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Purposes (1)
 Before the financial crisis during these years, none of the risk 

evaluation models can show the possibility to suffer such 
enormous losses. 

 The above is quite natural. Because … 
 The existing risk evaluation models are purely(?) statistical models, so 

that the estimated risk is based on the observed data, that is, past 
events. 

 Crash of the securitization market is the first event. 

 We would like to obtain some forward-looking risk evaluation 
tools for financial risk management in future. 
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Purposes (2)
 By the way, before the financial crisis, in the derivative 

(securitization) markets, there existed some information 
implying that there would be a small probability of such a crisis. 

 Those are the prices of the super-senior tranches in CDO 
market. 

 We think about new risk evaluation models, which can show a 
probability of such a financial crisis and show the change of the 
probability day by day based on the market data. 

 Such models will be useful as one of the complements for the 
existing statistical risk evaluation models. 
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1. Implied Copula 
Model
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Market Standard Model for Pricing CDOs

is called “one-factor Gaussian Copula Model.”

Gaussian Copula is used as a joint distribution 
function of default times. 

Variance-covariance matrix is constructed by one-
factor Gaussian model. 

The model is tractable, but cannot explain the 
market data (price data) consistently. 

Correlation Smile or Correlation Skew.
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Correlation skew (smile)

CREST-Sakigake Conference 7

0%

5%

10%

15%

20%

25%

30%

0% 5% 10% 15% 20% 25%

detachment point

co
m

po
un

d 
co

rr
el

at
io

n

2010/12/18



Implied Copula Model

is proposed by Hull and White (2006) as a pricing model 

of CDOs (Collateralized Debt Obligations) in order to 

solve the problem. 

This model can explain the market prices of several 
tranches of CDOs better than previous models. 
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Essences of Implied Copula Model

are described as follows: 

The default times are conditionally independent. 

Hazard rates are stochastic. 

When          denotes the hazard rate of j-th asset at time t, 
it can be written as 

and          is a stochastic variable dependent of maturity T. 

For simplicity, hazard rates are assumed to be homogeneous, 
that is,                           is the same value. 

Distribution of           is calibrated non-parametrically based 
on the market price of CDOs. 
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Here we propose … 

a credit risk evaluation model of a portfolio based on 

the implied copula model. 

 Its essences are follows: 

Two probability measures are used. One is the physical 
measure, and the other is the risk-adjusted measure for 
pricing. 

Under each measure, hazard rates (default probabilities)  
are stochastic as they are in the implied copula model. 

For a tractability, we construct our model by using 
default probabilities directly, in contrast to Hull and 
White (2006), in which they used hazard rates. 

10CREST-Sakigake Conference2010/12/18



2. The Model

single-period model
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Basic Settings (1)
 Consider     assets issued by different firms. 

 : the physical probability measure. 

 An integer                           : the state of the future. 

 There exists a unique risk-neutral probability measure   , and 
the default times are conditionally independent given . 

 : default time of j-th asset. 

 : hazard rate of j-th asset under    .

 : hazard rate of j-th asset under    . 

 : default-free instantaneous short rate. 
(Stochastic interest rate models can be used.)

 : recovery rate of j-th asset. 
12CREST-Sakigake Conference
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Basic Settings (2)
 We use sub-filtration approach, which is often used in credit 

risk modeling. 









 is the information of default times. 

 is other information. 

 T : risk horizon.  Hereafter, T = 1 year.
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Default process (1)
 : default probability up to time t.
 : conditional default probability.
 Assumption 2.1

where                                     and        

 Assumption 2.2
Under    , default of each asset is N-conditionally independent. 
Given N=k, each default occurs independently with prob. 
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Default process (2)
 We suppose                        .   

Therefore, we can also use the existing stochastic interest 
rate models. 

 Assumption 2.3
For simplicity, the conditional forward default probability is 
a deterministic function of time t. Therefore, 

 Remark 2.1
must be satisfied. 
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Change of measure (1)
 Our model is future-value based model. 

 As the future value, we calculate the price under no-
arbitrage condition. 

 Therefore, the cash flows after T (risk horizon) are 
evaluated under the risk-neutral probability measure    .

 However, the scenarios up to T are under physical 
probability measure     .

 Therefore, we must use these two measures in 
our risk evaluation model. 
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Change of measure (2)
 Interest rate models: 

For example, Hull-White model. 
 Under    ,
 Under    , 

where 
 : market price of risk

 Hazard rate models: 
From Kijima and Muromachi (2000), 
 Under    ,
 Under    , 
 : risk-premia adjustments
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Change of measure (3)
 Assumption 2.4

We assume 
 This can be derived from 

 Here, we assume          are deterministic functions of time. 

 Assumption 2.5
Under P, default of each asset is N-conditionally independent.
 “Conditional independence” is not invariant w.r.t. change of 

measure. 
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Default process (3)
 Assumption 2.6

Given N=k, the conditional default probability is given by 

 Distribution of      under     is the same as the one under   .
 This assumption is ad hoc.
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Interest rate process
 We can use existing interest rate processes in our 

model. 

 For simplicity, we assume the default-free interest 
rates and the default probabilities are independent. 
 Even without this assumption, this independence is satisfied 

under our setting. 
 Additionally, in numerical examples, we assume a 

deterministic default-free interest rates. 
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Procedures for risk evaluation
1. Generate N with the probability distribution      .

2. Given N=k, calculate                                 , and a sample-
path of the short rates r(s) up to T. 

3. Generate a default scenario. Namely, judge the states (default 
or survive) of all assets on T. 

4. Given r(T), generate term structure of the interest rates at T. 

5. Evaluate the prices of all assets at T. 

6. Sum up the prices, and we obtain a sample of the future 
portfolio value. 

7. Repeat from 1 to 6 until enough numbers of scenarios are 
obtained. 
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Valuation of Bond in future
 According to Jarrow and Turnbull (1995), we obtain 

present (t=0) value of the defaultable discount bond 

 Given N=k, its future value is obtained as 

where 

Setting in “Jarrow and Turnbull” at maturity
If it defaults before maturity, the holder obtains $     . 
If others, he obtains $1.  
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Valuation of CDO in future
 Present (t=0) value of CDO is calculated in a 

ordinary manner. 

 In order to obtain a future value of CDO, consider 
 default legs, premium legs, and accrued interests before T. 
 future price of CDO without already defaulted assets. 
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3. Numerical Example: 
a synthetic CDO

risk horizon = 1 year

Monte Carlo (100,000 scenarios)
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CDO setting
 Maturity: 5 years.
 Asset pool: 125 entities.
 Each asset: face value 10, recovery rate 40%.
 Credit rating: A … default probability 0.5% / year

B … default probability 1.0% / year
 A: 50 entities, B: 75 entities.
 Interest rates: flat 

default-free 1%,  A-rated 2%,  B-rated 3%.
 Tranching: 6 tranches, 0-3, 3-6, 6-9, 9-12, 12-22
 Coupon rates = fair spreads under this condition.
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Distribution of multiplier
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Distribution of future value [3, 6]
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Distribution function [0, 3] (1)
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Distribution function [3, 6] (1)
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Distribution function [3, 6] (2)
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Distribution function [6, 9]
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Distribution function [9, 12]
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Distribution function [12, 22]
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Table of VaR, ES (1)
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attach-detach 0-3 3-6 6-9 9-12 12-22

initial face value 37.5 37.5 37.5 37.5 125.0

average 0.0 0.0 0.0 0.01 0.001

standard deviation 12.4 5.8 2.8 0.86 0.085

VaR 95.0% 22.5 10.7 0.1 -0.08 -0.005
99.0% 30.1 32.7 16.9 2.02 0.039
99.5% 31.7 34.9 26.2 6.08 0.278
99.9% 33.6 35.8 32.4 13.12 1.105

Expected 95.0% 27.1 21.7 6.9 1.46 0.098
Shortfall 99.0% 31.8 34.7 26.3 7.39 0.509

99.5% 32.8 35.5 30.1 10.53 0.868
99.9% 33.6 36.2 33.9 16.73 2.081

100α%-VaR = average – 100(1-α)-percentile
100α%-ES = average – conditional expectation under 100(1-α)-percentile



Summary : CDO
 Each tranche has a left long-tail. 
 The left tail grows drastically near (or under) 1% 

confidence level in the mezzanine tranches. 
 This method can give a common shock with a certain 

confidence level to many tranches. 
 It implies that this model might succeed the description 

of the Armageddon factor. 
 This is “market-implied” Armageddon factor ? 

 However, in a sense, these results is only natural. 
 And, this tendency depends strongly on the distribution 

of the multiplier. 
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Summary : CDO (cont.)
 As in Table, VaRs under high confidence levels of 

equity [0-3] is lower than those of mezzanine [3-6].
 This is because we consider the effect of the coupon up to 

the risk horizon. The coupon of the equity is high. 
 And, this might be partly because this model can give a 

common shock with a certain confidence level to many 
tranches.

☆ I’m sorry that my numerical results are wrong in my article. 
These results shown here would be correct, I hope. 
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4. Numerical Example: 
a Bond Portfolio

risk horizon = 1 year 

Monte Carlo (100,000 scenarios)
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Bonds setting
 Portfolio: 500 corporate discount bonds.
 A-rated: 200 bonds, B-rated: 300 bonds. 
 Maturity: 5 years.
 Face value: 10, Recovery Rate: 40%.

 Default probabilities: same in Section 3.
 Interest rates: same in Section 3.
 Distribution of multiplier: same in Section 3.

This application might be controversial, I think. 
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Distribution of future value
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Distribution function (1)
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Distribution function (2)

CREST-Sakigake Conference 41

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

3400 3600 3800 4000 4200 4400 4600 4800

future value of a portfolio

pr
ob

ab
ilit

y

2010/12/18



Expected Shortfall
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Table of VaR, ES (2)
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average 4,460.8

standard deviation 125.1

VaR 95.0% 237.7
99.0% 441.8
99.5% 895.3
99.9% 945.6

Expected 95.0% 431.0
Shortfall 99.0% 892.4

99.5% 924.9
99.9% 963.3

2010/12/18

100α%-VaR = average – 100(1-α)-percentile
100α%-ES = average – conditional expectation under 100(1-α)-percentile



Summary: bond portfolio
 Distribution of future value of the portfolio has a 

left long-tail. 
 VaR moves drastically near 5% and 1%. 

 These results strongly depend on the distribution of the 
multiplier κ. 

 ES moves more smoothly than VaR.
 ES is more preferable in practice (?) 
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5. Concluding Remarks
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Some comments
 According to the numerical results of Hull and White (2006), 

there exists a small probability that the hazard rates will grow 
much larger than usual based on the market prices of CDOs, 
before the credit crunch after 2007. 

 Our model can reflect the probability on the risk evaluation of a 
portfolio. That is, the latent fear of the market participants can 
be reflected on the risk evaluation. 

 In other words, the stress scenarios implied by the market data 
can be includes with their probabilities in our model. 

 Although the implied copula is a static model, our extension can 
include stochastic behavior of mean hazard rates. 
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Thank you 
for your 

attention.
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Appendix. 
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Calibration of  
 As in the implied copula model, the distribution                                

is calibrated based on the market prices of CDO tranches. 

 Please see the details in Hull and White (2006). 
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