Random Times, Enlarged Filtrations and Semimartingale Decompositions

Marek Rutkowski School of Mathematics and Statistics University of Sydney

Joint work with Libo Li

CREST and Sakigake Symposium Tokyo, 14–18 December 2010

Outline

- Initial and progressive enlargements of a filtration
- Semimartingale decompositions: classic results
- Multiplicative construction of a random time
- Existence of a random time consistent with G
- Uniqueness of a random time consistent with G
- Separability of a conditional distribution
- Semimartingale decompositions: new results
- Girsanov's theorem

[LR1] Li, L. and Rutkowski, M.: Constructing random times through multiplicative systems. Working paper, University of Sydney, 2010.

[LR2] Li, L. and Rutkowski, M.:

Progressive enlargements of filtrations and semimartingale decompositions.

Working paper, University of Sydney, 2010.

1. Initial and progressive enlargements of a reference filtration

Enlargements of a filtration

We are given a complete probability space $(\Omega, \mathcal{G}, \mathbb{P})$ with a *reference filtration* $\mathbb{F} = (\mathcal{F}_t)_{t>0}$ satisfying the usual conditions.

Definition

Let \mathbb{G} be any filtration such that $\mathcal{F}_t \subset \mathcal{G}_t$ for every $t \ge 0$. Then we write $\mathbb{F} \subset \mathbb{G}$ and we say that \mathbb{G} is an *enlargement* of \mathbb{F} .

Early studies of enlargements of a filtration undertaken by Barlow-Jeulin-Brémaud-Yor-Jacod-... centered around:

Hypothesis (*H*):

• Any \mathbb{F} -martingale is a \mathbb{G} -martingale.

Hypothesis (H'):

- Any \mathbb{F} -semimartingale is a \mathbb{G} -semimartingale,
- \mathbb{G} -semimartingale decomposition of an \mathbb{F} -martingale.

By a *random time* τ we mean a random variable on $(\Omega, \mathcal{G}, \mathbb{P})$ taking values in $\mathbb{R}_+ = \mathbb{R}_+ \cup \{\infty\}$.

We assume that a random variable τ is not an \mathbb{F} -stopping time.

In the existing literature, one usually deals with the following two basic types of enlargements:

- initial enlargement,
- progressive enlargement.

Remark

All enlargements are made right-continuous and \mathbb{P} -complete.

The *initial enlargement* of \mathbb{F} through τ is the filtration \mathbb{G}^* defined by $\mathcal{G}_t^* = \sigma(\mathcal{F}_t \cup \sigma(\tau)) := \mathcal{F}_t \vee \sigma(\tau)$ for all $t \in \mathbb{R}_+$.

The initial enlargement is typically used for insider trading.

Definition

The *progressive enlargement* of \mathbb{F} through τ is defined as the smallest enlargement \mathbb{G} of \mathbb{F} such that τ is a \mathbb{G} -stopping time.

The progressive enlargement is typically used for credit risk.

An *admissible enlargement* $\widetilde{\mathbb{G}}$ of \mathbb{F} associated with τ is any filtration $\widetilde{\mathbb{G}}$ such that $\widetilde{\mathcal{G}}_t \cap \{\tau > t\} = \mathcal{F}_t \cap \{\tau > t\}$ for all $t \ge 0$.

For instance

$$\widetilde{\mathcal{G}}_t := \left\{ A \in \mathcal{G} \, | \, \exists \, \widetilde{A} \in \mathcal{F}_t \text{ such that } A \cap \{ au > t \} = \widetilde{A} \cap \{ au > t \}
ight\}$$

Lemma

The progressive enlargement \mathbb{G} satisfies, for all $t \geq 0$,

$$\mathcal{G}_t \cap \{\tau > t\} = \mathcal{F}_t \cap \{\tau > t\} = \widetilde{\mathcal{G}}_t \cap \{\tau > t\}$$
$$\mathcal{G}_t \cap \{\tau \le t\} = \mathcal{G}_t^* \cap \{\tau \le t\} = (\sigma(\tau) \lor \mathcal{F}_t) \cap \{\tau \le t\}$$

2. Semimartingale decompositions: classic results

Azéma supermartingale

Definition

The *Azéma supermartingale* of a random time τ is defined by the equality $G_t = \mathbb{P}(\tau > t | \mathcal{F}_t)$ for all $t \in \mathbb{R}_+$.

Lemma

The process G is a (\mathbb{P}, \mathbb{F}) -supermartingale that satisfies $0 \le G_t \le 1$ for every $t \in \mathbb{R}_+$ and $G_{\infty} = 0$.

The Azéma supermartingale *G* is a central object in the studies of enlargements of \mathbb{F} through a random time τ since:

- some (but not all) properties of a random time can be characterized by its Azéma supermartingale,
- semimartingale decomposition of a (P, F)-martingale in enlarged filtration can be written in terms of the Azéma supermartingale.

Notation and comments

- Let the Doob-Meyer decomposition of *G* be *G* = *M* − *A* where *A* = *H^p* is the dual 𝔽-predictable projection of the process *H_t* = 1_{τ≤t} and *M* is a (𝔼, 𝔼)-martingale.
- 2 Also $G = \widetilde{M} \widetilde{A}$ where $\widetilde{A} = H^o$ is the dual \mathbb{F} -optional projection of $H_t = \mathbb{1}_{\{\tau \le t\}}$ and \widetilde{M} is an (\mathbb{P}, \mathbb{F}) -martingale.
- Sequalities A = A and M = M hold if all (P, F)-martingales are continuous and/or P(τ = ρ) = 0 for every F-stopping time ρ (avoidance property).
- Any F-adapted process can be decomposed as follows:

$$X_t = X_{t \wedge \tau -} + \Delta X_{\tau} \mathbb{1}_{\{\tau \leq t\}} + X_{t \vee \tau} - X_{\tau}$$

where

$$X_{t\wedge\tau-}=X_t\mathbb{1}_{\{\tau>t\}}+X_{\tau-}\mathbb{1}_{\{\tau\leq t\}}$$

G-semimartingale decomposition stopped at au

Recall that \mathbb{G} is the progressive enlargement of \mathbb{F} through τ .

Theorem (Jeulin-Yor (1978))

The process

$$H_t - \int_{(0,t\wedge\tau]} \frac{1}{G_{u-}} \, dA_u$$

is a (\mathbb{P}, \mathbb{G}) -local martingale. If U if a (\mathbb{P}, \mathbb{F}) -martingale then

$$U_{t\wedge \tau} - \int_{(0,t\wedge \tau]} \frac{1}{G_{u-}} d\langle \widetilde{M},U \rangle_u$$

is a (\mathbb{P}, \mathbb{G}) -local martingale.

This result is valid for any admissible enlargement $\widetilde{\mathbb{G}}$ of $\mathbb{F}.$

A random time is said to be an *honest time* if for every t > 0there exists an \mathcal{F}_t -measurable random variable τ_t such that τ is equal to τ_t on the event { $\tau \le t$ }, that is, $\tau \mathbb{1}_{\{\tau \le t\}} = \tau_t \mathbb{1}_{\{\tau \le t\}}$.

Honest times can also be characterized as follows.

Lemma (Yor (1978))

A random time is an honest time if for every $0 \le s < t$ there exists an event $A_{s,t} \in \mathcal{F}_t$ such that $\mathbb{1}_{\{\tau \le s\}} = \mathbb{1}_{A_{s,t}} \mathbb{1}_{\{\tau \le t\}}$.

We set F = 1 - G where G is the Azéma supermartingale of τ . Hence $F_t = \mathbb{P}(\tau \le t | \mathcal{F}_t)$ is a bounded \mathbb{F} -submartingale.

G-semimartingale decomposition for honest times

In the case of an honest time the hypothesis (H') is satisfied.

Theorem (Jeulin-Yor (1978))

Let τ be an honest time. If U is a (\mathbb{P}, \mathbb{F}) -martingale then

$$U_t - \int_{(0,t\wedge\tau]} \frac{1}{G_{u-}} d\langle \widetilde{M}, U \rangle_u + \int_{(t\wedge\tau,t]} \frac{1}{F_{u-}} d\langle \widetilde{M}, U \rangle_u$$

is a (\mathbb{P}, \mathbb{G}) -local martingale. If U is a (\mathbb{P}, \mathbb{F}) -martingale with no jump at τ then

$$U_t - \int_{(0,t\wedge\tau]} \frac{1}{G_{u-}} d\langle M,U\rangle_u + \int_{(t\wedge\tau,t]} \frac{1}{F_{u-}} d\langle M,U\rangle_u$$

is a (\mathbb{P}, \mathbb{G}) -local martingale.

A random time is an *initial time* if there exists a σ -finite measure η on \mathbb{R}_+ such that

$$G_{u,t} = \mathbb{P}\left(\tau > u \,|\, \mathcal{F}_t\right) = \int_u^\infty f_{s,t} \,d\eta(s)$$

where $f_{s,t}$ is called the *density process*.

Theorem (Jacod (1985))

If τ is an initial time then the hypothesis (H') holds for the initial enlargement \mathbb{G}^* and thus for any admissible enlargement $\widetilde{\mathbb{G}}$.

In particular, it holds for the progressive enlargement $\mathbb G$ of $\mathbb F$ through an initial time $\tau.$

Theorem (Jeanblanc-Le Cam (2009))

Assume τ is an initial time with density $f_{s,t}$ so that

$$G_{u,t} = \mathbb{P}\left(\tau > u \,|\, \mathcal{F}_t
ight) = \int_u^\infty f_{s,t} \, d\eta(s)$$

If U is a (\mathbb{P}, \mathbb{F}) -martingale with no jump at τ then

$$U_t - \int_{(0,t\wedge\tau]} \frac{1}{G_{u-}} d\langle M, U \rangle_u + \int_{(t\wedge s,t]} \frac{1}{f_{s,u-}} d\langle M, f_{s,\cdot} \rangle_u \Big|_{s=\tau}$$

is a (\mathbb{P}, \mathbb{G}) -local martingale.

3. Multiplicative construction of a random time with a given Azéma supermartingale

Assumption

We are given a (\mathbb{P}, \mathbb{F}) -supermartingale G on $(\Omega, \mathcal{G}, \mathbb{F}, \mathbb{P})$ such that $0 \leq G_t \leq 1$ for every $t \in \mathbb{R}_+$ and $G_{\infty} = 0$.

Our goal is to show that given a supermartingale G there exists a random time τ on an extension $(\widehat{\Omega}, \widehat{\mathcal{G}}, \widehat{\mathbb{F}}, \widehat{\mathbb{P}})$ of $(\Omega, \mathcal{G}, \mathbb{F}, \mathbb{P})$ such that:

- the probability measures $\mathbb P$ and $\widehat{\mathbb P}$ coincide on $\mathbb F$,
- G is the Azéma supermartingale of τ so that for all $t \ge 0$

$$G_t = \widehat{\mathbb{P}}(\tau > t \,|\, \mathcal{F}_t)$$

We then say that a random time τ is *consistent* with *G*.

Let *G* be a positive (\mathbb{P}, \mathbb{F}) -supermartingale such that $0 \le G \le 1$.

- If G is a decreasing process then the so-called *canonical* construction gives the existence of τ consistent with G.
- A particular case was examined in Gapeev et al. [GJLR], where it was assumed that the supermartingale *G* is continuous and F is the Brownian filtration.
- In working papers by Jeanblanc and Song [JS1, JS2], the authors develop an alternative (related) approach.

Using the multiplicative systems introduced in Meyer [M], we will establish:

- the existence of *τ* with a predetermined supermartingale G satisfying 0 ≤ G ≤ 1,
- the uniqueness of the
 𝔽-conditional distribution of *τ* in a certain subclass of *admissible* constructions.

Remark

In general, the uniqueness does not hold! It is possible to construct two random times consistent with the same Azéma supermartingale, but having different \mathbb{F} -conditional distributions.

Practical importance: the default intensity does not uniquely specify a credit risk model and prices of credit-risky claims.

4. Existence of a random time consistent with G

Notation

For a random time τ given on a space $(\Omega, \mathcal{G}, \mathbb{F}, \mathbb{P})$, we define the (\mathbb{P}, \mathbb{F}) -submartingale F^{τ} and the (\mathbb{P}, \mathbb{F}) -supermartingale G^{τ}

$$F_t^{\tau} = \mathbb{P}\left(\tau \leq t \,|\, \mathcal{F}_t\right), \quad G_t^{\tau} = 1 - F_t^{\tau} = \mathbb{P}\left(\tau > t \,|\, \mathcal{F}_t\right)$$

Definition

By the \mathbb{F} -conditional distribution of τ we mean the random field $(\mathcal{F}_{u,t}^{\tau})_{u,t\in\overline{\mathbb{R}}_+}$ that satisfies, for all $u, t\in\overline{\mathbb{R}}_+$,

$$F_{u,t}^{ au} = \mathbb{P}\left(au \leq u \,|\, \mathcal{F}_t
ight)$$

The \mathbb{F} -conditional survival distribution of τ is the random field $(G_{u,t}^{\tau})_{u,t\in\overline{\mathbb{R}}_+}$ given by, for all $u, t\in\overline{\mathbb{R}}_+$,

$$G_{u,t}^{\tau} = \mathbb{P}\left(\tau > u \,|\, \mathcal{F}_t\right) = 1 - F_{u,t}^{\tau}$$

F-conditional distributions

Definition

A random field $(F_{u,t})_{u,t\in\mathbb{R}_+}$ on a filtered probability space $(\Omega, \mathcal{G}, \mathbb{F}, \mathbb{P})$ is said to be an \mathbb{F} -conditional distribution of a random time if it satisfies:

- for all $u \in \overline{\mathbb{R}}_+$ and $t \in \overline{\mathbb{R}}_+$, we have $0 \le F_{u,t} \le 1$,
- for all $u \in \overline{\mathbb{R}}_+$, the process $(F_{u,t})_{t \in \overline{\mathbb{R}}_+}$ is a (\mathbb{P}, \mathbb{F}) -martingale,
- for all $t \in \overline{\mathbb{R}}_+$, the process $(F_{u,t})_{u \in \overline{\mathbb{R}}_+}$ is right-continuous, increasing and $F_{\infty,t} = 1$.

Lemma (L.-R. (2010))

For any given \mathbb{F} -conditional distribution $F_{u,t}$, there exists a random time τ on an extension of $(\Omega, \mathcal{G}, \mathbb{F}, \mathbb{P})$ such that $\widehat{\mathbb{P}}(\tau \leq u | \mathcal{F}_t) = F_{u,t}$ for all $u, t \in \overline{\mathbb{R}}_+$. Moreover, the equality $\widehat{\mathbb{P}}|_{\mathcal{F}_t} = \mathbb{P}|_{\mathcal{F}_t}$ holds for all $t \in \mathbb{R}_+$.

Extended canonical construction

Proof.

The extended canonical construction runs as follows:

We extend the space by setting

$$\widehat{\Omega} = \Omega \times [\mathbf{0},\mathbf{1}], \ \widehat{\mathcal{G}} = \mathcal{G} \otimes \mathcal{B}[\mathbf{0},\mathbf{1}], \ \widehat{\mathbb{P}} = \mathbb{P} \times \lambda$$

where λ is the Lebesgue measure on [0, 1]. Then the equality $\widehat{\mathbb{P}} |_{\mathcal{F}_t} = \mathbb{P} |_{\mathcal{F}_t}$ holds for all $t \in \mathbb{R}_+$.

- 2 We set U(x) = x where $x \in [0, 1]$. Then U is a uniformly distributed random variable on $(\widehat{\Omega}, \widehat{\mathbb{P}})$ independent of \mathcal{F}_{∞} .
- **③** We define the random time au by the formula

$$\tau = \inf \left\{ t \in \mathbb{R}_+ : F_{t,\infty} \ge U \right\}$$

Then $G_t^{\tau} = 1 - F_{t,t}$.

Step 3 in the proof

Proof.

The random time τ constructed in Step 3 satisfies

$$\{\tau \le u\} = \{F_{u,\infty} \ge U\}$$

Since U is independent of \mathcal{F}_{∞} , we obtain

$$\begin{split} \widehat{\mathbb{P}} \left(\tau \leq u \, | \, \mathcal{F}_{\infty} \right) &= \widehat{\mathbb{P}} \left(\, \mathcal{F}_{t,\infty} \geq U \, | \, \mathcal{F}_{\infty} \right) \\ &= \widehat{\mathbb{P}} (U \leq x) \big|_{x = F_{u,\infty}} = F_{u,\infty} \end{split}$$

Consequently,

$$F_t^{\tau} = \widehat{\mathbb{P}}\left(\tau \leq t \,|\, \mathcal{F}_t\right) = \mathbb{E}_{\mathbb{P}}(F_{t,\infty} \,|\, \mathcal{F}_t) = F_{t,t}$$

We conclude that the equality $G_t^{\tau} = 1 - F_{t,t}$ holds.

Remark

It remains to construct $F_{u,t}$ consistent with a given in advance process G in the sense that $G_t = 1 - F_{t,t}$ for all $t \in \mathbb{R}_+$. To this end, we will use the concept of a multiplicative system.

Definition (Meyer (1979))

A random field $(C_{u,t})_{u,t\in\overline{\mathbb{R}}_+}$ is called a *multiplicative system* if it satisfies:

- if $u \leq s \leq t$ then $C_{u,s}C_{s,t} = C_{u,t}$ and $C_{u,t} = 1$ if $u \geq t$,
- ② for every *u*, the process (*C_{u,t}*)_{t∈ℝ+} is F-predictable and decreasing in *t*,
- for every *t*, the process $(C_{u,t})_{u \in \mathbb{R}_+}$ is a right-continuous and increasing in *u* (not necessarily \mathbb{F} -adapted).

Multiplicative system associated with Y

• Let $Y = (Y_t)_{t \in \mathbb{R}_+}$ be a positive (\mathbb{P}, \mathbb{F}) -submartingale.

• In our case, we set Y = F.

Definition (Meyer (1979))

A multiplicative system $(C_{u,t})_{u,t\in\mathbb{R}_+}$ is said to be *associated with* $a(\mathbb{P},\mathbb{F})$ -submartingale Y if for all $t\in\overline{\mathbb{R}}_+$

$$\mathbb{E}_{\mathbb{P}}\left(\left.\mathcal{C}_{t,\infty}Y_{\infty}\,|\,\mathcal{F}_{t}\right)=Y_{t}\right.$$

Note that $C_{t,\infty}$ is bounded and Y_{∞} is integrable (by definition).

Theorem (Meyer (1979))

Any positive submartingale $Y = (Y_t)_{t \in \overline{\mathbb{R}}_+}$ admits an associated multiplicative system.

Libo Li and Marek Rutkowski, University of Sydney Random Times, Filtrations and Semimartingales

Existence of a multiplicative system

Proof.

Assume first that Y is bounded below by
 e > 0. Then it suffices to take

$$C_{u,t} = \exp\left(-\int_{(u,t]} \frac{dB_s^c}{p Y_s}\right) \prod_{u < s \le t} \left(1 - \frac{\Delta B_s}{p Y_s}\right)$$

where *B* is the increasing process which generates the positive supermartingale $X_t = Y_{\infty} - Y_t$, that is,

$$X_t = \mathbb{E}_{\mathbb{P}} \left(\left. B_{\infty} \right| \mathcal{F}_t \right) + B_t$$

and ${}^{p}Y$ is the \mathbb{F} -predictable projection of *Y*.

 The general case is established by passing to the limit as e → 0. Using Meyer's theorem, we can establish the following result.

Lemma (L.-R. (2010))

Let $(F_t)_{t \in \mathbb{R}_+}$ be a submartingale such that $0 \le F \le 1$. We define the random field $(F_{u,t})_{u,t \in \mathbb{R}_+}$ by setting

$$F_{u,t} = \begin{cases} \mathbb{E}_{\mathbb{P}} \left(F_u \, | \, \mathcal{F}_t \right), & t \in [0, u), \\ C_{u,t} F_t, & t \in [u, \infty], \end{cases}$$

where $C_{u,t}$ is any multiplicative system associated with F. Then $F_{u,t}$ is an \mathbb{F} -conditional distribution of a random time and $F_{t,t} = F_t$.

Theorem (L.-R. (2010))

Let G be a (\mathbb{P}, \mathbb{F}) -supermartingale such that $0 \leq G \leq 1$.

- The random field $F_{u,t} = C_{u,t}(1 G_t)$ is an \mathbb{F} -conditional distribution for all $u \leq t$.
- The extended canonical construction yields a random time τ on the extended space (Ω, F, P, P) such that for all u ≤ t

$$\widehat{\mathbb{P}}\left(\tau > u \,|\, \mathcal{F}_t\right) = 1 - C_{u,t}(1 - G_t)$$

③ For all $u \leq t$ we have

$$\widehat{\mathbb{P}}\left(\tau \leq u \,|\, \mathcal{F}_t\right) = C_{u,t} \,\widehat{\mathbb{P}}\left(\tau \leq t \,|\, \mathcal{F}_t\right)$$

5. Uniqueness of a random time consistent with G

Libo Li and Marek Rutkowski, University of Sydney Random Times, Filtrations and Semimartingales

An *admissible construction* of a random time τ is a pair (τ, \mathbb{Q}) defined on any extension $(\widetilde{\Omega}, \widetilde{\mathcal{G}}, \widetilde{\mathbb{F}})$ of the filtered probability space $(\Omega, \mathcal{G}, \mathbb{F}, \mathbb{P})$ such that:

•
$$\mathbb{Q}\left(\, au > t \, | \, \mathcal{F}_t
ight) = G_t$$
 for all $t \in \mathbb{R}_+,$

• the restriction of \mathbb{Q} to \mathbb{F} equals \mathbb{P} .

Definition

Two construction (τ, \mathbb{Q}) and $(\hat{\tau}, \widehat{\mathbb{Q}})$ are *equivalent* if the \mathbb{F} -conditional distributions of τ and $\hat{\tau}$ are indistinguishable.

Uniqueness of $F_{u,t}$ for $t \leq u$

For any admissible construction (τ, Q), the F-conditional distribution of *F_{u,t}* for *u* ≥ *t* is fixed since Q|_{*F_t*} = P|_{*F_t*} for all *t* ≥ 0 and thus for all *u* ≥ *t*

$$F_{u,t} = \mathbb{Q}\left(\tau \leq u \,|\, \mathcal{F}_t\right) = \mathbb{E}_{\mathbb{P}}\left(F_{u,u} \,|\, \mathcal{F}_t\right) = 1 - \mathbb{E}_{\mathbb{P}}\left(G_u \,|\, \mathcal{F}_t\right)$$

- Hence in any construction one has essentially the freedom to choose the conditional distribution $F_{u,t}$ for t > u, as long as $F_{t,t} = 1 G_t$.
- The canonical construction of τ yields for $t \ge u$

$$F_{u,t} = \mathbb{Q}\left(\tau \leq u \,|\, \mathcal{F}_t\right) = \mathbb{Q}\left(\tau \leq u \,|\, \mathcal{F}_t\right) = F_{u,u}$$

but it can only be applied when *G* is decreasing.

A pair (τ, \mathbb{Q}) is said to satisfy:

• the *hypothesis* (*H*) if for all $0 \le u \le s \le t$

$$F_{u,s} = F_{u,t}$$

 the *hypothesis* (*HP*) (or the *proportionality* property) if for all 0 ≤ u < s < t

$$F_{u,s}F_{s,t} = F_{s,s}F_{u,t}$$

the hypothesis (DP) (or the decreasing proportionality property) if for all 0 ≤ u < s < t

$$F_{u,s}F_{t,t} \geq F_{s,s}F_{u,t}$$

Proposition (L.-R. (2010))

The following implications are valid:

$$(H) \implies (HP) \implies (DP)$$

The following result is used to establish the uniqueness of $\ensuremath{\mathbb{F}}$ -conditional distribution.

Theorem (Meyer (1979))

If $C_{u,t}$ and $\overline{C}_{u,t}$ are two multiplicative systems associated with a given positive submartingale $Y = (Y_t)_{t \in \overline{\mathbb{R}}_+}$ then the random fields $C_{u,t}Y_t$ and $\overline{C}_{u,t}Y_t$ are indistinguishable.

Proposition (L.-R. (2010))

Two admissible constructions with a given supermartingale G are equivalent if:

- the hypothesis (HP) holds for (\mathbb{Q}, τ) and $(\widehat{\mathbb{Q}}, \widehat{\tau})$,
- for any fixed $u \ge 0$, the \mathbb{F} -adapted processes

$$C_{u,t} = \frac{\mathbb{Q}\left(\tau \leq u \,|\, \mathcal{F}_t\right)}{\mathbb{Q}\left(\tau \leq t \,|\, \mathcal{F}_t\right)} \qquad \widehat{C}_{u,t} = \frac{\widehat{\mathbb{Q}}\left(\widehat{\tau} \leq u \,|\, \mathcal{F}_t\right)}{\widehat{\mathbb{Q}}\left(\widehat{\tau} \leq t \,|\, \mathcal{F}_t\right)}$$

are \mathbb{F} -predictable in $t \in \overline{\mathbb{R}}_+$.

- Any random time *τ* constructed through the multiplicative approach satisfies the hypothesis (*HP*).
- Any honest time τ satisfies the hypothesis (*HP*). Honest time are F_∞-measurable so they are not obtained through the multiplicative approach.
- Given a supermartingale G, we can also produce a random time τ consistent with G for which the hypothesis (*HP*) fails to hold.

Non-uniqueness of $F_{u,t}$ for t > u

Example

Let M be a continuous, positive, square-integrable martingale.

 $\bullet\,$ Consider the $\mathbb F\text{-conditional distribution}$

$$\widehat{F}_{u,t} = 1 - \exp\left(-uM_t - \frac{1}{2}u^2 \langle M, M \rangle_t\right)$$

The extended canonical construction yields a random time $\hat{\tau}$ for which the hypothesis (*HP*) is not valid since for u < t

$$\mathbb{P}\left(\widehat{\tau} \leq u \,|\, \mathcal{F}_t\right) = \widehat{\mathcal{F}}_{u,t} \neq \mathcal{C}_{u,t}\widehat{\mathcal{F}}_{t,t} = \mathcal{C}_{u,t}\,\mathbb{P}\left(\widehat{\tau} \leq t \,|\, \mathcal{F}_t\right)$$

- The multiplicative approach gives $F_{u,t}$ consistent with $G = \widehat{G}$ for which the hypothesis (*HP*) holds.

6. Separability of a conditional distribution

Definition

We say that an \mathbb{F} -conditional distribution $F_{u,t}$ is *completely separable* if there exists a positive (\mathbb{P}, \mathbb{F}) -martingale X and a positive, \mathbb{F} -adapted, increasing process Y such that $F_{u,t} = Y_u X_t$ for every $u, t \in \mathbb{R}_+$ such that $u \leq t$.

Separability of $F_{u,t}$ is a weaker form of complete separability.

Proposition (L.-R. (2010))

- If the F-conditional distribution of τ is separable and F₀ = 0 then the hypothesis (HP) holds.
- If the 𝔽-conditional distribution *F_{u,t}* > 0 satisfies the hypothesis (HP) then the random field *F_{u,t}* is separable.

Proposition (L.-R. (2010))

If $G_t < 1$ for $t \ge 0$ then $F_{u,t}$ obtained through the multiplicative approach is completely separable: for all $0 \le u \le t$

$$F_{u,t} = \frac{F_t \mathcal{E}_t \left(\int_{(0,\cdot]} ({}^{p}F_s)^{-1} dA_s \right)}{\mathcal{E}_u \left(\int_{(0,\cdot]} ({}^{p}F_s)^{-1} dA_s \right)} = Y_u X_t$$

where the strictly positive, increasing process Y is given by

$$Y_{u} = \left[\mathcal{E}_{u}\left(\int_{(0,\cdot]} ({}^{p}F_{s})^{-1} dA_{s}\right)\right]^{-1}$$

and the strictly positive (\mathbb{P}, \mathbb{F}) -martingale X equals

$$X_t = F_t \, \mathcal{E}_t \bigg(\int_{(0,\cdot]} ({}^p F_s)^{-1} \, dA_s \bigg)$$

7. Semimartingale decompositions: new results

In this part, we make the following standing assumptions:

- We consider a random time τ on a filtered probability space (Ω, G, F, P) such that G is the Azéma supermartingale of τ.
- 2 The Doob-Meyer decomposition of G is denoted as G = M A.
- Solution We denote by $F_{u,t}$ the \mathbb{F} -conditional distribution of τ under \mathbb{P} , that is, $F_{u,t} = \mathbb{P}(\tau \le u | \mathcal{F}_t)$ for all $u, t \ge 0$.
- For simplicity, we assume that a (\mathbb{P}, \mathbb{F}) -martingale U is continuous at τ .

Recall that for every $s \ge 0$ the process $(F_{s,u})_{u \ge s}$ is a bounded, positive (\mathbb{P}, \mathbb{F}) -martingale.

Theorem (L.-R. (2010))

Assume that the hypothesis (HP) holds and the \mathbb{F} -conditional distribution satisfies $0 < F_{u,t} \leq 1$ for every $0 < u \leq t$. If U is a (\mathbb{P}, \mathbb{F}) -local martingale then

$$U_t - \int_{(0,t\wedge \tau]} (G_u)^{-1} d[U,G]_u - \int_{(t\wedge s,t]} (F_{s,u})^{-1} d[U,F_{s,\cdot}]_u \Big|_{s=\tau}$$

is a (\mathbb{P}, \mathbb{G}) -local martingale.

Recall that the separability of $F_{u,t}$ is (almost) equivalent to (*HP*).

Corollary (L.-R. (2010))

Assume that the \mathbb{F} -conditional distribution of τ is completely separable, that is, the \mathbb{F} -conditional distribution of τ is given by $F_{u,t} = Y_u X_t$ for every $0 \le u \le t$. If U is a (\mathbb{P}, \mathbb{F}) -martingale then

$$U_t - \int_{(0,t\wedge\tau]} (G_u)^{-1} d[U,G]_u - \int_{(t\wedge\tau,t]} (X_u)^{-1} d[U,X]_u$$

is a (\mathbb{P}, \mathbb{G}) -local martingale.

G-Semimartingale decomposition: multiplicative case

The next corollary is comparable to the case of an honest time.

Corollary (L.-R. (2010))

Assume that $G_t < 1$ and for every t > 0 and τ was constructed using the multiplicative approach. If U is a (\mathbb{P}, \mathbb{F}) -martingale then

$$U_t - \int_{(0,t\wedge\tau]} (G_u)^{-1} d[U,M]_u + \int_{(t\wedge\tau,t]} (F_u)^{-1} d[U,M]_u$$

is a (\mathbb{P}, \mathbb{G}) -local martingale.

Remark

Similar decomposition (but with the predictable bracket) was obtained by Jeanblanc and Song in [JS1] under continuity assumptions.

Definition

The field $F_{u,t}$ satisfies the *density hypothesis* if there exists an \mathbb{F} -adapted, increasing process D and, for every $s \ge 0$, a (\mathbb{P}, \mathbb{F}) -martingale $(m_{s,t})_{t\ge s}$ such that

$$F_{u,t} = \int_{[0,u]} m_{s,t} \, dD_s$$

Corollary (L.-R. (2010))

Under the density hypothesis, if U is a (\mathbb{P}, \mathbb{F}) -martingale then

$$U_t - \int_{(0,t\wedge\tau]} (G_u)^{-1} d[U,G]_u - \int_{(t\wedge s,t]} (m_{s,u})^{-1} d[U,m_{s,\cdot}]_u \Big|_{s=\tau}$$

is a (\mathbb{P}, \mathbb{G}) -local martingale.

8. Girsanov's theorem

Lemma (L.-R. (2010))

Let the \mathbb{F} -conditional distribution of τ under \mathbb{P} be separable. We define the process $Z^{\mathbb{G}}$ by the formula

$$Z_t^{\mathbb{G}} = \widetilde{Z}_t \mathbb{1}_{\{\tau > t\}} + \widehat{Z}_{\tau, t} \mathbb{1}_{\{\tau \le t\}}$$

where
$$\widehat{Z}_{u,t} = \frac{F_{u,u}}{F_{u,t}}$$
 and
 $\widetilde{Z}_t = G_t^{-1} \left(1 - \int_{(0,t]} \widehat{Z}_{u,t} \, dF_{u,t} \right) = G_t^{-1} \left(1 - \mathbb{E}_{\mathbb{P}} \left(\widehat{Z}_{\tau,t} \mathbb{1}_{\{\tau \le t\}} \, \Big| \, \mathcal{F}_t \right) \right)$

Then the process $Z^{\mathbb{G}}$ is a (\mathbb{P}, \mathbb{G}) -local martingale.

The hypothesis (HP) implies that the hypothesis (H) holds under an equivalent probability measure.

Proposition (L.-R. (2010))

Assume that:

- the conditional distribution of the random time *τ* under ℙ is separable so that the hypothesis (HP) is satisfied,
- the process Z^G is a positive (ℙ, G)-martingale with the property that E_P(Z_t^G | F_t) = 1 for t ∈ ℝ₊.

Then there exists an equivalent probability measure $\widehat{\mathbb{P}}$ such that the hypothesis (H) holds under $\widehat{\mathbb{P}}$.

Remarks:

- In the recent paper by Coculescu et al. [CJN], the existence of an equivalent probability measure for which the hypothesis (*H*) holds was shown to be a sufficient condition for a model with enlarged filtration to be arbitrage-free, provided that the corresponding model based on the filtration F enjoys this property.
- The last proposition shows that if the hypothesis (*HP*) holds then, under mild technical assumptions, the result from [CJN] can be applied to progressive enlargement.
- Our results can also be used for modeling asymmetric information (weak insider trading) in a progressive enlargement setting.

Selected references

Libo Li and Marek Rutkowski, University of Sydney Random Times, Filtrations and Semimartingales

[Y] Yor, M.:

Grossissement d'une filtration et semi-martingales: théorèmes généraux.

In: Séminaire de Probabilités XII. Lecture Notes in Mathematics 649. Springer, Berlin, 1978, pp. 61–69.

[JY] Jeulin, T. and Yor, M.:

Grossissement d'une filtration et semi-martingales: formules explicites.

In: Séminaire de Probabilités XII. Lecture Notes in Mathematics 649. Springer, Berlin, 1978, pp. 78–97.

[J] Jacod, J.:

Grossissement initial, hypothèse (H') et théorème de Girsanov.

In: Grossissements de filtrations: exemples et applications. Lecture Notes in Mathematics 1118, T. Jeulin and M. Yor (eds). Springer, Berlin, 1985, pp. 15-35.

[M] Meyer, P.A.:

Représentations multiplicatives de sousmartingales d'après Azéma.

In: *Séminaire de Probabilités XIII, Lecture Notes in Mathematics 721.* Springer, Berlin, 1979, pp. 240–249.

- [JL] Jeanblanc, M. and Le Cam, Y.: Progressive enlargement of filtration with initial times. Stochastic Processes and their Applications 119 (2009), 2523–2543.
- [GJLR] Gapeev, P., Jeanblanc, M., Li, L., and Rutkowski, M.: Constructing random times with given survival processes and applications to valuation of credit derivatives. In: *Contemporary Quantitative Finance*, C. Chiarella and A.

Novikov, eds., Springer, Berlin, 2010.

- [CJN] Coculescu, D., Jeanblanc, M., and Nikeghbali, A.: Default times, non arbitrage conditions and change of probability measures. Working paper, 2009. [EJJ] El Karoui, N., Jeanblanc, M., and Jiao, Y.: What happens after a default: the conditional density approach. Working paper, 2009. [JS1] Jeanblanc, M. and Song, S.: An explicit model of default time with given survival probability. Working paper, University of Evry, 2010.

Working paper, University of Evry, 2010.