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General introduction

Filtering in financial market models

→ Filtering: when the underlying financial model is
not fully known (here: unknown factor process)

Filtering to price illiquid assets (filtering under a
martingale/pricing measure)
Filtering in risk management such as hedging, portfolio
optimization,....(filtering under the physical measure)
Mixed problems.

→ Here filtering mainly for pricing purposes (in credit
risk models)



General introduction

Pricing by Martingale Methods

Given is a triple (Gt , Nt , QN) with

Gt : a filtration (global filtration)
Nt : a “numeraire”

QN : a martingale measure corresponding to Nt as
numeraire.

→ If Πt denotes the arbitrage-free price of an asset at
time t , then

Πt = Nt EQN
(

ΠT

NT
| Gt

)
→ For derivative pricing, ΠT ∈ FS

T ⊂ GT with S an
“underlying” primary asset having given dynamics.



General introduction

Factor Models

Factor models are a convenient setup for many purposes;
they are parsimonious and numerically tractable (allow
also to model dependence among different quantities)
Factors may represent (macro-)economic quantities that
may or may not be observable (interest rates, volatilities,
value of a firm); they may also simply be abstract factors.

→ Model the factors as Markovian processes in Gt
and assume them not to be directly observable.



General introduction

Filtering in Markovian factor models

Given a Markovian factor process Xt , claims as well as
numeraires can in many situations be expressed as
functions of Xt .

→ Due the Markovianity of Xt one has in fact

Πt = Nt EQN
(

ΠT

NT
| Gt

)
:= Π(t , Xt)

(Πt and Nt are functionals of future values of Xt )



General introduction

Filtering in Markovian factor models

Let the investor filtration be Yt ⊂ Gt (Xt 6∈ Yt)

→ If Nt ∈ Yt then Π̂t = Nt EQN
(

ΠT
NT

| Yt

)
is an

arbitrage-free price in the filtration Yt and one has

Π̂t = EQN {Π(t , Xt) | Yt}

→ Given Π(t , Xt), to compute Π̂t it thus suffices to
have the filter distribution π(Xt | Yt).



General introduction

Filtering in Markovian factor models

It concerns thus typically a two-step procedure:

Step 1 Determine the quantities of interest under full
information as instantaneous functions of the
factors.

Step 2 Derive the values under the actual market
information corresponding to Yt ⊂ Gt by projecting
the full information values on the subfiltration
corresponding to market information.



General introduction

Filtering in Markovian factor models

Filtering allows for a continuous updating of the filtered
prices to the current investor information (“self-tuning” in
engineering applications).

If Π(t , Xt) ∈ Yt then Π̂t = Π(t , Xt), i.e. the arbitrage-free
filtered model is automatically calibrated to market prices.

→ In incomplete markets the underlying martingale
measure can be determined by traditional
calibration, but also (and in an adaptive way) by
filtering the market price of risk.



General introduction

Filtering vs Calibration

The model may contain parameters that need to be
calibrated to market data (even in the case when the
market price of risk is filtered).
Traditional calibration corresponds to an inverse problem
that leads to a static point estimation without indication of
the accuracy.

→ Filtering allows for a dynamic parameter
estimation (continuous successive updating).



General introduction

Possibilities of calibration related to filtering

i) Combined filtering and parameter estimation;
ii) Expectation maximization (can be naturally linked

to filtering so that estimates evolve according to
the filter solution; see part III);

iii) Maximization of the innovations likelihood (partly
dynamic);

iv) Others.

→ Combined filtering and parameter estimation:
Taking the Bayesian point of view, the parameter
vector θ is considered a random variable with
given prior distribution → compute

π(Xt , θ | Yt)



Basic facts from Credit Risk

Modeling approaches

Existing credit risk models


• Structural models

• Reduced-from
(intensity-based) models

Structural models:
Vt : asset value of the firm
Kt : default barrier
τ = inf{t ≥ 0 | Vt ≤ Kt}

→ Default occurs at the first time when the asset
value of the firm does not cover its liabilities
(predictable stopping time w.r. to the global
filtration Gt ).

→ Since τ is predictable, structural models lead to
unrealistic credit spreads.



Basic facts from Credit Risk

Intensity-based model
A framework with a number m of defaultable firms

τj : random time of default of firm j , j = 1, · · · , m;

H j
t := 1{τj≤t}; Ht := (H1

t , · · · , Hm
t );

Ht = σ (Hs, s ≤ t) .



Basic facts from Credit Risk

Intensity-based model

(Ft)0≤t≤T a given background filtration. The underlying
filtered probability space is (Ω,G,Gt , Q) with
Gt = Ft ∨Ht , t ∈ [0, T ] , GT = G (full information filtration);
Q martingale (pricing) measure, numeraire:
B(t) = B(0) exp

[∫ t
0 rsds

]
τi is directly modeled as a totally inaccessible stopping
time w.r.to Gt with (Q,Gt)−intensity λi = (λt ,i) i.e. such that

H i
t −

∫ t∧τi

0
λs,ids is a (Q, (Gt))-martingale.



Basic facts from Credit Risk

(Factors in) Intensity-based Models

Assume given a common Markovian factor process
Xt ∈ Rd and let

λt ,i = λi(Xt)

→ Allows to model physical and information-induced
dependence/contagion among the defaults.

→ A common modeling approach: Conditionally
independent doubly stochastic default times

Q(τi > t | FX
∞) = exp(−

∫ t

0
λi(Xs)ds), t > 0



Basic facts from Credit Risk

The factors may include economic covariates, but also
unobservable (abstract) factors: evidence is given in the
recent literature (see Das et al 2007, Duffie et al 2009) that
unobservable factors, driving the default intensities, are
needed on top of observable co-variates to better explain
clustering of defaults and large co-movements of credit
spreads.

→ Below, the entire factor process Xt will be
considered as unobservable.



Basic facts from Credit Risk

Pricing under incomplete information on the factors

Markovianity of the factors allows to follow the usual
two-step procedure to price credit derivatives under
incomplete information on the factors themselves:

i) Determine the derivative prices under the full
information Gt as functions of Xt ;

ii) Use stochastic filtering to “project” these prices
onto the subfiltration corresponding to market
information.

→ In the case Xt ≡ X this X is called “frailty”
parameter (e.g. Schönbucher) and filtering of Xt
reduces to Bayesian updating of X.



Basic facts from Credit Risk

Investor filtration (market information)

Denote the investor filtration by Yt ⊂ Gt . It is supposed to
always contain the default history. It may also include
(besides possible observable covariates) noisy
observations of prices of credit risky assets as well as
yields and spreads on default-free and defaultable bonds
(the latter are representative of more general market data)

→ It can be shown (e.g. Jarrow-Protter, see also Guo
et al) that the distinction between structural and
reduced-form models is actually a distinction
between full and partial observability of firm values
and liabilities: τi predictable w.r.to Gt becomes
totally inaccessible w.r.to Yt and it admits an
Yt−intensity.



Basic facts from Credit Risk

Filtering: general

It concerns a partially observable process (Xt , Yt) where:

Xt : unobservable component (known stochastic dynamics)
Yt : observations (distribution of Yt , given Xt , is known)

→ Determine (recursively) the filter distribution
π(Xt | FY

t ).
→ If Xt is Gaussian and f (Yt | Xt) is also Gaussian

(e.g. linear Gaussian models), then π(Xt | FY
t ) is

Gaussian as well and characterized by its
conditional mean and variance (Kalman filter).



Basic facts from Credit Risk

Linear-Gaussian models?

Assume a linear-Gaussian model for the factors (e.g.
mean reverting model) and let

λt ,i = λi(Xt) affine in Xt

→ It implies an affine credit risk model (e.g.
Duffie-Garleanu) where bond prices are
exponentially affine in Xt .

Consider observations that can be expressed in terms of
log-bond prices.

→ The filtering problem becomes
linear-Gaussian.

.



Basic facts from Credit Risk

Problems:
i) intensities may become negative (factors

though satisfy a mean reverting model and
are filtered)

ii) At a default of firm j the filter update is

πXt |Yt (dx) =
λj(x)πXt |Yt−(dx)∫
λj(x)πXt |Yt−(dx)

; t = τj

→ Being λj(x) affine in x , the Gaussianity of
πXt |Yt−(dx) is destroyed (can be preserved
approximately by a Gaussian sum approximation).

→ In the differential of yields and credit spreads the
volatility becomes a deterministic function of time
(not realistic).



Basic facts from Credit Risk

If however we let (see part III) Xt = log Zt with Zt a
(multivariate) CIR process and let

λt ,i = λi(Xt) affine in eXt then

→ Intensities are positive
→ at a default λj(x)πXt |Yt−(dx) preserves

Gaussianity
However: The filtering model is nonlinear Gaussian and to
obtain a Gaussian filter distribution, the Extended Kalman
Filter (EKF) has to be used leading to an approximation (in
general a very reliable approximation).



Pricing and parameter estimation in a specific “affine” credit risk model

Pricing in a specific “affine” credit risk model

Interest rate and default intensity are linear functions of the
exponentials of the components of a stochastic factor
process Ψt ∈ Rn such that:

dΨt = diag
(

e−Ψt
) [

AeΨt + b − 1
2

1
]

dt + diag(e
1
2 Ψt )dwt

where w is an n-dimensional (Ft , Q)-Wiener process.
→ Ψt = log Φt with Φt satisfying a CIR model.



Pricing and parameter estimation in a specific “affine” credit risk model

“Affine” credit risk model

Putting
Φt := exp (Ψt)

by Itô’s formula we obtain

dΦt = (AΦt + b) dt + diag
(√

Φt

)
dwt

namely Φ satisfies a multivariate CIR model in “canonical
form” (in the terminology of Dai-Singleton 2000).
Usual admissibility conditions(Feller test for explosions,
condition A in Duffie-Kan):
with A =

{
aij

}
i,j=1,...,n, b = (bi)i=1,...,n we require aij ≥ 0 for

j 6= i and bi > 1
2 , for i = 1, . . . , n.

→ Guarantees also existence and uniqueness of a
strong solution.



Pricing and parameter estimation in a specific “affine” credit risk model

“Affine” credit risk model

Define interest rate (rt) and the default intensities (λj
t) as:{

rt = a + beΨt = a + bΦt

λj
t = c j + d jeΨt = c j + d jΦt

with a, c j nonnegative constants and b, d j n-dimensional
row vectors of nonnegative constants.

→ This setup implies positive rates even if Ψt is not
restricted to be positive and allows for correlation
between interest rate and default intensities, which
(see Schoenbucher) is a desirable property for a
stochastic credit risk model.



Pricing and parameter estimation in a specific “affine” credit risk model

Affine credit risk model; Bond prices

Default-free 0-coupon bond

ΠDF (t , T ) = E
[
e−

R T
t rsds|Gt

]
= exp

[
A(t , T )− B(t , T ) eΨt

]
Defaultable 0-coupon 0-recovery bond

Π(t , T ) = E
{

e−
R T

t rsds1τ>T | Gt

}
= 1τ>tE

{
e−

R T
t (rs+λs)ds | Yt

}
= 1τ>t exp

[
Ã(t , T )− B̃(t , T ) eΨt

]
A(t , T ), B(t , T ), Ã(t , T ), B̃(t , T ) satisfy ODEs with
coefficients depending on those of the factor dynamics and
in λj

t = c j + d jeΨt .



Pricing and parameter estimation in a specific “affine” credit risk model

Affine credit risk model
Bond prices

More generic credit-risky products, such as corporate
bonds and CDS spreads, can be expressed by means of
these two basic elements.
Viceversa, a default-free and a defaultable term structure
can be reconstructed from the more liquid corporate bonds
prices and CDS spreads (for the latter the link with default
events is much clearer than for other products).

→ 0−coupon default free bonds and 0−coupon
0−recovery defaultable bonds can be considered
as “building blocks” for more complex instruments.



Pricing and parameter estimation in a specific “affine” credit risk model

Affine credit risk model
Yields and credit spreads

Yield of a 0-coupon default-free bond

YL(t , T ) := − 1
T − t

log ΠDF (t , T ) = −A(t , T )

T − t
+

B(t , T )

T − t
eΨt

Spread of a 0-coupon, 0-recovery defaultable bond w.r.to a default-
free bond (same face value and maturity)

CS(t , T ) := − 1
T − t

log
[

Π(t , T )

ΠDF (t , T )

]
=

A(t , T )− Ã(t , T )

T − t
+

B̃(t , T )− B(t , T )

T − t
eΨt t < τ ∧ T

Yields and credit spreads are affine functions of eΨt .



Pricing and parameter estimation in a specific “affine” credit risk model

Incomplete information
The investor filtration

Assume, w.l.o.g., that all components of the factor process Ψt
are unobservable (not precisely known).

However, the investor can observe market data, in part.
the interest rate (proxy), a number p of yields and a
number q of credit spreads.
The default indicator process (Ht) is indirectly contained in
the credit spreads.

Investor filtration
Yt = σ{rs, YL(s, Ti), CS(s, Tj) : s ≤ t , i = 1, · · · , p; j = 1, · · · , q}∨Ht

and thus Ht ⊂ Yt ⊂ Gt .



Pricing and parameter estimation in a specific “affine” credit risk model

Incomplete information
A filter-based pricing model

Objective: evaluate (in the investor filtration) an OTC credit
risky-product, the price of which under complete
information is given by Π (t , T ; Ψt)

Main tool: filter distribution of Ψt with respect to the
investor filtration Yt and under the pricing measure Q

Price in the investor filtration

Π̂ (t , T ) = E [Π (t , T ; Ψt) |Yt ]

Π̂ (t , T ) is an arbitrage-free price, since rt ∈ Yt

Π̂ (t , T ) is coherent with the observations of market data,
since the latter are the input to the filtering problem



Pricing and parameter estimation in a specific “affine” credit risk model

Incomplete information
Noise terms affecting the observations

All observable processes are linear functions of the
exponentials of the unobserved factors.
Therefore, if 1 + p + q > n the values of the factors can be
determined from the observations and so the filtering
problem degenerates.

This setting is not very realistic: yields and credit spreads are
reconstructed from corporate bonds and CDS spreads and are
affected by bid-ask spread etc and , therefore, cannot be con-
sidered as perfectly observable.

Introduce (Gombani, Jaschke, R.-05) ` further unobserved fac-
tors, on which rt and λj

t do not depend, but which represent
additive noise terms affecting the observations YL(t , Ti) and
CS(t , Tj) and such that n + ` > 1 + p + q.



Pricing and parameter estimation in a specific “affine” credit risk model

Incomplete information
The observation system

Augment Ψt (dim. n) to Ψ∗
t = (Ψt , Ψ̄t) (dim. n + `) by

adding the ` noise factors to Ψt (assumed to be
independent (Yt , Q)−Brownian motions):

Observation system


rt = a + beΨt

YL (t , Ti) = αi
t + β i

te
Ψt + β̄ i

t Ψ̄t i = 1, . . . , p
CS

(
t , Tj

)
= γ j

t + δj
te

Ψt + δ̄i
tΨ̄t j = 1, . . . , q

where αi
t , γ

j
t , β i

t , δ
j
t , β̄ i

t , δ̄
i
t consist of deterministic functions of

time that depend on the model parameters.
Let

FY
t := σ{rs, YL(s, Ti), CS(s, Tj) : s ≤ t , i = 1, · · · , p ; j = 1, · · · , q}

so that Yt = FY
t ∨Ht



Pricing and parameter estimation in a specific “affine” credit risk model

The filtering problem

The filter distribution π(Ψ∗
t | FY

t ) degenerates

→ One can find a surrogate/auxiliary state process Xt , of
lower dimension than Ψ∗

t , and solve equivalently the
filtering problem for (Xt , Yt).

→ For appropriate matrices Γt and ∆t and appropriate µt
one has in fact

Φt = ΓteXt + ∆t(Yt − µt)

The choice of such a process Xt is not unique.



Pricing and parameter estimation in a specific “affine” credit risk model

The filtering methodology

The pair (Xt , Yt), satisfies a system of the form
dXt = F (eXt , Yt) dt + G(eXt , Yt)dwt + H(eXt , Yt)dΨ̄t

dYt = R(eXt , Yt) dt + S(eXt , Yt)dwt + M̄tdΨ̄t

with coefficients having a special structure as functions of (eXt , Yt).



Pricing and parameter estimation in a specific “affine” credit risk model

The filtering methodology

The system for (Xt , Yt) is a nondegenerate nonlinear fil-
ter system to which the Extended Kalman Filter (EKF)
can be applied leading to a Gaussian filter distribution
for the factors.

→ Between default times one has

pXt |FY
t

= pXt |Yt

(Yt was defined as the “investor filtration”)



Pricing and parameter estimation in a specific “affine” credit risk model

The filtering methodology
Filter at a default time

Recall that we had assumed λj
t = c j + d jeΨt = c j + d jΦt

Put

λj
t (Xt , Yt) = c j+d j

(
ΓteXt + ∆t (Yt − µt)

)
=: c j

0 (t)+
n∑

i=1

c j
i (t) eX i

t

Suppose that at t = τj one observes the default of firm j .
Then

pXt |Yt (dx) =
λj

t (x , Yt) pXt |FY
t

(dx)∫
λj

t (x , Yt) pXt |FY
t

dx
for t = τj

→ Gaussianity is thus preserved also at a default
time and the only (reliable) approximation is due to
the EKF.



Pricing and parameter estimation in a specific “affine” credit risk model

The filtering methodology
Remarks

The price to be paid for having Gaussianity also at a
default time is that, for each incoming Gaussian
distribution, the outgoing distribution is a mixture of ñ
Gaussian distributions.

→ Parallel filters have to be run, one for each
component of the mixture.

Between default times one has a continuous update of the
“filtered default intensities”. At a default time they undergo
a jump with size depending on the riskiness of the
defaulted firm (information induced contagion).



Pricing and parameter estimation in a specific “affine” credit risk model

Parameter estimation and EM algorithm
General description of the EM algorithm

Let θ be the vector of the model parameters

The EM algorithm is based on the iterative maximization, w.r.t θ
for a fixed θ′, of the following function Q:

Q
(
θ, θ′

)
= Eθ′

[
log

dPθ

dPθ′
|FY

t

]
The EM algorithm iterates through the two following steps

1 (Expectation): compute Q (θ, θ′) for given θ′ (a conditional
expected value)

2 (Maximization): maximize Q (θ, θ′) w.r.t θ

The maximization step leads to a system of equations
obtained by putting ∂Q(θ,θ′)

∂θ = 0



Pricing and parameter estimation in a specific “affine” credit risk model

Alternating iterative EM algorithm: an example

Let n = 3, p = 1, q = 2, (two defaultable issuers)
Ψt = (Ψ1

t ,Ψ
2
t ,Ψ

3
t ) ; Ψ∗

t = (Ψt , Ψ̄
1
t , Ψ̄

2
t )

{
dΨi

t =
[
ai + e−Ψi

t
(
bi − 1

2

)]
dt + e

1
2 Ψi

t dw i
t , (i = 1, 2, 3)

Ψ̄j
t = w̄ j

t , (j = 1, 2)

wt = (w1
t , w2

t , w3
t , w̄1

t , w̄2
t ) Wiener with independent

components.
For the rates we put

rt = Φ1
t + Φ2

t
λA

t = λA (
Φ1

t + Φ3
t
)

λB
t = λB (

Φ2
t + Φ3

t
)
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Alternating iterative EM algorithm: an example

For the coefficients of the additional noise factors Ψj
t in the

observation dynamics, namely in
rt = a + beΨt

YL (t , Ti) = αi
t + β i

te
Ψt + β̄ i

t Ψ̄t i = 1, . . . , p
CS

(
t , Tj

)
= γ j

t + δj
te

Ψt + δ̄i
tΨ̄t j = 1, . . . , q

assume

β̄1
t = [v , 0] , δ̄1

t = [0, ρA] , δ̄2
t = [0, ρB]

with (v , ρA, ρB) additional parameters to be estimated.



Pricing and parameter estimation in a specific “affine” credit risk model

Alternating iterative EM algorithm: an example

It turns out that one can choose as Xt any of the
Ψ1

t ,Ψ
2
t ,Ψ

3
t .

→ This leads to three possible systems, each of
which depends only on a single factor to be taken
as the respective Xt .

→ In each one only some of the parameters are
estimated.

Three further systems for the specific estimation of
(λA, λB, ν, ρA, ρB).
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Alternating iterative EM algorithm: an example

The six systems are analogous to one another. As
example consider the first one which is of the form



dΨ1
t =

[
a1 + e−Ψ1

t
(
b1 − 1

2

)]
dt + e

1
2 Ψ1

t dw1
t

YL(t , T ) = (αt + βt rt) + γteΨ1
t + v w̄1

t

CSA(t , T ) =
(
ft + gt rt − htCSB(t , T )

)
+ kteΨ1

t + ρ w̄2
t

→ Only Xt = Ψ1
t enters this system and the

observations are YL(t , T ) and CSA(t , T ). The
coefficients depend on the various parameters as
well as on CSB(t , T ), with this system we estimate
however only (a1, b1).
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Alternating iterative EM algorithm: an example

After a time discretization and linearization of the
coefficients around the most recent estimate of Ψ1

t (EKF),
the system takes the form


Ψ1

t+∆ = āt + b̄tΨ
1
t + c̄tZ 1

t+∆

YL(t , T ) = ᾱt + β̄t rt + γ̄tΨ
1
t + v w̄1

t

CSA(t , T ) = f̄t + gt rt + h̄tCSB(t , T ) + k̄tΨ
1
t + ρ̄ w2

t

with Z 1
t an i.i.d. sequence of standard Gaussian random

variables and where the “bar” over the coefficients
indicates that they now depend also on the most recent
estimate of Ψ1

t .
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Alternating iterative EM algorithm
Algorithm

0. Initialize the algorithm with a guess θ̂ for the entire
vector θ and, setting j = 0, put θj = θ̂;

1. Apply in parallel on each of the systems 1 and 6 the
EM algorithm to estimate (a1, b1) and (λB, ρB) while
keeping the other parameters fixed at their
previously estimated values (a2

j , b2
j , a3

j , b3
j ,

λA
j , νj , ρ

A
j ). The algorithm iterates through the two

EM steps (expectation and maximization) until a
stopping criterion is met, thereby producing
estimates (a1

j+1, b1
j+1, λ

B
j+1, ρ

B
j+1)
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Alternating iterative EM algorithm
Algorithm

2. Apply in parallel on each of the systems 2 and 5 the
EM algorithm to estimate (a2, b2) and (λA, ρA) while
keeping the other parameters fixed at their
previously estimated values (a1

j+1, b1
j+1,

a3
j , b3

j , λB
j+1, νj , ρ

B
j+1). The algorithm iterates through

the two EM steps until a stopping criterion is met,
thereby producing estimates (a2

j+1, b2
j+1, λ

A
j+1, ρ

A
j+1);

3. Apply in parallel on each of the systems 3 and 4 the
EM algorithm to estimate (a3, b3, ν) keeping all
others parameters fixed at their previously
estimated values. The algorithm iterates through
the two EM steps until a stopping criterion is met,
thereby producing estimates (a3

j+1, b3
j+1, νj+1);



Pricing and parameter estimation in a specific “affine” credit risk model

Alternating iterative EM algorithm
Algorithm

4. Put θj+1 =
(a1

j+1, b1
j+1, . . . , a3

j+1, b3
j+1, λ

A
j+1, λ

B
j+1, νj+1, ρ

A
j+1, ρ

B
j+1)

and, setting j = j + 1, return to step 1. Terminate
the entire algorithm as soon as a global stopping
criterion is met.

→ This is similar to the “Space Alternating
Generalized EM” (SAGE) (see Fessler and Hero,
1994).
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Alternating iterative EM algorithm
Simulation results

Maturity T = 10 years, both for default-free and defaultable
bonds
∆ = 0.02 (weekly observations)
For “true” θ generate (Ψ1

k ,Ψ2
k ,Ψ3

k ) for k = 0, · · · , 500. Draw
τA, τB and generate an observation sequence.
Apply the Algorithm with θ0 generated randomly.
Stop individual iterations as soon as the difference
between successive values of all the parameters < 10−5

up to a maximum of 500.
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Alternating iterative EM algorithm
Simulation results

Parameter True value Estimate Std. dev.
a1 -0.15 -0.15092 0.02980
b1 0.60 0.60141 0.05163
a2 -0.20 -0.19960 0.02529
b2 0.70 0.69943 0.04205
a3 -0.25 -0.24826 0.06377
b3 0.80 0.80812 0.09398
λA 0.10 0.09981 0.02204
λB 0.30 0.30996 0.02533
ν 0.005 0.00509 0.00053
ρA 0.01 0.01001 0.00055
ρB 0.02 0.01978 0.00106

Table: Means and standard deviation of the estimates from 50
independent runs of the algorithm).
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An extension of the model
Risk premia as further unobserved factors and rating-based information

Consider the model under the physical-historical
probability measure.
Specify the risk-premia, which characterize the change of
measure, as further unobserved stochastic processes to
be included in the filtering system.
In this setting we can consider also the information coming
from the rating scores, which represent historical
information.
We can compute filtered estimates of default probabilities,
on the basis of the information deriving from both the
financial market and the rating score.

→ C.Fontana, "Credit risk and incomplete
information: a filtering framework for pricing and
risk management. Preprint 2010.
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Thank you for your attention



Appendix



Intensity-based model
The default intensity process

Gt -intensity λj
t of the Gt -stopping time τj :

M j
t := H j

t −
∫ t∧τj

0
λj

sds is a (P,Gt)-martingale

Assume τj conditionally independent, doubly stochastic
random times with respect to Ft

↓

λj
t is given by the Ft -conditional hazard rate process of τj

(McNeil-Frey-Embrechts-05) (Ft−intensity of τj in
Bielecki-Jeanblanc-Rutkowski-04).



Intensity-based model
The default intensity process

In fact, according to the definition, for λj
t ∈ Ft and for

independent exponential random variables ξj (parameter = 1
and independent of F∞) one has

τj = inf
{

t ≥ 0 :

∫ t

0
λj

sds ≥ ξj
}

.

Consequently (with T > t)

P{τj > T |Gt} = 1{τj>t}E
[
e−

R T
t λ

j
sds|Ft

]
and

P
{
τj ∈ (t , T ]|Gt

} ≈
(T→t+) λj

t(T − t)

return
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