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Background on Asian Options

Fixed strike Asian call option:(
S0At
t
−K

)+
, At =

∫ t

0
eX (s)ds, X (t) = log(S(t)/S(0)).

Many papers on the Brownian motion models.
Monte Carlo simulation: e.g. Kemna and Vost (1990), Broadie and
Glasserman (1996), Glasserman (2000), Lapeyre and Temam (2001).
Lower and upper bounds under the BSM: e.g. Rogers and Shi (1995),
Thompson (1998).
PDE approach: e.g. Ingersoll (1987), Rogers and Shi (1995), Vecer
(2001), Zhang (2001, 2003), Dubois and Lelièvre (2004).
Distribution approximation: e.g. Turnbull and Wakeman (1991),
Curran (1992), Milevsky and Posner (1998), Ju (2002).
Spectral expansions: Linetsky (2004);
Insurance literature ...
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Geman and Yor’s method (1993)

A breakthrough for analytical pricing of Asian options under the BSM:

A closed-form result for one-dimensional Laplace transform: Geman
and Yor (1993);

One crucial representation is (see, e.g., Yor (1992, 2001)) that ATµ
can

be written as a ratio of beta and gamma random variables,

ATµ

d
=

2
σ2
Z (1,−γ1)

Z (β1)
,

where At =
∫ t
0 e

X
s ds, Tµ ∼ Exp(µ), and γ1 < 0 < β1 are two roots

of the exponent equation G (x) = µ.

The literature along this line includes Carmona, Petit and Yor (1994),
Geman and Eydeland (1995), Fu, Madan and Wang (1999), Carr and
Schroder (2004), Fusai (2004), Deywnne and Shaw (2008), · · ·
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Geman and Yor’s method (1993)

Moreover, various proofs for the representation were given; see, e.g.,
Dufresne (2001), Yor (2001), Matsumoto and Yor (2005), · · ·
Two analytical approaches in the literature:

Advanced math tools: Lamperti’s representation and Bessel process.
See, e.g., Yor (1992, 2001).
Complicated computations: solve PDE or ODE using special functions
such as Bessel and hypergeometric functions. See, e.g., Dufrense
(2001).
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Diffi culties in Extending to Models with Jumps

Very few papers on analytical solutions of Asian options under
alternative models with jumps, although there are some papers on
numerical results via simulation, matching moments, PDE, etc.

The main diffi culty is that the analytical solutions for the Laplace
transforms of Asian options need Lamperti’s representation and
Bessel processes.

It is diffi cult to generalize Lamperti’s representation and Bessel
processes for alternative models.
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Our main contribution

Derive an analytical solution for the Laplace transform of Asian
options under HEJD model

The approach does not require Lamperti’s representation and Bessel
processes

The approach only relies on Ito formula

Numerically we apply the latest Laplace inversion method by Petrella
and got very accurate results (up to 6 decimal points) in several
seconds

The error bounds for the Laplace inversion are given

The inversion works even for low volatility, e.g. σ = 0.05.
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Step 1. Double Laplace transform

Derive an analytical solution for the Laplace transform of Asian
options under HEJD model

Carr and Madan method

Let L(µ, ν) be the double-Laplace transform of
f (t, k) := XE ∗(S0X At − e−k )+ with respect to t and k , respectively,
L(µ, ν) =

∫ ∞
0

∫ ∞
−∞ e

−µte−νkXE ∗(S0X At − e−k )+dkdt. Then we have
that

L(µ, ν) =
XE ∗[Aν+1

Tµ
]

µν(ν+ 1)

(
S0
X

)ν+1

, µ > 0, ν > 0,

where ATµ =
∫ Tµ

0 eX (s)ds and Tµ is an exponential random variable
with rate µ independent of {X (t) : t ≥ 0}.
Need X for a rescaling for numerical Laplace inversion.

Only need E ∗[Aν+1
Tµ
].
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Step 2. Uniqueness of an ODE

Consider the Laplace transform

y(s) = E [e−sATµ ]

Then by Feynman-Kac y(s) satisfies a nonhomogeneous ODE

Ly(s) = (s + µ)y(s)− µ, for s ≥ 0,

where L is the infinitesimal generator of {St = S0eXt}

Lf (s) = σ2

2
s2f ′′(s) + rsf ′(s).

A similar OIDE also holds for HEJD models.

(1) How to solve this ODE?

(2) The ODE has a regular singularity at 0 and irregular singularity at
∞, and is nonhomogeneous. The ODE has infinitely many solutions.
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Step 2. Uniqueness of an ODE

Uniqueness of the ODE via a stochastic representation.

The solution of the ODE is unique if we impose an additional
condition.

Theorem 1: There is at most one bounded solution to the ODE. More
precisely, suppose a(s) solves the ODE/OIDE and
sups∈[0,∞) |a(s)| ≤ C < ∞ for some constant C > 0. Then we must
have

a(s) = E
[
exp

(
−sATµ

)]
for any s ≥ 0.

Thus the bounded solution is unique.

We start to look for a bounded solution.
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Step 3. Find a particular bounded solution of the ODE via
a recursion

Consider a difference equation (or a recursion) for a function H(ν)
defined on (−1, β1) ,{

h(ν)H(ν) = νH(ν− 1) for any ν ∈ (0, β1)
H(0) = 1

(1)

where h(ν) = − σ2

2 (ν− β1)(ν− γ1).

Remark: In the case of Brownian motion we can show E ∗[Aν
Tµ
]

satisfies the recursion (but not showing the uniqueness) via the
Feynman-Kac formula (or alternatively a time reversal argument),
although we do not need this result in this paper.
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Step 3. Find a particular bounded solution of the ODE via
a recursion

In general there is no unique solution to the recursion. In fact any two
solutions must be of the form h1(v) = θ(v)h2(v), where θ(ν) is any
periodic function satisfies

θ(ν) = θ(v − 1).

Non-uniqueness of ODE, non-uniqueness of the recursion

Kill two birds with one stone.

A particular bounded solution to the ODE

Theorem 2: If there exists a nonnegative random variable X such that
H(ν) = E [X ν] satisfies the difference equation, then the Laplace
transform of X , i.e. E [e−sX ], solves the nonhomogeneous ODE.

The proof uses a connection between fractional moments and the
Laplace transform.
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Step 3. Find a particular bounded solution of the ODE via
a recursion

Question: Does there exist such a nonnegative random variable X?

Yes!

Consider

X
d
=
2

σ2
Z (1,−γ1)

Z (β1)
.

It is easily verified that H(ν) = E [X ν] satisfies the recursion (1).
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Step 3. Find a particular bounded solution of the ODE via
a recursion

Combine this with Theorems 1 and 2 we have

Theorem 3 (Originally proved by Geman and Yor (1993) in another
way) Under the BSM, we have

ATµ

d
=
2

σ2
Z (1,−γ1)

Z (β1)

and therefore

E [Aν
Tµ
] =

(
2

σ2

)ν Γ(ν+ 1)Γ(β1 − ν)Γ(1− γ1)

Γ(β1)Γ(−γ1 + ν+ 1)
, for any ν ∈ (−1, β1).

Therefore, we have the double-Laplace transform L(µ, ν).
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HEJD model (a flexible model)

The model (proposed by many people independently)

X (t) =
(
r − 1

2
σ2 − λζ

)
t + σW (t) +

N (t)

∑
i=1

Yi , X (0) = 0,

fY (y) =
m

∑
i=1
piηie

−ηi y I{y≥0} +
n

∑
j=1
qj θjeθj y I{y<0},

ζ := E (eY1)− 1 =
m

∑
i=1

piηi
ηi − 1

+
n

∑
j=1

qj θj
θj + 1

− 1.

Motivation: It is hard to estimate the tail distribution

Tractability, and hyper-exponential distribution can approximate any
distributions with completely monotone density, which include both
distributions with light and heavy tails
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Properties of the Model

G (x) :=
E
[
exX (t)

]
t

=
1
2

σ2x2 +
(
r − 1

2
σ2 − λζ

)
x + λ

(
m

∑
i=1

piηi
ηi − x

+
n

∑
j=1

qj θj
θj + x

− 1
)

The equation G (x) = µ has exactly (m+ n+ 2) roots β1,µ, · · · ,
βm+1,µ, γ1,µ, · · · , γn+1,µ
Additionally, the infinitesimal generator

Lf (s) =
σ2

2
s2f ′′(s)+ (r −λζ)sf ′(s)+λ

∫ +∞

−∞
[f (seu)− f (s)]fY (u)du,
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Uniqueness of the OIDE

Theorem (Uniqueness): Suppose a(s) solves the OIDE

Ly(s) = (s + µ)y(s)− µ,

and sups∈[0,∞) |a(s)| ≤ C < ∞ for some constant C > 0. Then we must
have

a(s) = E
[
exp

(
−sATµ

)]
for any s ≥ 0.
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A recursion and OIDE

Theorem: Consider a difference equation (or a recursion) for a function
H(ν) defined on (−1, β1)

h(ν)H(ν) = νH(ν− 1) for any ν ∈ (0, β1), and H(0) = 1,

where

h(ν) ≡ µ− G (ν) =
(

σ2

2

)
∏m+1
i=1 (βi − ν)∏n+1

j=1 (−γj + ν)

∏m
i=1(ηi − ν)∏n

j=1(θj + ν)
.

Here β1, · · · , βm+1, γ1, · · · , γn+1 are (m+ n+ 2) roots of the equation
G (x) = µ. If there is an nonnegative random variable X such that
H(ν) = E [X ν] satisfies the difference equation, then the Laplace
transform of X , i.e. E [e−sX ], solves the nonhomogeneous OIDE

Ly(s) = (s + µ)y(s)− µ.
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Asian options under HEJD model

Distribution of ATµ under the HEM
Theorem: Under the HEM, we have

ATµ

d
=
2

σ2
Z (1,−γ1)∏n

j=1 Z (θj + 1,−γj+1 − θj )

Z (βm+1)∏m
i=1 Z (βi , ηi − βi )

and therefore for any ν ∈ (−1, β1),

E [Aν
Tµ
]

=

(
2

σ2

)ν Γ(1+ ν)Γ(1− γ1)

Γ(1− γ1 + ν)
·
n

∏
j=1

[
Γ(θj + 1+ ν)Γ(1− γj+1)

Γ(1− γj+1 + ν)Γ(θj + 1)

]

·
m

∏
i=1

[
Γ(βi − ν)Γ(ηi )
Γ(ηi − ν)Γ(βi )

]
·

Γ(βm+1 − ν)

Γ(βm+1)
.
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Asian options under HEJD model

A double Laplace transform of the Asian option price
Theorem: Under the HEM, for every µ and ν such that µ > 0 and
ν ∈ (0, β1 − 1), the double-Laplace transform of XE (S0X At − e−k )+ is
given by:

L(µ, ν) = Sν+1
0

µν(ν+ 1)
E [Aν+1

Tµ
], µ > 0, ν > 0

=
X

µν(ν+ 1)

(
2S0
Xσ2

)ν+1 Γ(2+ ν)Γ(1− γ1)

Γ(2− γ1 + ν)

·
n

∏
j=1

[
Γ(θj + 2+ ν)Γ(1− γj+1)

Γ(2− γj+1 + ν)Γ(θj + 1)

]

·
m

∏
i=1

[
Γ(βi − ν− 1)Γ(ηi )
Γ(ηi − ν− 1)Γ(βi )

]
·

Γ(βm+1 − ν− 1)
Γ(βm+1)

.

Two-sided, two dimensional Euler inversion algorithms apply; see
Petrella (2004).
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Numerical results under the BSM

Comparison of accuracy with other existing methods.

Case Cai-Kou Linetsky GY-Shaw Vecer
1 0.0559860415 0.0559860415 0.0559860415 0.055986
2 0.2183875466 0.2183875466 0.2183875466 0.218388
3 0.1722687410 0.1722687410 0.1722687410 0.172269
4 0.1931737903 0.1931737903 0.1931737903 0.193174
5 0.2464156905 0.2464156905 0.2464156905 0.246416
6 0.3062203648 0.3062203648 0.3062203648 0.306220
7 0.3500952190 0.3500952190 0.3500952190 0.350095

Table: These seven cases are commonly used in the literature for testing the
pricing algorithms of Asian options under the BSM; e.g., Fu et al. (1999),
Craddock et al. (2000), Vecer (2001), Linetsky (2004), and Deywnne and Shaw
(2008).
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Numerical results: Low volatility in the BM Case

Extension of Case 1 when σ is extremely small.

Case σ DL Prices GY-Shaw MAE3 Zhang
1 0.1 0.0559860 0.0559860 0.0559860 0.0559860
1A 0.05 0.0339412 0.0339412 0.0339412 0.0339412
1B 0.01 NA NA 0.0199278 0.0199278
1C 0.005 NA NA 0.0197357 0.0197357
1D 0.001 NA NA 0.0197353 0.0197353
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Numerical results: BM Case

Comparison with single Laplace transform in Craddock, Heath, Platen
(2000)

r σ t K S0 DL SL MC

0.02 0.10 1.0 2 2 0.05599 0.055 0.05601
(3.5 secs) (> 20 minutes)

0.11 0.15 0.5 27 29 2.69787 2.808 2.69797
(3.5 secs) (570.56 secs)

0.11 0.15 0.5 29 29 1.13474 1.129 1.13508
(3.5 secs) (470.72 secs)

0.11 0.15 0.5 31 29 0.28532 0.278 0.28541
(3.5 secs) (408.59 secs)
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Numerical Results: HEJD model, λ = 3

σ K DL Prices MC Prices Std Err Abs Err Rel Err

0.1 90 13.48451 13.47574 0.00071 0.00877 0.0651%
0.1 95 9.20478 9.20559 0.00135 -0.00081 0.0088%
0.1 100 5.53662 5.53619 0.00207 0.00043 0.0078%
0.1 105 2.88896 2.88890 0.00249 0.00006 0.0021%
0.1 110 1.33809 1.33781 0.00238 0.00028 0.0210%
0.2 90 14.03280 14.03489 0.00193 -0.00289 0.0206%
0.2 95 10.32293 10.32461 0.00276 -0.00168 0.0163%
0.2 100 7.21244 7.21556 0.00343 -0.00312 0.0432%
0.2 105 4.78516 4.78822 0.00380 -0.00306 0.0638%
0.2 110 3.02270 3.02558 0.00380 -0.00288 0.0952%
0.3 90 15.19639 15.19689 0.00350 -0.00050 0.0033%
0.3 95 11.92926 11.93168 0.00431 -0.00242 0.0203%
0.3 100 9.14769 9.15063 0.00495 -0.00294 0.0321%
0.3 105 6.86049 6.86412 0.00533 -0.00363 0.0529%
0.3 110 5.04029 5.04400 0.00545 -0.00331 0.0656%
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Numerical Results: HEJD model λ = 5

σ K DL Prices MC Prices Std Err Abs Err

0.1 90 13.55964 13.56384 0.00102 -0.00420
0.1 95 9.41962 9.42350 0.00173 -0.00388
0.1 100 5.91537 5.91707 0.00246 -0.00170
0.1 105 3.35071 3.35124 0.00287 -0.00053
0.1 110 1.74896 1.74934 0.00281 -0.00038
0.2 90 14.17380 14.17586 0.00217 -0.00206
0.2 95 10.53795 10.53973 0.00300 -0.00178
0.2 100 7.48805 7.48864 0.00367 -0.00059
0.2 105 5.09001 5.09000 0.00405 0.00001
0.2 110 3.32061 3.31967 0.00409 0.00096
0.3 90 15.33688 15.33728 0.00367 -0.00040
0.3 95 12.10723 12.10732 0.00448 -0.00009
0.3 100 9.35336 9.35297 0.00511 0.00039
0.3 105 7.08059 7.07908 0.00551 0.00151
0.3 110 5.26109 5.25875 0.00565 0.00234
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Conclusion

Derive an analytical solution for the Laplace transform of Asian
options under HEJD model

The approach does not require Lamperti’s representation and Bessel
processes

The approach only relies on Ito formula

Numerically we apply the latest Laplace inversion method by Petrella
and got very accurate results (up to 6 decimal points) in several
seconds

The error bounds for the Laplace inversion are given

The inversion works even for low volatility, e.g. σ = 0.05.

Future work: More complicated Levy processes, and insurance
applications.
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Proof of the Double Laplace Transform Representation

Applying Fubini’s theorem yields

L(µ, ν) = X
∫ ∞

0
e−µtE

[∫ ∞

− ln(S0At/X )
e−νk

(
S0
X
At − e−k

)
dk
]
dt

= X
∫ ∞

0
e−µt E [A

ν+1
t ]

ν(ν+ 1)

(
S0
X

)ν+1

dt

=
X

µν(ν+ 1)

(
S0
X

)ν+1

· E [Aν+1
Tµ
],

from which the proof is completed.
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Proof of the Uniqueness of the ODE

In terms of S(t), we can rewrite E [exp
(
−sATµ

)
] as

E [exp
(
−sATµ

)
] =Es

[∫ ∞

0
µ exp

(
−
∫ t

0
[µ+ S(u)]du

)
dt
]
, (2)

where the notation Es means that the process {S(t)} starts from s, i.e.
S(0) = s.
First, by Itô’s formula, we have that

Mt : = a(S(t)) exp
(
−
∫ t

0
[µ+ S(u)]du

)
+
∫ t

0
µ exp

(
−
∫ v

0
[µ+ S(u)]du

)
dv

is a local martingale.
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Proof of the Uniqueness of the ODE

Indeed, we obtain by some algebra that

dMt = exp
(
−
∫ t

0
[µ+ S(u)]du

)
· a′(S(t))σS(t)dW (t),

which implies that {Mt} is a local martingale.
Actually, {Mt} is a true martingale as Mt is uniformly bounded,

supt≥0 |Mt | ≤ supt≥0
{
Ce−µt +

∫ t
0 µe−µvdv

}
= C + 1 < ∞, because

S(u) ≥ 0. Thus, a(s) = a(S(0)) = Es [M0] = Es [Mt ].
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Proof of the Uniqueness of the ODE

Letting t → +∞, the first term in Mt goes to zero almost surely because
a(·) is bounded, and therefore

Mt →
∫ ∞

0
µ exp

(
−
∫ v

0
{µ+ S(u)}du

)
dv ,

almost surely.
Accordingly, by the dominated convergence theorem,

a(s) = Es [ lim
t→∞

Mt ]

= Es

[∫ ∞

0
µ exp

(
−
∫ v

0
{µ+ S(u)}du

)
dv
]
= E [exp

(
−sATµ

)
].

The theorem is proved.
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A particular bounded solution via a recursion

Denote the Laplace transform of X by y(s) = E [e−sX ], for s ≥ 0.Note
that for any a ∈ (0,min(α1, 1)), we have∫ +∞

0
s−ae−sX ds = Γ(1− a)X a−1

∫ +∞

0
s−a−1

(
e−sX − 1

)
ds = −Γ(1− a)

a
X a,

where the second equality holds due to integration by parts. Taking
expectations on both sides of the two equations above and applying
Fubini’s theorem yields

E [X a−1] =
1

Γ(1− a)

∫ ∞

0
s−ay(s)ds

E [X a] = − a
Γ(1− a)

∫ ∞

0
s−a−1 (y(s)− 1) ds.
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A particular bounded solution via a recursion

Thus, by the difference equation, we have

− ah(a)
Γ(1− a)

∫ ∞

0
s−a−1 (y(s)− 1) ds = a

Γ(1− a)

∫ ∞

0
s−ay(s)ds,

i.e.
0 =

∫ ∞

0
s−a−1 [sy(s) + h(a)(y(s)− 1)] ds.

Setting s = e−x , and z(x) = y(s)− 1, we have

0 =
∫ ∞

−∞
eax
{
e−x (z(x) + 1) + h(a)z(x)

}
dx , for any a ∈ (0,min(α1, 1)).

For simplicity of notations, rewrite h(a) as h(a) = h0a2 + h1a+ h2, with
h0 = − σ2

2 , h1 = −r +
σ2

2 , and h2 = µ. Note that integration by parts
yields ∫ ∞

−∞
eaxaz(x)dx = −

∫ ∞

−∞
eax z ′(x)dx∫ ∞

−∞
eaxa2z(x)dx =

∫ ∞

−∞
eax z ′′(x)dx

because [z(x)eax ]
∣∣∣+∞

x=−∞
= 0 and [z ′(x)eax ]

∣∣∣∞
x=−∞

= 0.
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A particular bounded solution via a recursion

Then for any a ∈ (0,min(α1, 1)),

0 =
∫ ∞

−∞
eax
{
e−x (z(x) + 1) +

(
h0a2 + h1a+ h2

)
z(x)

}
dx

=
∫ ∞

−∞
eax
{
e−x (z(x) + 1) + h0z ′′(x)− h1z ′(x) + h2z(x)

}
dx .

By the uniqueness of the moment generating function, we have an ODE

h0z ′′(x)− h1z ′(x) + h2z(x) + e−x (z(x) + 1) = 0.

Now transferring the ODE for z(x) back to one for y(s), with s = e−x we
have the required ODE

σ2

2
s2y ′′(s) + rsy ′(s)− (s + µ)y(s) = −µ.
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Thank you!
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