A MULTIPLICATIVE APPROACH TO RANDOM TIMES

Libo Li and Marek Rutkowski School of Mathematics and Statistics University of Sydney NSW 2006, Australia

Abstract

We first show, using the concept of a multiplicative system introduced in Meyer [6], that for any given positive \mathbb{F} -supermartingale G such that $G_{\infty} = 0$, there exists a random time τ on a suitable extension $(\widehat{\Omega}, \widehat{\mathcal{F}}, \widehat{\mathbb{F}}, \widehat{\mathbb{P}})$ of the underlying probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ such that G is the Azéma supermartingale of τ or, more explicitly, $G_t = \widehat{\mathbb{P}}(\tau > t | \mathcal{F}_t)$ for every $t \in \mathbb{R}$. Moreover, the restriction of the probability measure $\widehat{\mathbb{P}}$ to the filtration \mathbb{F} coincides with \mathbb{P} . This provides a solution to the problem of finding a random time with a given Azéma semimartingale. We then analyze properties of solutions to the abovementioned problem in terms of the so-called hypotheses (H) and (HP). Subsequently, we derive, under suitable technical assumptions, the semimartingale decomposition of an \mathbb{F} -local martingale with respect to the progressively enlarged filtration \mathbb{G} . We compare our result with previously established semimartingale decompositions for the special cases when τ is an honest time (see Jeulin and Yor [4]) or an initial time (see Jeanblanc and Le Cam [2]). Finally, the univariate construction is extended to the case of several correlated random times with predetermined Azéma semimartingales. Related results were obtained in a recent work by Jeanblanc and Song [3], who developed an approach different from ours and who worked under more restrictive conditions on G.

References

- Gapeev, P., Jeanblanc, M., Li, L., and Rutkowski, M.: Constructing random times with given survival processes and applications to valuation of credit derivatives. In: *Contemporary Quantitative Finance*, C. Chiarella and A. Novikov, eds., Springer-Verlag, Berlin, 2010.
- [2] Jeanblanc, M. and Le Cam, Y.: Progressive enlargement of filtration with initial times. Stochastic Processes and their Applications 119 (2009), 2523–2543.
- [3] Jeanblanc, M. and Song, S.: An explicit model of default time with given survival probability. Working paper, University of Evry, 2010.
- [4] Jeulin, T. and Yor, M.: Grossissement d'une filtration et semi-martingales: formules explicites. In: Séminaire de Probabilités XII, Lecture Notes in Math. 649. Springer-Verlag, Berlin, 1978.
- [5] Li, L., and Rutkowski, M.: Constructing random times through the multiplicative system. Working paper, University of Sydney, 2010.
- [6] Meyer, P.-A.: Représentations multiplicatives de sousmartingales d'après Azéma. In: Séminaire de Probabilités XIII, Lecture Notes in Math. 721. Springer-Verlag, Berlin, 1979.