∞
0 αt (θ)dθ = 1.

I Similar problems have been studied in the interest rate
modelling by Brody-Hughston.

I The main point here is that in the interest rate models, the
maturity θ is always larger than t , i.e., θ ≥ t , which
corresponds to the before-default part of density.

I We here need the whole family, and in particular the
after-default density where θ < t .
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The “after-default” density without H-hypothesis

I The change of probability plays an important role in
constructing the density term structure, particularly for the
“after-default” part.

I We begin from a probability measure P where the
H-hypothesis holds.

I Suppose that F is generated by a Brownian motion W .
Then W is also a (G,P)-Brownian motion.

I Let (Nt := 11{τ≤t} − ΛG
t , t ≥ 0) be the (G,P)-martingale of

pure jump and assume the intensity hypothesis, i.e.,
ΛG

t =
∫ t

0 λ
G
s ds =

∫ t∧τ
0 λFs ds.

I Then the density of τ under P is

αt (θ) = E[λFθSθ|Ft ] = E[λFθe−ΛF
θ |Ft ] t , θ ≥ 0.
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I Our aim is to find the “after-default” density under a
probability Q where H-hypothesis is not satisfied.

I By the martingale representation theorem in G (Kusuoka),
any positive martingale Q with expectation 1 can be written
as the solution of a SDE

dQt = Qt−(ΨtdWt + ΦtdNt ), Q0 = 1

where Ψ and Φ, Φ > −1, are G-predictable processes.
I Using the decomposed form

Ψt = ψt11{t≤τ}+ψt (τ)11{t>τ} and Φt = φt11{t≤τ}+φt (τ)11{t>τ},

it follows Qt = qt11{t<τ} + qt (τ)11{t≥τ} where

qt = exp
( ∫ t

0
ψudWu −

1
2

∫ t

0
ψ2

udu −
∫ t

0
λFuφudu

)
, t ≥ 0

qt (θ) = qθ(θ) exp
( ∫ t

θ
ψu(θ)dWu −

1
2

∫ t

θ
ψu(θ)2du

)
, t ≥ θ.

with qθ(θ) = qθ(1 + φθ).
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I The restriction of Q on F is given by

QF
t = E[Qt |Ft ] = qtSt +

∫ t

0
qt (u)λFuSudu.

I Let Q be the probability measure defined by dQ = QtdP
on Gt . Then

αQ
t (θ) =

1
QF

t
qt (θ)αθ(θ), t ≥ θ

αQ
t (θ) =

1
QF

t
EP[qθ(1 + φθ)αθ(θ)|Ft ], t < θ.
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Density modelling in the general case

I To apply the change of probability method in a general
way, we need a characterization result of G-martingales.

I A classical question in the enlargement of filtration is to
give decomposition of F-martingales in terms of
G-semimartingale.

I In the progressive enlargement with the density, if X is an
F-martingale, then

X̂t = Xt −
∫ t∧τ

0

d 〈X ,S〉u
Su

−
∫ t

t∧τ

d 〈X , α·(θ)〉u
αu(θ)

∣∣∣∣
θ=τ

∈M(G)

I In the credit analysis, we shall study the problem in the
converse sense, that is, we are interested in the
G-martingales and its relationship with the F-martingales.
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Characterization of G-martingales
Proposition
A càdlàg process YG is a G-martingale if and only if there exist
a càdlàg F-adapted process Y and an
O(F)⊗ B(R+)-measurable process Yt (.) such that

YG
t = Yt11{τ>t} + Yt (τ)11{τ≤t}

and that
• (YtSt +

∫ t
0 Ys(s)αs(s)ds, t ≥ 0) is an F-martingale;

• (Yt (θ)αt (θ), t ≥ θ) is an F-martingale.

I Any G-martingale may be splitted into two martingales, the
first one stopped at time τ and the second one starting at
time τ , that is YG

t = Y bd ,G
t + Y ad ,G

t where

Y bd ,G
t = YG

t∧τ and Y ad ,G
t = (YG

t − YG
τ )11{τ≤t}.

I We study the two types of martingales respectively.

Ying Jiao Density Approach in Credit Risk Modelling



G-martingale stopped at time τ

I Any G-adapted process YG stopped at time τ can be
written in the form YG

t = Yt11{τ>t} + Yτ (τ)11{τ≤t} .
I It is a G-martingale if and only if

(Ut := YtSt +

∫ t

0
Ys(s)αs(s)ds, t ≥ 0)

is an F-martingale.
I Idea of proof. Consider the F-martingale defined by

Y F
t = E[YG

t |Ft ] = YtSt +

∫ t

0
Ys(s)αt (s)ds

Since (
∫ t

0 Ys(s)(αt (s)− αs(s))ds, t ≥ 0) is an F-martingale,
and so is U. Conversely, if U is an F-martingale, verify by
the G-conditional expectation computations that
E[YG

T − YG
t |Gt ] = 0.
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G-martingale starting at time τ

I Any G-adapted process YG starting at τ can be written in
the form YG

t = Yt (τ)11{τ≤t}
I By direct computations, it is a G-martingale if and only if

(Yt (θ)αt (θ), t ≥ θ) is an F-martingale.
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Girsanov’s theorem
I Let τ be given on (Ω,A,F,P) with density αt (θ), t , θ ≥ 0.
I Let (βt (θ), t ≥ θ) be a family of strictly positive

F-martingales and define βt (θ) = E[βθ(θ)|Ft ] for t < θ.
I Let

Qt :=
qt

Mβ
0

11{τ>t} +
qt (τ)

Mβ
0

11{τ≤t}.

where Mβ
t =

∫∞
0 βt (θ)dθ, qt (θ) = βt (θ)/αt (θ), t ≥ θ and

qtSt = E
[ ∫∞

t qu(u)αu(u)du|Ft
]
.

I Then, Q is a positive (G,P)-martingale with expectation 1
and defines a probability measure Q on (Ω,G∞,G)
equivalent to P and

αQ
t (θ) =

βt (θ)

Mβ
t

, t ≥ 0, θ ≥ 0 (2)

is the (F,Q)-density process of τ .
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Several remarks

I By adopting the density w.r.t the filtration F, we start from
the knowledge based on the default-free information.

I If we are only concerned with what happens up to the
default time, it is natural to assume the H-hypothesis with a
stochastic intensity process.

I We anticipate the default has a large impact on the market:
with the non-constant after-default density, even the
default-free market is “modified” after the default.

I This framework can be adopted to study counterparty risks
and multiple default risks.
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Application to modelling of successive defaults

I In the literature, there are two approaches to model the
multiple default events: bottom-up and top-down.

I The “before default” and “after default” analysis adapt
naturally to study the ordered default times in a recursive
manner.

I There is a close link between the top-down models of the
total loss process and the successive defaults.

I The correlation between default times is characterized by
the joint density in a dynamic manner.
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Density hypothesis for ordered defaults
I Let us consider a family of random times (τ1, · · · , τn) on

(Ω,A,P) taking values on Rn
+, whose increasing-ordered

permutation is denoted by

σ1 ≤ σ2 · · · ≤ σn.

I Joint density hypothesis for σ = (σ1, · · · , σn): there exists a
family of Ft ⊗ B(Rn

+)-measurable functions (ω,u)→ αt (u)
with u = (u1, · · · ,un) ∈ Rn

+, such that for any bounded
Borel function f : Rn

+ → R,

E[f (σ)|Ft ] =

∫
Rn

+

f (u)αt (u)du, t ≥ 0. (3)

I The density satisfies

αt (u) = 0

for any u outside the set {u1 ≤ u2 ≤ · · · ≤ un}.
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Default information
I The default information arrives progressively with

successive defaults.
I For any i = 1, · · · ,n, let Di = (Di

t )t≥0 be the filtration
associated with σi , i.e. Di

t = σ(σi ∧ t) and by

D(i) = (D(i)
t )t≥0 := D1 ∨ · · · ∨ Di .

I The global information also contains the default-free
information:

G(i) = (G(i)
t )t≥0 := F ∨ D(i)

and define for convenience G(0) = F.
I Market full information : G(n)

t and G(n)
t∧σi

= G(i)
t .

I Any G(n)
t -measurable random variable X can be written in

the form Xt =
∑n

j=0 11{σj≤t<σj+1}X
j
t
(
σ(j)

)
where X j

t
(
u(j)
)

is

Ft ⊗ B(Rj
+)-measurable and σ(j) = (σ1, . . . , σj).
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A useful computation result

I Let YT (u) be positive and FT ⊗ B(Rn
+)-measurable, then

E[YT (σ)|G(n)
t ] =

∫
Rn

+

E
[YT (u)αT (u)

αt (u)
|Ft
]
µ

(n)
t (du)

where

µ
(n)
t (du) =

n∑
i=0

11{σi≤t<σi+1}
αt (u)du(i+1:n)∫

]t ,∞[ αt (u)du(i+1:n)
δσ(i)(du(i))

with δ denoting the Dirac measure.
I k th-to-default swap: YT (σ) = 11{σk>T}
I CDO tranche: YT (σ) = (

∑n
i=1 11{σi≤T} − k)+

I The prices depend on both the number and the occurrence
timing of defaults.
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Recursive point of view

I The above result can also be obtained from a recursive
point of view.

I On the set {σi+1 > t}, G(n)
t and G(i)

t coincide, so

11{σi≤t<σi+1}E[YT (σ)|G(n)
t ] = 11{σi≤t<σi+1}E[YT (σ)|G(i)

t ]

I Let σ(i+1:n) = (σi+1, · · · , σn). Its density α(i+1:n)|i w.r.t. G(i)

can be given explicitly using the F density of
σ = (σ1, . . . , σn),

I Generalizing the before-default formula to σ(i+1:n) and the

corresponding reference filtration G(i)
t implies the result.
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Total loss process

I In the top-down models, one works with the cumulative
loss of the underlying portfolio defined by

Lt :=
n∑

i=1

11{τi≤t}.

I Loss information: DL = (DL
t )t≥0 where DL

t = σ(Ls, s ≤ t)
including the number of defaults and the timing of past
default events.

I It holds Lt =
∑n

i=1 11{σi≤t} and {Lt < k} = {σk > t}.
I The same information flow as the ordered defaults:

D(n)
t = DL

t , t ≥ 0.
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Successive default intensities and loss intensity
I The G(k)-intensity of σk is the G(k)-adapted process λk

such that (11{σk≤t} −
∫ t

0 λ
k
sds, t ≥ 0) is a G(k)-martingale.

I The G(k)-intensity of σk coincides with its G(n)-intensity. It
is null outside the set {σk−1 ≤ t < σk} and is given as

λk
t = 11{σk−1≤t<σk}λ

k ,F
t
(
σ(k−1)

)
where λk ,F

t
(
s(k−1)

)
is Ft ⊗ B(Rk−1

+ )-measurable.
I The loss intensity, is the GL-adapted process λL such that

(Lt −
∫ t

0 λ
L
sds, t ≥ 0) is a GL-martingale.

I The loss intensity is the sum of the intensities of σk , i.e.

λL
t =

n∑
k=1

λk
t , a.s..

I Some explicit models: Frey-Backhaus, Arnsdorf-Halperin,
Herbertsson, Giesecke and al., etc.
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Immersion property
I The immersion holds between G(i) and G(i+1) for any

i = 0, · · · ,n − 1 if and only if F is immersed in GL

(Ehlers-Schönbucher).
I This is equivalent to

σi = inf{t ≥ σi−1 :

∫ t

σi−1

λi,F
s (σ(i−1))ds ≥ ηi}.

where ηi is independent of G(i−1), hence of η1, . . . , ηi−1.
I Assuming immersion between F and G(n), then the loss

distribution is given for k = 1, . . . ,n − 1 by

P(LT ≤ k |GL
t ) = 11{t<σk+1}E

[
exp

{
−
∫ T

t
λk+1,F

s
(
σ(k)

)
ds
}
|G(k)

t

]
.

I This is not true in general.
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Joint density and successive intensity

I Under a probability P where H-hypothesis holds between F
and GL, then for any θ ∈ Rn

+ such that θ1 ≤ · · · ≤ θn and
any 0 ≤ t ≤ θn,

αt (θ) = E
[ n∏

i=1

λi,F
θi

(
θ(i−1)

)
exp

{
−
∫ θi

θi−1

λi,F
u
(
θ(i−1)

)
du
}
|Ft

]
a.s..

(4)
If t > θn, then αt (θ) = αθn (θ).

I To obtain the whole term structure of the joint density in the
general case, it needs a change of probability measure on
GL and more information.
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Bottom-up vs top-down

I The ordered joint density of σ can be deduced from the
non-ordered one of τ = (τ1, · · · , τn). .

I Denote by βt (u), t ≥ 0, u = (u1, · · · ,un) ∈ Rn
+ the joint

density of τ .
I For any θ ∈ Rn

+ such that θ1 ≤ · · · ≤ θn,

αt (θ1, · · · , θn) = 11{θ1≤···≤θn}
∑

Π

βt
(
θΠ(1), · · · , θΠ(n)

)
(5)

where (Π(1), · · · ,Π(n)) is a permutation of (1, · · · ,n).
I In particular, if τ is exchangeable, then

αt (θ1, · · · , θn) = 11{θ1≤···≤θn} n! βt (θ1, · · · , θn).
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Concluding remarks

I The density approach can also be applied to non-ordered
defaults τ = (τ1, · · · , τn) directly. However, the computation
burden is heavy with 2n default scenarios instead of n + 1.

I Several important points for giving explicit models of joint
survival probability w.r.t. F:

I compatibility between the joint probability property and the
martingale property

I describe the correlation structure in a dynamic manner
I methods: change of probability, diffusing a joint probability

function as a martingale, backward construction...
I The density approach allows to give an analysis depending

on both the number and the timing of past default events.
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Thanks for your attention !

Ying Jiao Density Approach in Credit Risk Modelling


