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Brief summary

“Inference for a class of Stochastic Differential Equations (SDE)”

o When observing a discrete-time but high-frequency sample
X0y Xh,s Xon, sy Xnh, (hn—0)
from the semi-parametric Lévy driven SDE
dX; = a(X, a)dt + c(Xi—,v)dZ,,

how can we estimate 6y = (@, 7o), the true value of 0 := (a,~)?
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X0y Xh,s Xon, sy Xnh, (hn—0)
from the semi-parametric Lévy driven SDE
dX; = a(X, a)dt + c(Xi—,v)dZ,,

how can we estimate 6y = (@, 7o), the true value of 0 := (a,~)?

o We will provide an estimator 8,, = (én,5n) s.t.

{(\/ﬁhi_l/ﬁ(@n — ag), Vn(in — ’YO))} . is asymp. normal,
ne

with 3 denoting the Blumental-Getoor index of the Lévy process Z.
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Jump process modelling

Statistics for SDE models
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o Time-varying phenomena «— “Stochastic process (SDE) models”

» Mostly, data series exhibits dependence.
» In real world, data is observed at discrete time instants.
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Jump process modelling
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o “Parameter estimation” is a standing problem in statistics.
» We want a good estimation procedure for a model in question.

= “Estimation of continuous-time structure from discrete-time sample”.
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Jump process modelling
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o A central issues in stochastic process modelling:

» Continuous?
> Including jumps?
» ...or, continuous with jumps?
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Jump process modelling

Why including jumps?

o Lévy process in finance (Cont and Tankov (2004)): e.g.,
» Non-Gaussian stable... Mandelbrot (1963)

Normal inverse Gaussian... Barndorff-Nielsen (1995)

Hyperbolic... Eberlein and Keller (1995)

Generalized hyperbolic... Prause (1999), Raible (2000)

CGMY (tempered stable)... Carr et al. (2002)

Bilateral gamma... Kiichler and Tappe (2008)

vy vy VvYVvYYy
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Non-Gaussian stable... e.g., Nikias and Shao (1995)

Semi-heavy tail distributions... Barndoprff-Nielsen (1995)

Tempered stable (truncated Lévy flight)... Baeumer and Meerschaert
(2010)

= Needs for statistics for jump processes
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Jump process modelling

Introduction and backgrounds \s

Non-Gaussian behavior in small time

o In high-frequency data framework, jumps may be more conspicuous.
o Empirical evidence in financial returns,
Grabchak and Samorodnitsky (2010):

» Distribution tails appear to become:

* less heavy for less frequent (e.g. monthly) returns,
* than for more frequent (e.g. daily) returns.

» Tempered heavy-tail models are reasonable.
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Gaussian quasi-likelihood estimation

Maximum-Likelihood Estimation for Markov models

o Maximume-Likelihood Estimator (MLE) is theoretically preferred.
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Maximum-Likelihood Estimation for Markov models

o Maximume-Likelihood Estimator (MLE) is theoretically preferred.

o Data Y;,,...,Y;, from a Markov process (Y:)

o The MLE is defined to be the “argmax” of the log-likelihood
function

0 — log po(Yz,,---,Y2,) = Y logpe(Yy; |V, _,).
j=1
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Gaussian quasi-likelihood estimation

Maximum-Likelihood Estimation for Markov models

o Maximume-Likelihood Estimator (MLE) is theoretically preferred.
o Data Y;,,...,Y;, from a Markov process (Y:)

o The MLE is defined to be the “argmax” of the log-likelihood
function

0 — log po(Yz,,---,Y2,) = Y logpe(Yy; |V, _,).

Jj=1

o For Y SDE, the transition density pg(y|x) is mostly unknown.
What proxy can we make use of? How can we proceed in practice?
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Gaussian Quasi-Likelihood Estimator (GQLE)

Summary and concluding remarks

o Consists of fitting one-step conditional mean and variances:

» Originally due to Wedderburn (1974);
» A kind of generalized method of moments.

To formulate the estimation procedure, it is enough to have
E[Y;fg |}/tj—1] = mj—l(a) and Var[njlnj—l] = vj—l(e)'

explicitly.
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Gaussian Quasi-Likelihood Estimator (GQLE)

o Consists of fitting one-step conditional mean and variances:

» Originally due to Wedderburn (1974);
» A kind of generalized method of moments.

To formulate the estimation procedure, it is enough to have

oncluding remarks

E[Y;fjnftj_l] = mj—l(a) and Var[mjlnj—l] = vj—l(e)'

explicitly.
o The GQLE is formally given by the argmax of

1

OHZlog{ %UJ 0

¢ the N(0, 1)-density.

o} (K‘v - mj—l(e))} ’
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Gaussian quasi-likelihood estimation

o The GQLE is popular in “non-Gaussian” noise time-series analysis:
e.g., with i.i.d. €, s.t. E[e,] =0 and E[e?] =1,
» GARCH type model, Straumann and Mikosch (2006),

Y’n:Unena nEN,

P q
on =00+ Y i+ > Bion_;.

=1 Jj=1
» Multivariate causal time series, Bardet and Wintenburger (2009),

Y. = MB(Yn—len—27 oo )Gn + fO(Yn—laYn—27 e )-

Hiroki Masuda (Kyushu University) 11/29
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e.g., with i.i.d. €, s.t. E[e,] =0 and E[e?] =1,
» GARCH type model, Straumann and Mikosch (2006),

Yn:Unena nEN,

P q
on =00+ Y i+ > Bion_;.

=1 Jj=1
» Multivariate causal time series, Bardet and Wintenburger (2009),
Y. = MB(Yn—ls Yn2,... )Gn + fO(Yn—la Yn—2, e )-

o Question. How about using GQLE methodology for the SDE
model...?
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Gaussian quasi-likelihood estimation for SDE

GQLE for discretely observed Lévy driven SDE *

o Based on X}, Xop, 5. .., Xnh, stemming from the ergodic

dX; = a(X¢, a)dt + (X, v)dZ,,

we want to estimate 0 = («, <), where Z is a Lévy process s.t.

E[Z;] =0 and E[th] =t.

*M (2010, preprint) and the references therein.
Hiroki Masuda (Kyushu University)
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Gaussian quasi-likelihood estimation for SDE

GQLE for discretely observed Lévy driven SDE *

o Based on X}, Xop, 5. .., Xnh, stemming from the ergodic
dX; = a(X¢, a)dt + (X, v)dZ,,

we want to estimate 0 = («, <), where Z is a Lévy process s.t.
E[Z;] =0 and E[th] =t.
o “Aggressive” approximation £(Zp, ) ~ N (0, h,,) for small h,,:
Xijhp R X(j-1)hn T &(X(G-1)hn> @0)hn
+ (X (G—1)hnsY0)(Zjhn — Z(G—1)hy)
~ N (XG-1)hn + (X (G-1)hns @0)Rns (X (G-1)hn>Y0) ) ,

making the GQLE procedure explicit.

*M (2010, preprint) and the references therein.
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Gaussian quasi-likelihood estimation for SDE

Resulting phenomenon and a practical caution

dX; = a(X¢, a)dt + (X, v)dZ,
o The GQLE 8,, = (&n,%n) are asymptotically normal:
(VB (Gn — a0)s V(in = 70) ) =4 N (0, V') if w(R) = 0;
(Vrha(@n = a0), Viha(Gn = 7)) =4 N (0,V") if v(R) >0,

where v is the Lévy measure of Z.
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Gaussian quasi-likelihood estimation for SDE

Resulting phenomenon and a practical caution

dX; = a(X¢, a)dt + (X, v)dZ,
o The GQLE 8,, = (&n,%n) are asymptotically normal:
(VB (Gn — a0)s V(in = 70) ) =4 N (0, V') if w(R) = 0;
(Vrha(@n = a0), Viha(Gn = 7)) =4 N (0,V") if v(R) >0,

where v is the Lévy measure of Z.
o Existence of “any” jump part in Z slows down the convergence rate.

o An obvious practical problem: Jumps are present or not?
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Simple test statistics for presence of any jump component

Test statistics for the noise normality

1 3\/_ 2 n .
— {‘I’,(%i") Za c(X G- 1)hn=')’n)} + i((I,("4) —3)2

j=1

€nj ‘= 9

o Xihn = XG-vhy = A(XG-1)hns Gn)hn 5 lié ,
(X (G—1)hpsIn)Vhn n3 7

- 1< _ . 3
U = Z(énj — &)k, dF = 1 2" .
mis (B)k/2
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Simple test statistics for presence of any jump component

Test statistics for the noise normality

n (. 3\/ 2 n .
= {@1(13) Za c(XG-1)h, ,'yn)} +£(¢%4)_3)2

j=1

sy €En =

. Xy = XG0 — U X(G-1)hpr Gn)hn 1 i e
~ ngo
(X (G-1)hnsIn)Vhn na

5, (k) 1 i 2 Nk &) b
TE = 2N (en; —En), B =
(et (B2 w2

o Consistent and asymptotically distribution-free test:
> T, =% x?(2) under Ho : v(R) = 0;
» Tn —P oo under H; : v(R) € (0, co].

Hiroki Masuda (Kyushu University) 14/29
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Simple test statistics for presence of any jump component

Test statistics for the noise normality

n (. 3\/ 2 n .
= {cpf) Za c(XG-1)h, ,'yn)} +£(¢514) — 3)?

j=1

o Xinn = XG-nhy = A(X(G-Dhns Gn)hn 51 i
n j=1

€nj 1=
" (X (G—1)hnsn)Vhn ’
R 13 _ R l:’[‘,("’)
v = = (énj — &n)" dF = " |
n n J:Zl nJ n 9 n (\Ilszz))k/z

o Consistent and asymptotically distribution-free test:
> T, =% x?(2) under Ho : v(R) = 0;
» Tn —P oo under H; : v(R) € (0, co].
o We may proceed as follows: Using 7,, with the GQLE,
» 7o not rejected = follow diffusion estimation procedures,
» Ho rejected = incorporate a jump part, or adopt a pure-jump noise.
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Some important previous studies, some remarks

o Jump detection filter may work well.
(Mancini, Shimizu and Yoshida, Shimizu, Ogihara and Yoshida.)
» Asymptotically efficient, may work well for compound Poisson jumps.
> In principle, the coexistence of Wiener and Poisson parts makes
estimation problem difficult when pursuing estimation efficiency.

Hiroki Masuda (Kyushu University) 15/29
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Some important previous studies, some remarks

o Jump detection filter may work well.
(Mancini, Shimizu and Yoshida, Shimizu, Ogihara and Yoshida.)

» Asymptotically efficient, may work well for compound Poisson jumps.
> In principle, the coexistence of Wiener and Poisson parts makes
estimation problem difficult when pursuing estimation efficiency.
o What will theoretically occur in general?

» We do not known any general optimal behavior of estimators.
» LAN results known only for very particular cases.
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Our goal of this talk is to

o Provide an estimator of the true value of 6§ = («,~) in
dXt = a(Xt, a)dt + C(Xt_,’)/)dZt

based on Xo, Xy, Xon, .-y Xnn, (hn — 0).
o We want to deal with pure-jump Z with higher degree of activity;
e.g. Generalized hyperbolic, Meixner, CGMY, etc.

o We here do not adopt:

» the GQLE, unsatisfactory while usable, in the presence of any jump;
» the jump detection filter approach, a nice device with a good choice of
fine-tuning parameter
* under the presence of a Wiener part,
* when jump activity is finite (or moderate).

Hiroki Masuda (Kyushu University) 16/29
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Non-Gaussian Quasi-Likelihood Estimation (NGQLE)

Target:

dX; = a(Xs, a)dt + c(Xi—,v)dZy, n:= L(Xo)

o Z is a pure-jump Lévy process of infinite activity.

o The parameter 0 := (a,7) € O, X ©, = O C RP,
a bounded convex domain, the true value 6y := (g, 7o) € O.

Notation:
o A;Y :=Yjn, — Y —1)n, for a process Y;

o fj—1(0) := f(X(j-1)h,,0) for any function of the form f(z,0).

Hiroki Masuda (Kyushu University)

Gaussian QLE Summary and concluding remarks
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Assumptions

Al. Regularity of the coefficients

dX; = a(Xy, a)dt + c(X4—,v)dZ;

a and c are smooth in R X ©.

a(+, ap) and c¢(+,7o) are globally Lipschitz.

Jec € (1,00) s.t. V(z,v): 0 < ¢! < ¢(z,v) < c.

If X is not a Lévy process, then

3c', M > 0 s.t. V|z| > M: za(z,a0) < —c'|z|?.

* X is then ergodic under the true image measure Py, the invariant
measure denoted by 7o (dx).

© 6 6 6

Hiroki Masuda (Kyushu University) 19/29
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Assumptions

A2. Driving noise
dXt = a(Xt, a)dt + C(Xt_, ’)’)dZt

® L(Z,) is symmetric around 0, and the Lévy measure v of Z fulfils

v(dz) = Pgo(2)d=  sit. go(z>=pff°+ﬁ{1+0<|z|)}, 2| — 0.

* L(h—Y/BZy) =, B-stable law with the C.F. u — exp(—|u|?) for
some 3 € (0,2): ¢g denotes the density.

Hiroki Masuda (Kyushu University) 20/29
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A2. Driving noise

dXt = a(Xt, a)dt + C(Xt_, ’)’)dZt

® L(Z,) is symmetric around 0, and the Lévy measure v of Z fulfils

Co

v(dz) = 3go(z)dz st. go(z) = P

{1+0(zD}, Iz —o0.

* L(h—Y/BZy) =, B-stable law with the C.F. u — exp(—|u|?) for
some 3 € (0,2): ¢g denotes the density.

@ L(h='/PZ,) admits a positive density f},(y) s.t.:
There exist constant €,, — 0 and Lebesgue-integrable X\ s.t.

\/ﬁ/uh(y) — $p()|dy — 0.

* This holds for, e.g., the NIG Z if nhi‘"‘ — 0 for some k > 0.

Hiroki Masuda (Kyushu University) 20/29
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Assumptions

A3. Sampling rate

dXt = G(Xt, a)dt + C(Xt_, ’)’)dZt

@ B> 1if X is a Lévy process (we do not need nh,, — co0).

@ Otherwise, 3 > 1, nh,, — co, and
deg > 0 s.t. limsup,,_, nhi_z/ﬁ—eo < oo.

Hiroki Masuda (Kyushu University)
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Assumptions

A4. Weight function; for heavy-tailed cases

dX; = a(Xy, a)dt + c(X¢—,v)dZ;

@ W :R — Ry is bounded.
@ There exists a function K : R — R} s.t.
® supgeo W(2){|0aa(z, o)| + [0aa(z, o)|* + |82a(x, o)
+10ve(x, )| + [8ye(2,7)|* + 185¢(z, v) |} < K (),
(%)) SUP;er Eo[K(X})] < oo.

Hiroki Masuda (Kyushu University) 22/29
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Assumptions

A5. Nonsingularity and identifiability

For g(y) := 3% (),

@ det{fW(x)Mm(dm)}-det{fW(m)Mwo(dw)} #0.

c(=,70) c(z,70)?
@ [f W(x)%22®2 fa(x, a0) — a(w, @) }g(SE22) y) bs(y)dymo(da) = 0
iff 0 = 0o.
@ [ W (@) 22e®m (1 4 @)y q(e@0) )} 5 (y)dymo(da) = O iff
= 6p.

Hiroki Masuda (Kyushu University) 23/29
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Construction of our estimator

dXt = G,(Xt, (X)dt —|— C(Xt_, ’)’)dZt
o Again, the naive Euler type approximation:

Xjn, = X(i—1)h, + aj—1(0)hn + ¢;_1(70)A; Z

AZ
= X(j—1)h, + aj_1(co)hn + cj—1(v0)hL/? - hlj/ﬁ

AjX — Q51 (ao)hn
/B
n

. €nj(0) 1= ~ [3-stable, in law (density ¢g).

cj—1(70)

Hiroki Masuda (Kyushu University) 24/29
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Construction of our estimator

dXt = a(Xt, (X)dt —|— C(Xt_, ’)’)dZt
o Again, the naive Euler type approximation:

Xjn, = X(i—1)h, + aj—1(0)hn + ¢;_1(70)A; Z

A;Z
= X(j—1)h, + aj_1(co)hn + cj—1(v0)hL/? - hlj/ﬁ
n

A;X —aj— by
. €nj(00) = —2 1/5% () ~ [3-stable, in law (density ¢g).
hv'"cj—1(v0)

o We define our estimator 6,, = (Gny Ar) through the quasi-likelihood:

~

ST o -
n € argmax i—1log { —————
S hvll/ﬁcj—l('Y)

¢ (€n;(0)) } .

Hiroki Masuda (Kyushu University) 24/29
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Main claim: Asymptotic Normality

Under the aforementioned assumptions, the estimator is A.N.:

(VAR (@ — @0), V(3 = 70) ) = N (0, diag[U(80) ~*, V(80) 1),

where
v(on) = [ W) Pt o) - [ S
,c(x, Yo ®2 2
V(eo) _/W( ){a c((w ’,;Y))g} ﬂo(dm)-/{¢5(y) ;‘ﬁ?(lg)‘pﬁ(y)} dy

Hiroki Masuda (Kyushu University) 25/29
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Remarks

dXt = CL(Xt, a)dt + C(Xt_,"}’)dzt.

Contrast Rates
! v

Gaussian QL Vvnhg, Vvnhg,

Non-Gaussian (Stable) QL Vnhi=YB \/n
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Remarks

dXt = CL(Xt, a)dt + C(Xt_,"}’)dzt.

Contrast Rates
! v

Gaussian QL Vvnhg, Vvnhg,

Non-Gaussian (Stable) QL Vnhi=YB \/n

o GQLE is easier to use, but NGQLE has better performance.
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Remarks

dXt = CL(Xt, a)dt + C(Xt_,"}’)dzt.

Contrast Rates
! v

Gaussian QL Vvnhg, Vvnhg,

Non-Gaussian (Stable) QL Vnhi=YB \/n

o GQLE is easier to use, but NGQLE has better performance.
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Contrast Rates
o v
Gaussian QL Vvnhg, Vvnhg,

Non-Gaussian (Stable) QL Vnhi=YB \/n

GQLE is easier to use, but NGQLE has better performance.

© 0 o o
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Both are somewhat robust for the specification of the Lévy measure.
The technical conditions imposed are, unfortunately, not so mild.
However, we conjecture that the NGQLE is asymptotically optimal.



n-Gaussian QLE
o0

A small numerical example: NIG Lévy process

o We set X; = at + vZ; with £(Z;) = NIG(a,O0,t,0) for some
(unknown) a > 0, hence
Xt — at d
"~ NIG(at,0,1,0) — standard Cauchy.
~
[+] 00 = (ag,’yo) «— (—3, 2), ﬁ =1, and a = 2.
o 1000 iterations with n = 500 and h,, = 1/n.

o Results.
Sample median Stable QLE o« Stable QLE ~
Mean -2.9961 -2.9942 1.9781
S.D. 0.1430 0.1272 0.1237
Max -2.5186 -2.5852 2.3635

Min -3.4808 -3.4704 1.6225

Hiroki Masuda (Kyushu University)
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Asymptotics for non-Gaussian QLE
L]

Achieving the normality of the NGQLE
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o The essential assumption: L',(h_l/ﬁZh) is approximately 3-stable.

o Without imposing nh,, — oo for all cases?:
A suitable weak limit theorem is necessary for identifying possible
limit distribution.

o Want to utilize the Cauchy quasi-likelihood (3 = 1) for SDE.

o Estimation of the Blumental-Getoor index 3:
For Lévy driven OUP, we can apply LAD type estimate (M, 2010).

o Large deviation for the random fields, giving convergence of
moments?

o Adaptive estimation for jump SDEs? (Uchida and Yoshida (2010)
for diffusions)

Hiroki Masuda (Kyushu University) 29/29
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