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Main Issues

� Our main purpose is to give asymptotic expansion formulas of implied

volatilities for general di�usion models.

� SABR model is one of stochastic volatility models and popular among

practitioners. That is because an accurate asymptotic formula of

volatility smile for European call options is known.

� We generalize this formula for general di�usion models. We take an

approach based on Malliavin calculus.

� The theory of asymptotic expansions of probability densities based on

Malliavin calculus was originated by Bismut [1] and was developed by

Watanabe [8] and Kusuoka-Stroock [4].
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1. Volatility Skew / Smile

� A European call option is a derivative which at some terminal time T

has a value (X(T )�K)+; where X(T ) is a underlying asset price at

time T and K is a strike rate.

� In �nancial markets, the Black-Scholes formula has been widely used to

price European options. We assume the log-normal model,

dX(t) = �X(t)dW (t); X(0) = x0:

Then the (undiscounted) value of a call option with strike K, maturity

T is given by

CBS(T;K; �) = E[(X(T )�K)+] = x0�(d1)�K�(d2);
2
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where

d1;2 =
log(x0=K)� 1

2
�2T

�
p
T

:

� It is a common practice to quote option prices in terms of `implied

volatility', i.e. given a price C(T;K), the implied volatility is given by

C(T;K) = CBS(T;K; �BS(T;K)):

� In the original Black-Scholes model, the implied volatility must be

constant independent of strike rate.

� But in real �nancial markets such as foreign exchange options and

stock index options, observed implied volatilities depend on strike rate.
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Figure 1: Sample of Implied volatility smile observed in the market

� To price and hedge complex exotic derivatives appropriately, it is

necessary to build a model that can calibrate to the volatility smile

accurately.
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� There are two well-known models to explain these phenomena. The

�rst class of models are called local volatility models for which the

volatility is assumed to depend on time and the spot price of the

underlying.

� CEV model
dX(t) = �X(t)�dW (t):

The second class of models are stochastic volatility models.

� SABR model

dX(t) = �(t)X(t)�dW0(t);

d�(t) = ��(t)(�dW0(t) +
p

1� �2dW1(t)):

� To calibrate the model to the market, it is necessary to calculate the

values of European call options.

5
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2. SABR formula

� (
;F ; Q; fFtg06t6T ) be a complete probability space satisfying the

usual hypotheses.

� Under T -forward measure, we assume the following model,

dX(t) = "�(t)�(X(t))dW1(t);

d�(t) = "��(t)dW2(t);

dhW1;W2i = �dt; X(0) = x0; �(0) = �:

� Forward value of call option of strike K, maturity T is,

C(T;K) = ET [(X(T )�K)+]:

6
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� We de�ne

G(x) =

Z 1

x

(y � x)�(y)dy = �(y)� y�(�y);

where � is the normal distribution and � is Gaussian density.

� When we assume normal model,

d ~X(t) = �NdW (t); ~X(0) = x0;

the forward value of call option is

CN(T;K; �N) = �N
p
TG
�K � x0

�N
p
T

�
:

� We are interested in the implied normal volatility of SABR model, that
is, �N(K) satisfying

C(T;K) = CN(T;K; �N(K)):

7
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� Hagan [2] has calculated the asymptotic expansion of implied normal

volatility for SABR model using singular perturbation technique and

has obtained the following famous formula;

Theorem. [Hagan] As " # 0, implied normal volatility for SABR
model is as follows;

�N(K) =
�(x0 �K)R x0

K
dx
�(x)

�
�

x̂(�)

�
�
1 + "2

�
22 � 21

24
�2�2(Xav) +

1

4
���1�(Xav) +

2� 3�2

24
�2
�
T + � � �

�

where,

xav =
p
x0K; 1 =

�0(xav)
�(xav)

; 2 =
�00(xav)
�(xav)

;

� =
�

�

x0 �K

�(xav)
; x̂(�) = log

p
1� 2�� + �2 � �+ �

1� �
:
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3. Energy function of SABR model

� Let H be a Cameron-Martin space. We consider the following
associated ODE;

df(t;h)

dt
= a(t;h)C(f(t;h))(

p
1� �2 _h1(t) + � _h2(t))

da(t;h)

dt
= �a(t;h) _h2(t);

f(0; h) = x0; a(0; h) = �:

where h 2 H.

� From Watanabe and Kusuoka-Stroock theory, as " # 0, asymptotic
expansion of density function is

p"(t; y) � 1p
2�"

e
�e(y)

2"2 (a0(y) + "a1(y));

9
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where

e(y) = inff1
2

Z 1

0

j _h(s)j2ds; f(1; h) = yg:

� In this model, we can give the energy term explicitly.

Theorem 1. In SABR model, energy term is

e(K) =
1

2�2T
log(

p
1� 2�� + �2 � �+ �

1� �
)2 =

x̂(�)2

2�2T
;

where

� = ��
�

Z K

x0

dz

C(z)
:

Proof. We de�ne

B(x) =

Z x

x0

dz

C(z)
:
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And de�ne

q1(t) = B(f(t;h)); q2(t) = a(t;h):

Then q1; q2 satis�es the following ODE:

dq1(t)

dt
= q2(t)(

p
1� �2 _h1(t) + � _h2(t));

dq2(t)

dt
= �q2(t) _h2(t):

We de�ne Riemanian metric on R2 as

ds2 =

2X
i;j=1

gij(q)dq
idqj

where (gij) is inverse matrix of (gij) and

�
g11(q) g12(q)
g21(q) g22(q)

�
=

�
q22 ��q22
��q22 �2q22

�
11
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Then, We can interpret e(y) as the square of minimum geodesic
distance between the point f(q1; q2) = (0; �)g and the line
fq1 = B(K)g. We consider the following Hamiltonian

H(p; q) =
1

2

X
gij(q)pipj =

1

2
q22(p

2
1 + 2��p1p2 + �2p22);

and the associated Hamilton equation is;

dq1(t)

dt
= q2(t)

2(p1(t) + ��p2(t));

dq2(t)

dt
= q2(t)

2(��p1(t) + �2p2(t));

dp1(t)

dt
= 0;

dp2(t)

dt
= �q2(t)(p1(t)2 + 2��p1(t)p2(t) + �2p2(t)

2)

with boundary conditions

q1(0) = 0; q1(T ) = B(K); q2(0) = �; p2(T ) = 0:

12
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We can easily check that H, p1 and p1q1 + p2q2 are the �rst integrals
of this Hamiltonian system i.e.

d

dt
H(p(t); q(t)) = 0;

d

dt
p1(t) = 0;

d

dt
(p1(t)q1(t) + p2(t)q2(t)) = 0:

First, we solve p2 and calculate p2(0).

dp2(t)

dt
= �(p1(t)2 + 2��p1(t)p2(t) + �2p2(t)

2)1=2(2H)1=2;

p2(T ) = 0:

Using the following inde�nite integralZ
dxp

ax2 + bx+ c
=

1p
a
log j2ax+ b+ 2

p
a(ax2 + bx+ c)j; a > 0;

we can solve p2 as follows;

�2p2(t) + ��p1 + �
q
p21 + 2��p1p2(t) + �2p2(t)2 =

C

2
e�
p
2H0�t:

13



Crest and Sakigake

We see that

H =
1

2�2T 2

n
log(

p
1� 2�� + �2 � �+ �

1� �
)
o2
:

Finally we can calculate the energy as follows:

e(K) =

Z T

0

Hdt =
1

2�2T

n
log(

p
1� 2�� + �2 � �+ �

1� �
)
o2
:

2
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Figure 2: Minimum Energy path of SABR with Positive Rho

x0 = 1; � = 0:1; � = 0:1; � = 0:5; � = 0:8; T = 5:
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Figure 3: Minimum Energy path of SABR with Positive Rho

x0 = 1; � = 0:1; � = 0:1; � = 0:5; � = �0:8; T = 5:

� Furthermore, we show the following.
16



Crest and Sakigake

Theorem 2. For any K0 > x0,

lim
"#0

sup
K2[x0;K0]

�
"2 logC"(T;K) + e(K)

�
= 0

Since the energy for the normal model is given by

e(K) =
(x0 �K)2

�2N
;

the implied normal volatility for SABR model satis�es

lim
"#0

����N(K)

"
� �(K � x0)RK

x0

dz
C(z)

� �

x̂(�)

���� = 0:

This is the initial term of SABR formula.

17
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4. Kusuoka-Stroock theory

� Let (�; k � k�) be a separable Banach space and (H; k � kH) be a

separable Hilbert space such that H is a dense subspace of � and the

inclusion map is continuous.

� Let �s; s 2 [0;1); be the (necessarily unique) probability measure on
(�;B�) with the property thatZ

�

exp[
p�1hu; �i]�s(d�) = exp(�s

2
kuk2H); u 2 ��:

Then (�; H; �1) is an abstract Wiener space in the sense of L. Gross.

� De�ne FC1%([0;1)��;E) to be the space of f : [0;1)! E for

which there exists an n 2 N, an ~f 2 C1%(R1+n) and a continuous

linear map A : �! R
n such that

f(s; �) = ~f(s;A�); (s; �) 2 [0;1)��:

18
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� De�ne an operator D : FC1%([0;1)��;E)! FC1%([0;1)��;H(E)) by

Df(s; �)(h) = lim
�!0

f(s; � + �h)� f(s; �)

�
; (s; �) 2 [0;1)�� and h 2 H :

� For any complete orthonormal basis fhig � H, the Laplacian is given
by

�f(s; �) = traceHD
2f(s; �) �

X
i

D2f(s; �)(hi; hi) 2 E

is well de�ned.

� De�ne the heat operator A : FC1%([0;1)��;E)! FC1%([0;1)��;E) by

Af(s; �) = @f

@s
(s; �) +

1

2
�f(s; �); (s; �) 2 [0;1)��:

19



Crest and Sakigake

� We de�ne e : RN ! [�1;1] by

e(x) � inffkhk
2
H

2
� f(0; h);F (0; h) = xg; x 2 RN :

� We also assume the following.
(A2) For each y 2 Y ,

M(y) � fh 2 H;F (0; h) = yg 6= ;

and that

e(y) =
kh(y)k2

2
� f(0; h(y))

for precisely one h(y) 2M(y):

� Here we omit several assumptions. We de�ne

A(s; �) = DF (s; �)DF (s; �)�

= ((DFi(s; �); DFj(s; �))H)15i;j5N

20
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and assume the following.
(A5) For any p 2 [1;1)

lim
s#0

s log(

Z
�

j detA(s; �)j�p�s(d�)) 5 0:

Then Kusuoka-Stroock [4] proved the following.

Theorem. [Kusuoka-Stroock] For each s 2 (0; 1], a signed measure
Ps(�) on RN given by

Ps(�) =

Z
F (s;�)2�

g(s; �) exp

�
f(s; �)

s

�
�s(d�); � 2 B(RN);

admits a smooth density ps(�). Moreover, there exist sequence
fang1n=0 � C(Y ;R) and fKng1n=0 � (0;1) with the property that, for every
n 2 N,

���(2�s)N=2ee(y)=sps(y; 0)� nX
m=0

sm=2am(y)
��� 5 Kns

(n+1)=2; (s; y) 2 (0; 1]� Y:

21
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Our result is the following.

Theorem 3. e is smooth in the neighborhood of Y and

a0(y) = (detr2e(y))1=2det2(IH �B(y))�1=2 exp
� NX
i=1

@e

@yi
(y)AF i(0; h(y))

+Af(0; h(y))
�

for y 2 Y; where

B(y) �
NX
i=1

@e

@yi
(y)D2F i(0; h(y)) +D2f(0; h(y)); y 2 Y:

Here det2 is called Carleman-Fredholm determinant de�ned by

det2(IH �B) � det(IH �B) � etraceHB:

22
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5. Application to Stochastic Di�erential Equations

� We apply Kusuoka-Stroock-O's theorem to di�usion models.

� Let fW 1(t); � � � ;W d(t) ; t 2 [0; T ]g be a d-dimensional Brownian
motion. Let X"(t); t 2 [0; T ]; " 2 (0; 1], be the solution to the
stochastic di�erential equation,

dXi
"(t) =

dX
k=1

"V i
k(t;X"(t))dW

k(t) + V i
0 (t;X"(t))dt; 1 � i � N;

X"(0) = x0 = (x10; : : : ; x
N
0 ); x0 2 RN ;

where V0; � � � ; Vd 2 C1b ([0; T ]� RN ;RN). We assume

V 1
0 � 0;

and the ellipticity of V1; � � � ; Vd; at x0, i.e. there exists a constant
23
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� > 0 such that
dX

k=1

Vk(0; x0)
 Vk(0; x0) � �I;

where I denotes the identity matrix.

� We investigate the distribution of X1
" (T ). From the ellipticity

condition, the law of X1
" (T ) is absolutely continuous and has a smooth

density p"(y).

� Let H be the Cameron-Martin space. We consider the associated
ordinary di�erential equation

d

dt
yi(t;h) =

dX
k=1

V i
k(t; y(t;h))

_hk(t) + V i
0 (t; y(t;h)); t 2 [0; T ]; h 2 H;

y(0;h) = x0; x0 2 Rn:
24
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� The energy function e : R! R is given by

e(y) = inf
n1
2

dX
i=1

Z T

0

j _hi(s)j2ds;h 2 H; y1(T ;h) = y
o
:

� Here we will give the asymptotic expansion of the energy for general

di�usion models.

� Corresponding to " = 0, de�ne a ow � : [0; T ]� RN ! R
N by

d

dt
�(t; x) = V0(t; �(t; x)); t 2 [0; T ];

�(0; x) = x:

� De�ne the push-forward of the vector �eld V by the map �t.

~V i
k(t; y) =

NX
j=1

@�i

@xj
(�t; �(t; y))V j

k (t; �(t; y)); 1 � i � N; 1 � k � d;

25
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� De�ne (gij)1�i;j�N : [0; T ]� RN ! R corresponding to Riemannian
metric by

gij(t; x) =

dX
k=1

~V i
k(t; x)

~V j
k (t; x); 1 � i; j � N:

� De�ne the generating operator Lt; t 2 [0; T ] by

(Ltf)(x) =
1

2

NX
i;j=1

gij(t; x)
@2f

@xi@xj
(x) +

NX
i=1

bi(t; x)
@f

@xi
(x);

where b 2 C1b ([0; T ]� RN ;RN) is given by

bi(t; y) =
1

2

NX
k;l=1

dX
m=1

@2�i

@xk@xl
(�t; �(t; y))V k

m(t; �(t; y))V l
m(t; �(t; y)):

26
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� De�ne linear operators V and � by

(V f)(t; x) �
NX
i=1

g1i(t; x)

Z T

t

@f

@xi
(s; x)ds;

�(f; g)(x) �
NX

i;j=1

Z T

0

gij(t; x)
�Z T

t

@f

@xi
(s; x)ds

��Z T

t

@g

@xj
(s; x)ds

�
dt:

� De�ne

b1 =

Z T

0

g11(t; x0)dt;

b2 =
3

2

Z T

0

(V g11)(t; x0)dt;

b3 = 2

Z T

0

(V 2g11)(t; x0)dt+
1

2
�(g11; g11)(x0):

We note that these parameters are determined by `geometric
27
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structure' of the model.

Theorem 4. There are constants r0 > 0 and C0 > 0 such that energy
e satis�es

���e(y)� h 1

2b1
(y � x10)

2 � b2
3b31

(y � x10)
3 +

�
� b3
4b41

+
b22
2b51

�
(y � x10)

4
i��� � C0jy � x10j5;

Proof. We de�ne Hamiltonian H : [0; 1]� RN � RN ! R by

H(t; x; p) =
1

2

NX
i;j=1

gij(t; x)pipj +

NX
i=1

bi(t; x)pi:

We assume h0 attains the minimum and satis�es

h0 =

NX
k=1

�kDy
k(1;h0) +Df(h0):

28
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Let

x(t) = y(t;h0);

pi(t) =

NX
j=1

�Jji (t;h0)
� NX
k=1

Jkj (1;h0)�k); 1 � i � N:

Then (x; p) satis�es the Hamilton equation,

d

dt
xi(t) =

@

@pi
H(t; x(t); p(t));

d

dt
pi(t) = � @

@xi
H(t; x(t); p(t)); t 2 [0; 1]; 1 � i � N;

x(0) = x0; x0 2 Rn:

Then the energy is given by

e(x) =

NX
i;j=1

Z 1

0

gij(t; x(t))pi(t)pj(t)dt:

29
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The solution can be written as

xi(t;w) = xi0 +

NX
j=1

Z t

0

gij(s; x(s;w))pj(s;w)ds;

pi(t;w) = pi(1;w) +
1

2

NX
j;r=1

Z 1

t

@gjr

@xi
(s; x(s;w))pj(s;w)pr(s;w)ds:

where

�i =

(
w (i = 1); w 2 R
0 (2 � i � N):

In our case,

h0(x) = argminf1
2
khk2 ; y1(1;h) = xg

Therefore we have h0(x) = �(x)Dy1(1;h0) and furthermore we have

�(x) = @e
@x
. We calculate the asymptotic expansion inductively. 2

30
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6. Energy function of SABR model

{ On the other hand, we will calculate the asymptotic expansion using
Theorem 4. The parameters are given by

b1 = �2�(x0)
2T;

b2 =
3

2
�(x0)

3�3(��0(x0) + ��)T 2;

b3 =
�8
3
�6�(x0)

4�0(x0)2 +
2

3
�6�(x0)

5�00(x0) + 6���(x0)
4�0(x0)�5

+ 2�2�2�(x0)
4�4 +

2

3
�4�(x0)

4�2
�
T 3;

L =
�2�(x0)

2T 2

2

�
�2(�0(x0)2 + �(x0)�

00(x0)) + 4����0(x0) + �2
�
:
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Figure 4: energy function of SABR model, asymptotic expansion vs analytic

formula
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7. Asymptotic expansion of probability density

� Using Theorem 3, we determine the asymptotic expansion to the higher

order. Our main result is the following.

Theorem 5. There is a constant r0; C1; C2 > 0 such that the
probability density p"(y) satis�es following.

���(2�"2)12 exp�e(y)
"2

�
p"(y)� a0(y)� "2a2(y)

���� "4C1; y 2 [x10 � r0; x
1
0 + r0]:

Here, a0 and a2 are continuous functions such that

���a0(y)� �@2e(y)
@y2

�1
2
exp
�L(y � x10)

2

2b21

���� � C2jy � x10j3;

a2(x
1
0) =

1p
b1

�
� L

2b1
� 5

6

b22
b31

+
3

4

b3
b21

�
;
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where

L =

Z
0<u<t<T

Lu(g
11(t; �))(x0)dudt:

Proof.

{ We de�ne the Wiener functionals
F i : (0; 1)��� [x10 � r0; x

1
0 + r0]! R; 1 � i � N by

F i(s; �; y) = Xi
s(1; �)� y:

{ The asymptotic expansion of heat operator is given by

AF 1(0; h0(y); y) � (y � x10)

2b1

n NX
i=1

Z 1

0

Z t

0

bi(u; x0)rig
11(t; x0)dudt

+

dX
k=1

NX
i;j=1

Z 1

0

V 1
k (t; x0)r2

i;jV
1
k (t; x0)

�Z t

0

gij(u; x0)du
�
dt
o
:
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{ det2(IH �B(y)) is given by Hilbert-Schmidt norm of D2F 1.
{ We have

kD2F 1(0; 0; x0)k2HS

= 2

dX
m=1

NX
l1;l2=1

Z 1

0

Z t

0

gl1l2(u; x0)rl1V
1
m(t; x0)rl2V

1
m(t; x0)dudt:

{ We can calculate a2(x
1
0) from

R1
�1 p"(y)dy = 1:

2
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8. Malliavin derivative along the minimum energy path
Malliavin Derivative of X is given by

D(Xi
t(s; h0 + ws)) =

Z t

0

rjV
i
k(r;Xr(s; h0 + ws))D(Xj

r(s; h0 + ws))dwk
s(r)

+

Z �^t

0

V i
k(r;Xr(s; h0 + ws

r))dr

+

Z t

0

rjV
i
k(r;Xr(s; h0 + ws

r))D(Xj
r(s; h0 + ws)) _hk0(r)dr

+

Z t

0

rjV
i
0 (r;Xr(s; h0 + ws

r))D(Xj
r(s; h0 + ws))dr;

therefore by taking the limit of s # 0, we have the ODE

D(Xi
t(0; h0))[k1] =

Z t

0

V i
k(r; y(r;h0))

_k1(r)dr

+

Z t

0

rjV
i
k(r; y(r;h0))D(Xj

r(0; h0))[k1]
_hk0(r)dr:
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If we de�ne J as the solution of the ODE

dJ ij(t) =

dX
j=1

NX
k=1

r�V
i
k(t; y(t;h0))

_hk(t)J�j (t)

J ij(0) = �ij

Then we can write the Malliavin derivative with J as following;

J�1(t)DXt(0; h0)[k1] =

dX
�=1

Z t

0

J�1(s)V�(r; y(r;h0)) _k�1 (r)dr:
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9. Second Malliavin Derivative D2 and heat operator A

The Second Malliavin derivative of X can be written as

D2(Xi
t(0; h0))[k1][k2] =

Z t

0

rjV
i
k(r; y(r;h0))DX

j
r(0; h0)[k1]

_k2(r)dr

+

Z t

0

rjV
i
k(r; y(r;h0))DX

j
r(0; h0)[k2]

_k1(r)dr

+

Z t

0

rlrjV
i
k(r; y(r;h0))D(Xj

r(0; h0))[k1]D(X l
r(0; h0))[k2]

_hk0(r)drZ t

0

rjV
i
k(r; y(r;h0))D

2(Xj
r(0; h0))[k1][k2]

_hk0(r)dr
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Then the solution of ODE is given by

J�1(t)D2(Xi
t(0; h0))[k1][k2] =

Z t

0

J�1(r)rjV
i
k(r; y(r; h0))DX

j
r(0; h0)[k1]

_k2(r)dr

+

Z t

0

J�1(r)rjV
i
k(r;Xr(0; h0))DX

j
r(0; h0)[k2]

_k1(r)dr

+

Z t

0

J�1(r)rlrjV
i
k(r;Xr(0; h0))D(Xj

r(0; h0))[k1]D(X l
r(0; h0))[k2]

_hk0(r)dr

Next we consider heat operator A.

Af(s; �) = [
@f

@s
+

1

2
traceHD

2f ](s; �)
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take the limit of s # 0, we have

A(Xi
t(0; h0)) =

Z t

0

rjV
i
k(r; y(r; h0))AXj

r(0; h0)
_hk0(r)dr

+
1

2

Z t

0

rlrjV
i
k(r; y(r;h0))

�
D(Xj

r(0; h0)); D(X l
r(0; h0)

�
_hk0(r)dr

where
�
DXi

r; DX
l
r

�
is Malliavin covariance which is given by

�(t) = (�ij(t)) = (DXi(t); DXj(t))H� = J(t)~�(t)tJ(t);

~�(t) =

dX
�=1

Z t

0

J�1(s)V�(X(s))
 J�1(s)V�(X(s))ds:

Therefore we have

J�1(t)A(Xi
t(0; h0)) =

Z t

0

J�1(r)rlrjV
i
k(r; y(r;h0))�

jl(r; h0) _h
k
0(r)dr:

There are several cases that we can solve these ODE analytically.
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10. Homogeneous Local Volatility model
Here we consider the following model

dXt = �(Xt)dWt;

X0 = x0:

We de�ne the function � : R! R by

�(y) =

Z y

x0

dx

�(x)
;

then we have the following theorem.

Theorem 6. The energy, a0 and a2(x0) are given as follows;

e(y) =
1

2T
�(y)2; a0(y) =

1p
T

1

�(y)

s
�(x0)

�(y)
;

a2(x0) =
�(x0)

p
T

4

 
�00(x0)
�(x0)

�
�
�0(x0)
�(x0)

�2
!
:
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The asymptotic expansion of probability density is given by

p"(T; y) =
1p

2�"2T�(y)

s
�(x0)

�(y)
exp(��(y)

2

2T
)�

0
@1 + "2T

�(y)�(x0)

4

s
�(y)

�(x0)

 
�00(x0)
�(x0)

� 1

2

�
�0(x0)
�(x0)

�2
!
:

Proof. It is easy to show that h0 which attains the minimum

e(y) = inf
n1
2

Z T

0

j _h(r)j2dr;h 2 H; y(T ;h) = y
o
; (1)

is given by

h0(t) = �(y)
t

T
:
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Therefore we have the energy e(y). The solution of ODE

d

dt
y(t;h0) = �(y(t;h0)) _h0(t);

y(0; x) = x0:

is given by
y(t;h0) = ��1(h0(t)):

We can give a2(x0) from the coe�cients.

b1 = �(x0)
2T

b2 =
3

2
�(x0)

3�0(x0)T 2;

b3 =
�8
3
�(x0)

4�0(x0)2 +
2

3
�(x0)

5�00(x0)
�
T 3;

L =
�1
2
�(x0)

2�0(x0)2 +
1

2
�(x0)

3�00(x0)
�
T 2:

We will give a0(y) in the next 2 chapters.
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11. Malliavin calculus of local volatility model
Next we calculate Malliavin derivative along this minimum energy path;

D(Xt(0; h0))[k1] =

Z t

0

�(y(r;h0)) _k1(r)dr +

Z t

0

�0(y(r;h0))D(Xr(0; h0))[k1] _h0(r)dr:

First we de�ne J : [0; T ]� R! R as the solution of ODE�
d
dtJ(t; x) = �0(y(r;h0))J(t; x) _h0(t)
J(0; x) = 1:

This is easily solved as

J(t; x) =
�(y(t;h0))

�(x0)

Then the Malliavin derivative is given by

J�1(t)DX(t)[k1] =

Z t

0

J�1(r)�(y(t;h0)) _k1(r)dr

= �(x)

Z t

0

_k1(r)dr = �(x)k1(t)
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Therefore we have

DX(t)[k1] = �(y(t;h0))k1(t):

The Malliavin covariance is given by

(DXt; DXt)H� = J2(t)

Z t

0

J�2(r)�2(y(r;h0))dr = t�2(y(t;h0)):

Proposition. The heat operator for local volatility model is written as

AXT (0; h0) =
T

2

�
�(y)�0(y)� �(y)

�(y)
log

�
�(y)

�(x0)

��
:

Proof. Since the heat operator satis�es the ODE

d

dt
AXt(0; h0) = �0(y(t;h0))AXt(0; h0) _h0(t) +

1

2
�00(y(t;h0)) (DXt; DXt) _h0(t):
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This solution is written as

AXt(0; h0) = J(t; x)

Z t

0

J(r; x)�1
r

2
�00(y(r;h0))�2(y(r;h0)) _h0(r)dr

=
T

2

�(y(t;h0))

�(y)

Z y(t;h0)

y(0;h0)

 Z �

x

dy

�(y)

!
�00(�)d�:

In particular,

AXT (0; h0) =
T

2

�(K)RK
x0

dy
�(y)

Z K

x0

 Z �

x0

dy

�(y)

!
�00(�)d�:

2

Next we will give the second Malliavin Derivative and det2.

Proposition 1. Carleman determinant det2 for local volatility model is
given as follows;

det2(IH �B(y)) = (1� �(y)�0(y)) exp(�(y)�0(y)):
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Proof. The ODE for D2 is easily solved as following.

J�1(t)D2(Xt(0; h0))[k1][k2] =

Z t

0

J�1(r)�0(r; y(r;h0))DXr(0; h0)[k1]
_k2(r)dr

+

Z t

0

J�1(r)�0(r; y(r;h0))DXr(0; h0)[k2]
_k1(r)dr

+

Z t

0

J�1(r)�00(r; y(r;h0))D(Xr(0; h0))[k1]D(Xr(0; h0))[k2]
_hk0(r)dr

= �(x0)

Z t

0

d

dr
(�0(y(r;h0)k1(r)k2(r)) dr

Therefore we have

D2(XT (0; h0))[k1][k2] = �(y)�0(y)k1(T )k2(T ):

Next we will calculate det2(IH �B(y)) where

B(y) =
@e(y)

@y
D2XT (0; h0):
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Since

hB(y)k1; k2iH� =
Z T

0

d

dt
(B(y)k1)(t)

d

dt
k2(t)dt

=
@e(y)

@y
�(y)�0(y)k1(T )k2(T );

we have

B(y)k1 =
@e(y)

@y
�(y)�0(y)t

Z T

0

_k1(r)dr

=
@e(y)

@y
�(y)�0(y)T hk1; li l

where l(t) = tp
T
. Therefore we can write B as

B(y) =
@e(y)

@y
�(y)�0(y)T � l 
 l:
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Therefore we have

det2(IH �B(y)) =
Y

(1� �k)e
�k

= (1� @e(y)

@y
�(y)�0(y)T ) exp(

@e(y)

@y
�(y)�0(y)T ):

2

Proof.[Proof of theorem] Now we have all components of a0;

a0(y) =

s
@2e(y)

@y2
det2(IH �B(y))�1=2 exp(

@e(y)

@y
AX1(0; h(y));

and

e(y) =
�(y)2

2T
;
@e(y)

@y
=

�(y)

T�(y)
;
@2e(y)

@y2
=

1� �(y)�0(y)
T�(y)2

;

we have our statement. 2
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12. Piecewise constant local volatility model
We consider the following model

dXt = �(Xt)dWt; �(x) =

�
�1 (x � H)
�0 (x < H):

Theorem 7. The probability density at time T for x0 > H is given as
follows

p(T; x0; y) =
1

�1
�(T;

x0 � y

�1
)

+
�1

�0 + �1

Z T

0

q(T � s;
x0 �H

�0
)

�
1

�1
�(s;

y �H

�1
)� 1

�0
�(s;

y �H

�0
)

�
ds

+
�0�1

�0 + �1

Z T

0

�(T � s;
x�H

�0
)

�
1

�21
q(s;

y �H

�1
)� 1

�20
q(s;

y �H

�0
)

�
ds

where

�(t; x) =
1p
2�t

exp(�x
2

2t
); q(t; x) =

1p
2�t

x

t
exp(�x

2

2t
)
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Proof. Apply Laplace transform to the fundamental solution and apply

the Kac's theorem. 2
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Figure 5: Minimum Energy Path for PCLV model with

H = 0; x0 = 5; �0 = 1:0; �1 = 4:0; T = 1:0:
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Figure 6: Probability Density of PCLV model, asymptotic expansion vs

analytic with H = 0; x0 = 1:5; �0 = 1:0; �1 = 0:75; T = 1:0:
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Figure 7: Probability Density of PCLV model, asymptotic expansion vs

analytic with H = 0; x0 = 1:5; �0 = 1:0; �1 = 1:25; T = 1:0:
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Figure 8: Probability Density of PCLV model, asymptotic expansion vs

analytic with H = 0; x0 = 1:5; �0 = 1:0; �1 = 1:5; T = 1:0:
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13. Generalized SABR Formula

� We regard X1
" as the underlying of options. Then the forward value of

a call option of strike rate K and maturity T is given by

C"(T;K) = E[(X1
" (T )�K)+]; " 2 (0; 1]:

� We calculate the asymptotic expansion of call option value and implied

volatilities.

� We de�ne smooth functions 'n 2 C1b ([0;1)); n � 0; by

'n(x) =

Z 1

0

zn exp(�xz � z2

2
)dz; x � 0:

� We de�ne
e(x) =

1

2

�Z x

x10

dy

q(y)

�2
; x 2 [x10 � r0; x

1
0 + r0]:
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Theorem 8. There is a constant C1 such that the value of the call
option with strike rate K, maturity T satis�es

��p2� exp(
e(K)

"2
)C"(T;K)� "a0(K)q(K)2'1

�p2e(K)

"

�
(1 +R2(";K))

�� � C1"
4;

where

R2(";K) = "q(K)
�a00(K)

a0(K)
+

3

2

q0(K)

q(K)

�'2(
p

2e(K)=")

'1(
p

2e(K)=")
+ "2q(K)2

h1
2

a000(K)

a0(K)

+ 2
a00(K)

a0(K)

q0(K)

q(K)
+

7

6

�q0(K)

q(K)

�2
+

2

3

q00(K)

q(K)

i'3(
p

2e(K)=")

'1(
p

2e(K)=")
+ "2

a2(K)

a0(K)
:

Proof. We de�ne g : R! R by e(g(x)) = x2

2
; then we have

C"(T;K) =

Z 1

K

(y �K)p"(y)dy =

Z 1

K

(y �K)
� 1

2�"2
�1
2 exp(�e(y)

"2
)a"(y)dy;
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C"(T;K) =

Z 1

g�1(K)

(g(x)�K)
� 1

2�"2
�1
2 exp(� x2

2"2
)a"(g(x))g

0(x)dx:

Let A"(x) = a"(g(x))g
0(x) and putting x = "z + g�1(K), we have

exp
�e(K)

"2
�
C"(T;K)

=

Z 1

0

�
g("z + g�1(K))�K

� 1p
2�

exp
��z2

2
� zg�1(K)

"

�
A"("z + g�1(K))dz

�
Z 1

0

1p
2�

exp
��z2

2
� zg�1(K)

"

� X
n;m�0

2n+m+1�N

cn;m(g�1(K))"2n+m+1zm+1dz

=
X
n;m�0

2n+m+1�N

cn;m(g�1(K))"2n+m+1 1p
2�
'm+1

�g�1(K)

"

�
:

In the case N = 2, we can calculate the asymptotic expansion of

c0;0; c0;1; c0;2; c1;0. 2
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The asymptotic expansion of the implied normal volatilities are given

by the following.

Theorem 9. The asymptotic expansion of implied normal volatilities
are given by

���� "jK � x10jp
2e(K)T

��1
�N(T;K)� exp(J)

��� � C("+ jK � x10j)3; K 2 [x10;K1];

where

J =
jK � x10j2

b21

�L
2
+

1

6

b22
b21
� 1

4

b3
b1

�
'1

�p2e(K)

"

�
+
"2

b1

�
�L
2
� 5

6

b22
b21

+
3

4

b3
b1

�
'1

�p2e(K)

"

�

+
"p
b1

jK � x10j
b1

�
L+

2

3

b22
b21
� 3

4

b3
b1

�
'2

�p2e(K)

"

�
+
"2

b1

�L
2
+

b22
2b21

� b3
2b1

�
'3

�p2e(K)

"

�
:

Calculating the Taylor expansion of exponent part, we obtained our

formula. 2
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For SABR model, Taylor expansion of exp(J) around x0 obtain

�N(T;K) =
K � x0p
2esabr(K)T

�
1 +

h2�(x0)�00(x0)� �0(x0)2

24
�2

+
1

4
����0(x0) +

2� 3�2

24
�2
i
T
�
:

This is almost the same as original SABR formula.

We compare Implied volatility smile for asymptotic expansion (using

analytic energy), asymptotic expansion (using asymptotic energy) and

Monte Carlo simulation.
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Figure 9: Implied volatility smile of SABR model,

asymptotic expansion vs Monte Carlo simulation with

x0 = 1; � = 0:15; � = 0:5; � = 0:2; � = �0:2; T = 10:
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14. Conclusion

� We gave the asymptotic expansion of probability density of one

component.

� The initial term is given by the `energy of path'. For some cases, we

can give the analytical formula of energy, e.g. SABR model. But it is

not the case in general. So we gave the asymptotic expansion of the

energy.

� The �rst order of the expansion is given by Kusuoka-Stroock's

asymptotic expansion theory based on Malliavin calculus. For local

volatility model, we give the analytical formula.

� We apply the result to the asymptotic expansion of call options.

� Finally we gave the asymptotic expansion of implied volatilities for
61



Crest and Sakigake

general di�usion models. When we applied the formula for SABR

model, it coincides Hagan's original formula.
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