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1. Initial and progressive enlargements
of a reference filtration
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Enlargements of a filtration

We are given a complete probability space (Ω,G,P) with a
reference filtration F = (Ft )t≥0 satisfying the usual conditions.

Definition
Let G be any filtration such that Ft ⊂ Gt for every t ≥ 0. Then
we write F ⊂ G and we say that G is an enlargement of F.

Early studies of enlargements of a filtration undertaken by
Barlow-Jeulin-Brémaud-Yor-Jacod-... centered around:

Hypothesis (H):
Any F-martingale is a G-martingale.

Hypothesis (H ′):
Any F-semimartingale is a G-semimartingale,

G-semimartingale decomposition of an F-martingale.
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Enlargements through a random time

Definition
By a random time τ we mean a random variable on (Ω,G,P)
taking values in R+ = R+ ∪ {∞}.

We assume that a random variable τ is not an F-stopping time.

In the existing literature, one usually deals with the following
two basic types of enlargements:

initial enlargement,
progressive enlargement.

Remark
All enlargements are made right-continuous and P-complete.
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Initial and progressive enlargements

Definition
The initial enlargement of F through τ is the filtration G∗ defined
by G∗t = σ(Ft ∪ σ(τ)) := Ft ∨ σ(τ) for all t ∈ R+.

The initial enlargement is typically used for insider trading.

Definition
The progressive enlargement of F through τ is defined as the
smallest enlargement G of F such that τ is a G-stopping time.

The progressive enlargement is typically used for credit risk.
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Admissible and progressive enlargements

Definition

An admissible enlargement G̃ of F associated with τ is any
filtration G̃ such that G̃t ∩ {τ > t} = Ft ∩ {τ > t} for all t ≥ 0.

For instance

G̃t :=
{

A ∈ G | ∃ Ã ∈ Ft such that A ∩ {τ > t} = Ã ∩ {τ > t}
}

Lemma
The progressive enlargement G satisfies, for all t ≥ 0,

Gt ∩ {τ > t} = Ft ∩ {τ > t} = G̃t ∩ {τ > t}
Gt ∩ {τ ≤ t} = G∗t ∩ {τ ≤ t} = (σ(τ) ∨ Ft ) ∩ {τ ≤ t}
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2. Semimartingale decompositions:
classic results
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Azéma supermartingale

Definition
The Azéma supermartingale of a random time τ is defined by
the equality Gt = P (τ > t | Ft ) for all t ∈ R+.

Lemma
The process G is a (P,F)-supermartingale that satisfies
0 ≤ Gt ≤ 1 for every t ∈ R+ and G∞ = 0.

The Azéma supermartingale G is a central object in the studies
of enlargements of F through a random time τ since:

some (but not all) properties of a random time can be
characterized by its Azéma supermartingale,
semimartingale decomposition of a (P,F)-martingale in
enlarged filtration can be written in terms of the Azéma
supermartingale.
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Notation and comments

1 Let the Doob-Meyer decomposition of G be G = M − A
where A = Hp is the dual F-predictable projection of the
process Ht = 1{τ≤t} and M is a (P,F)-martingale.

2 Also G = M̃ − Ã where Ã = Ho is the dual F-optional
projection of Ht = 1{τ≤t} and M̃ is an (P,F)-martingale.

3 Equalities A = Ã and M = M̃ hold if all (P,F)-martingales
are continuous and/or P(τ = ρ) = 0 for every F-stopping
time ρ (avoidance property).

4 Any F-adapted process can be decomposed as follows:

Xt = Xt∧τ− + ∆Xτ1{τ≤t} + Xt∨τ − Xτ

where
Xt∧τ− = Xt1{τ>t} + Xτ−1{τ≤t}
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G-semimartingale decomposition stopped at τ

Recall that G is the progressive enlargement of F through τ .

Theorem (Jeulin-Yor (1978))
The process

Ht −
∫

(0,t∧τ ]

1
Gu−

dAu

is a (P,G)-local martingale. If U if a (P,F)-martingale then

Ut∧τ −
∫

(0,t∧τ ]

1
Gu−

d〈M̃,U〉u

is a (P,G)-local martingale.

This result is valid for any admissible enlargement G̃ of F.
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Honest times

Definition
A random time is said to be an honest time if for every t > 0
there exists an Ft -measurable random variable τt such that τ
is equal to τt on the event {τ ≤ t}, that is, τ1{τ≤t} = τt1{τ≤t}.

Honest times can also be characterized as follows.

Lemma (Yor (1978))
A random time is an honest time if for every 0 ≤ s < t there
exists an event As,t ∈ Ft such that 1{τ≤s} = 1As,t1{τ≤t}.

We set F = 1−G where G is the Azéma supermartingale of τ .
Hence Ft = P (τ ≤ t | Ft ) is a bounded F-submartingale.
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G-semimartingale decomposition for honest times

In the case of an honest time the hypothesis (H ′) is satisfied.

Theorem (Jeulin-Yor (1978))

Let τ be an honest time. If U is a (P,F)-martingale then

Ut −
∫

(0,t∧τ ]

1
Gu−

d〈M̃,U〉u +

∫
(t∧τ,t]

1
Fu−

d〈M̃,U〉u

is a (P,G)-local martingale. If U is a (P,F)-martingale
with no jump at τ then

Ut −
∫

(0,t∧τ ]

1
Gu−

d〈M,U〉u +

∫
(t∧τ,t]

1
Fu−

d〈M,U〉u

is a (P,G)-local martingale.
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Initial times and the hypothesis (H ′)

Definition
A random time is an initial time if there exists a σ-finite measure
η on R+ such that

Gu,t = P (τ > u | Ft ) =

∫ ∞
u

fs,t dη(s)

where fs,t is called the density process.

Theorem (Jacod (1985))

If τ is an initial time then the hypothesis (H ′) holds for the initial
enlargement G∗ and thus for any admissible enlargement G̃.

In particular, it holds for the progressive enlargement G of F
through an initial time τ .
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G-semimartingale decomposition for initial times

Theorem (Jeanblanc-Le Cam (2009))
Assume τ is an initial time with density fs,t so that

Gu,t = P (τ > u | Ft ) =

∫ ∞
u

fs,t dη(s)

If U is a (P,F)-martingale with no jump at τ then

Ut −
∫

(0,t∧τ ]

1
Gu−

d〈M,U〉u +

∫
(t∧s,t]

1
fs,u−

d〈M, fs,·〉u
∣∣∣
s=τ

is a (P,G)-local martingale.
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3. Multiplicative construction of a random time
with a given Azéma supermartingale
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Random times consistent with G

Assumption

We are given a (P,F)-supermartingale G on (Ω,G,F,P) such
that 0 ≤ Gt ≤ 1 for every t ∈ R+ and G∞ = 0.

Our goal is to show that given a supermartingale G there exists
a random time τ on an extension (Ω̂, Ĝ, F̂, P̂) of (Ω,G,F,P) such
that:

the probability measures P and P̂ coincide on F,
G is the Azéma supermartingale of τ so that for all t ≥ 0

Gt = P̂(τ > t | Ft )

We then say that a random time τ is consistent with G.
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Related results

Let G be a positive (P,F)-supermartingale such that 0 ≤ G ≤ 1.

If G is a decreasing process then the so-called canonical
construction gives the existence of τ consistent with G.
A particular case was examined in Gapeev et al. [GJLR],
where it was assumed that the supermartingale G is
continuous and F is the Brownian filtration.
In working papers by Jeanblanc and Song [JS1, JS2],
the authors develop an alternative (related) approach.
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Our goals

Using the multiplicative systems introduced in Meyer [M], we
will establish:

the existence of τ with a predetermined supermartingale G
satisfying 0 ≤ G ≤ 1,
the uniqueness of the F-conditional distribution of τ in a
certain subclass of admissible constructions.

Remark
In general, the uniqueness does not hold! It is possible to
construct two random times consistent with the same Azéma
supermartingale, but having different F-conditional distributions.

Practical importance: the default intensity does not uniquely
specify a credit risk model and prices of credit-risky claims.
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4. Existence of a random time consistent with G
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Notation

For a random time τ given on a space (Ω,G,F,P), we define
the (P,F)-submartingale F τ and the (P,F)-supermartingale Gτ

F τ
t = P (τ ≤ t | Ft ) , Gτ

t = 1− F τ
t = P (τ > t | Ft )

Definition
By the F-conditional distribution of τ we mean the random field
(F τ

u,t )u,t∈R+
that satisfies, for all u, t ∈ R+,

F τ
u,t = P (τ ≤ u | Ft )

The F-conditional survival distribution of τ is the random field
(Gτ

u,t )u,t∈R+
given by, for all u, t ∈ R+,

Gτ
u,t = P (τ > u | Ft ) = 1− F τ

u,t
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F-conditional distributions

Definition
A random field (Fu,t )u,t∈R+

on a filtered probability space
(Ω,G,F,P) is said to be an F-conditional distribution of a
random time if it satisfies:

for all u ∈ R+ and t ∈ R+, we have 0 ≤ Fu,t ≤ 1,
for all u ∈ R+, the process (Fu,t )t∈R+

is a (P,F)-martingale,

for all t ∈ R+, the process (Fu,t )u∈R+
is right-continuous,

increasing and F∞,t = 1.

Lemma (L.-R. (2010))
For any given F-conditional distribution Fu,t , there exists
a random time τ on an extension of (Ω,G,F,P) such that
P̂ (τ ≤ u | Ft ) = Fu,t for all u, t ∈ R+. Moreover, the equality
P̂ |Ft = P |Ft holds for all t ∈ R+.
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Extended canonical construction

Proof.
The extended canonical construction runs as follows:

1 We extend the space by setting

Ω̂ = Ω× [0,1], Ĝ = G ⊗ B[0,1], P̂ = P× λ

where λ is the Lebesgue measure on [0,1]. Then the
equality P̂ |Ft = P |Ft holds for all t ∈ R+.

2 We set U(x) = x where x ∈ [0,1]. Then U is a uniformly
distributed random variable on (Ω̂, P̂) independent of F∞.

3 We define the random time τ by the formula

τ = inf {t ∈ R+ : Ft ,∞ ≥ U}

Then Gτ
t = 1− Ft ,t .
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Step 3 in the proof

Proof.
The random time τ constructed in Step 3 satisfies

{τ ≤ u} = {Fu,∞ ≥ U}

Since U is independent of F∞, we obtain

P̂ (τ ≤ u | F∞) = P̂ (Ft ,∞ ≥ U | F∞)

= P̂(U ≤ x)
∣∣
x=Fu,∞

= Fu,∞

Consequently,

F τ
t = P̂ (τ ≤ t | Ft ) = EP(Ft ,∞ | Ft ) = Ft ,t

We conclude that the equality Gτ
t = 1− Ft ,t holds.
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Multiplicative system

Remark
It remains to construct Fu,t consistent with a given in advance
process G in the sense that Gt = 1− Ft ,t for all t ∈ R+. To this
end, we will use the concept of a multiplicative system.

Definition (Meyer (1979))

A random field (Cu,t )u,t∈R+
is called a multiplicative system if

it satisfies:
1 if u ≤ s ≤ t then Cu,sCs,t = Cu,t and Cu,t = 1 if u ≥ t ,
2 for every u, the process (Cu,t )t∈R+

is F-predictable and
decreasing in t ,

3 for every t , the process (Cu,t )u∈R+
is a right-continuous

and increasing in u (not necessarily F-adapted).
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Multiplicative system associated with Y

Let Y = (Yt )t∈R+
be a positive (P,F)-submartingale.

In our case, we set Y = F .

Definition (Meyer (1979))

A multiplicative system (Cu,t )u,t∈R+
is said to be associated

with a (P,F)-submartingale Y if for all t ∈ R+

EP (Ct ,∞Y∞ | Ft ) = Yt

Note that Ct ,∞ is bounded and Y∞ is integrable (by definition).

Theorem (Meyer (1979))

Any positive submartingale Y = (Yt )t∈R+
admits an associated

multiplicative system.
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Existence of a multiplicative system

Proof.
Assume first that Y is bounded below by ε > 0. Then it
suffices to take

Cu,t = exp
(
−
∫

(u,t]

dBc
s

pYs

) ∏
u<s≤t

(
1− ∆Bs

pYs

)
where B is the increasing process which generates the
positive supermartingale Xt = Y∞ − Yt , that is,

Xt = EP (B∞ | Ft ) + Bt

and pY is the F-predictable projection of Y .
The general case is established by passing to the limit
as ε→ 0.
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Construction of an F-conditional distribution

Using Meyer’s theorem, we can establish the following result.

Lemma (L.-R. (2010))

Let (Ft )t∈R+
be a submartingale such that 0 ≤ F ≤ 1. We

define the random field (Fu,t )u,t∈R+
by setting

Fu,t =

{
EP (Fu | Ft ) , t ∈ [0,u),

Cu,tFt , t ∈ [u,∞],

where Cu,t is any multiplicative system associated with F .
Then Fu,t is an F-conditional distribution of a random time
and Ft ,t = Ft .
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Multiplicative construction of a random time

Theorem (L.-R. (2010))

Let G be a (P,F)-supermartingale such that 0 ≤ G ≤ 1.
1 The random field Fu,t = Cu,t (1−Gt ) is an F-conditional

distribution for all u ≤ t .
2 The extended canonical construction yields a random time
τ on the extended space (Ω̂, F̂ , F̂, P̂) such that for all u ≤ t

P̂ (τ > u | Ft ) = 1− Cu,t (1−Gt )

3 For all u ≤ t we have

P̂ (τ ≤ u | Ft ) = Cu,t P̂ (τ ≤ t | Ft )
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5. Uniqueness of a random time consistent with G
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Equivalence of admissible constructions

Definition
An admissible construction of a random time τ is a pair (τ,Q)
defined on any extension (Ω̃, G̃, F̃) of the filtered probability
space (Ω,G,F,P) such that:

Q (τ > t | Ft ) = Gt for all t ∈ R+,
the restriction of Q to F equals P.

Definition

Two construction (τ,Q) and (τ̂ , Q̂) are equivalent if the
F-conditional distributions of τ and τ̂ are indistinguishable.
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Uniqueness of Fu,t for t ≤ u

For any admissible construction (τ,Q), the F-conditional
distribution of Fu,t for u ≥ t is fixed since Q|Ft

= P|Ft
for

all t ≥ 0 and thus for all u ≥ t

Fu,t = Q (τ ≤ u | Ft ) = EP (Fu,u | Ft ) = 1− EP (Gu | Ft )

Hence in any construction one has essentially the freedom
to choose the conditional distribution Fu,t for t > u, as long
as Ft ,t = 1−Gt .
The canonical construction of τ yields for t ≥ u

Fu,t = Q (τ ≤ u | Ft ) = Q (τ ≤ u | Ft ) = Fu,u

but it can only be applied when G is decreasing.
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Hypotheses (H), (HP) and (DP)

Definition
A pair (τ,Q) is said to satisfy:

the hypothesis (H) if for all 0 ≤ u ≤ s ≤ t

Fu,s = Fu,t

the hypothesis (HP) (or the proportionality property) if for
all 0 ≤ u < s < t

Fu,sFs,t = Fs,sFu,t

the hypothesis (DP) (or the decreasing proportionality
property) if for all 0 ≤ u < s < t

Fu,sFt ,t ≥ Fs,sFu,t
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Uniqueness of Fu,t for t > u

Proposition (L.-R. (2010))
The following implications are valid:

(H) =⇒ (HP) =⇒ (DP)

The following result is used to establish the uniqueness of
F-conditional distribution.

Theorem (Meyer (1979))

If Cu,t and Cu,t are two multiplicative systems associated with
a given positive submartingale Y = (Yt )t∈R+

then the random
fields Cu,tYt and Cu,tYt are indistinguishable.
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Uniqueness of Fu,t for t > u

Proposition (L.-R. (2010))
Two admissible constructions with a given supermartingale G
are equivalent if:

the hypothesis (HP) holds for (Q, τ) and (Q̂, τ̂),
for any fixed u ≥ 0, the F-adapted processes

Cu,t =
Q (τ ≤ u | Ft )

Q (τ ≤ t | Ft )
Ĉu,t =

Q̂ ( τ̂ ≤ u | Ft )

Q̂ ( τ̂ ≤ t | Ft )

are F-predictable in t ∈ R+.
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Comments

Any random time τ constructed through the multiplicative
approach satisfies the hypothesis (HP).
Any honest time τ satisfies the hypothesis (HP). Honest
time are F∞-measurable so they are not obtained through
the multiplicative approach.
Given a supermartingale G, we can also produce a
random time τ consistent with G for which the hypothesis
(HP) fails to hold.
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Non-uniqueness of Fu,t for t > u

Example
Let M be a continuous, positive, square-integrable martingale.

Consider the F-conditional distribution

F̂u,t = 1− exp
(
−uMt −

1
2

u2〈M,M〉t
)

The extended canonical construction yields a random time τ̂
for which the hypothesis (HP) is not valid since for u < t

P ( τ̂ ≤ u | Ft ) = F̂u,t 6= Cu,t F̂t,t = Cu,t P ( τ̂ ≤ t | Ft )

The multiplicative approach gives Fu,t consistent with G = Ĝ
for which the hypothesis (HP) holds.

Hence the extended canonical construction yields two random
times with the same Azéma supermartingale, but with different
F-conditional distributions Fu,t and F̂u,t for t > u.
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6. Separability of a conditional distribution
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Separability of a conditional distribution

Definition
We say that an F-conditional distribution Fu,t is completely
separable if there exists a positive (P,F)-martingale X and a
positive, F-adapted, increasing process Y such that Fu,t = YuXt
for every u, t ∈ R+ such that u ≤ t .

Separability of Fu,t is a weaker form of complete separability.

Proposition (L.-R. (2010))
If the F-conditional distribution of τ is separable and F0 = 0
then the hypothesis (HP) holds.
If the F-conditional distribution Fu,t > 0 satisfies the
hypothesis (HP) then the random field Fu,t is separable.
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Multiplicative approach

Proposition (L.-R. (2010))
If Gt < 1 for t ≥ 0 then Fu,t obtained through the multiplicative
approach is completely separable: for all 0 ≤ u ≤ t

Fu,t =
Ft Et

(∫
(0,·](

pFs)−1 dAs

)
Eu

(∫
(0,·](

pFs)−1 dAs

) = YuXt

where the strictly positive, increasing process Y is given by

Yu =

[
Eu

(∫
(0,·]

(pFs)−1 dAs

)]−1

and the strictly positive (P,F)-martingale X equals

Xt = Ft Et

(∫
(0,·]

(pFs)−1 dAs

)
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7. Semimartingale decompositions:
new results
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Standing assumptions

In this part, we make the following standing assumptions:

1 We consider a random time τ on a filtered probability space
(Ω,G,F,P) such that G is the Azéma supermartingale of τ .

2 The Doob-Meyer decomposition of G is denoted as
G = M − A.

3 We denote by Fu,t the F-conditional distribution of τ under
P, that is, Fu,t = P(τ ≤ u | Ft ) for all u, t ≥ 0.

4 For simplicity, we assume that a (P,F)-martingale U is
continuous at τ .
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G-Semimartingale decomposition: general case

Recall that for every s ≥ 0 the process (Fs,u)u≥s is a bounded,
positive (P,F)-martingale.

Theorem (L.-R. (2010))

Assume that the hypothesis (HP) holds and the F-conditional
distribution satisfies 0 < Fu,t ≤ 1 for every 0 < u ≤ t . If U is a
(P,F)-local martingale then

Ut −
∫

(0,t∧τ ]
(Gu)−1 d [U,G]u −

∫
(t∧s,t]

(Fs,u)−1 d [U,Fs,·]u

∣∣∣
s=τ

is a (P,G)-local martingale.
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G-Semimartingale decomposition: separable case

Recall that the separability of Fu,t is (almost) equivalent to (HP).

Corollary (L.-R. (2010))
Assume that the F-conditional distribution of τ is completely
separable, that is, the F-conditional distribution of τ is given by
Fu,t = YuXt for every 0 ≤ u ≤ t . If U is a (P,F)-martingale then

Ut −
∫

(0,t∧τ ]
(Gu)−1 d [U,G]u −

∫
(t∧τ,t]

(Xu)−1 d [U,X ]u

is a (P,G)-local martingale.
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G-Semimartingale decomposition: multiplicative case

The next corollary is comparable to the case of an honest time.

Corollary (L.-R. (2010))
Assume that Gt < 1 and for every t > 0 and τ was constructed
using the multiplicative approach. If U is a (P,F)-martingale
then

Ut −
∫

(0,t∧τ ]
(Gu)−1 d [U,M]u +

∫
(t∧τ,t]

(Fu)−1 d [U,M]u

is a (P,G)-local martingale.

Remark
Similar decomposition (but with the predictable bracket) was
obtained by Jeanblanc and Song in [JS1] under continuity
assumptions.
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G-Semimartingale decomposition: density hypothesis

Definition
The field Fu,t satisfies the density hypothesis if there exists
an F-adapted, increasing process D and, for every s ≥ 0,
a (P,F)-martingale (ms,t )t≥s such that

Fu,t =

∫
[0,u]

ms,t dDs

Corollary (L.-R. (2010))

Under the density hypothesis, if U is a (P,F)-martingale then

Ut −
∫

(0,t∧τ ]
(Gu)−1 d [U,G]u −

∫
(t∧s,t]

(ms,u)−1 d [U,ms,· ]u

∣∣∣
s=τ

is a (P,G)-local martingale.
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8. Girsanov’s theorem
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Radon-Nikodym density

Lemma (L.-R. (2010))
Let the F-conditional distribution of τ under P be separable.
We define the process Z G by the formula

Z G
t = Z̃t1{τ>t} + Ẑτ,t1{τ≤t}

where Ẑu,t =
Fu,u
Fu,t

and

Z̃t = G−1
t

(
1−
∫

(0,t]
Ẑu,t dFu,t

)
= G−1

t

(
1−EP

(
Ẑτ,t1{τ≤t}

∣∣∣Ft

))
Then the process Z G is a (P,G)-local martingale.
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Application of Girsanov’s theorem

The hypothesis (HP) implies that the hypothesis (H) holds
under an equivalent probability measure.

Proposition (L.-R. (2010))
Assume that:

the conditional distribution of the random time τ under P
is separable so that the hypothesis (HP) is satisfied,
the process Z G is a positive (P,G)-martingale with the
property that EP(Z G

t | Ft ) = 1 for t ∈ R+.

Then there exists an equivalent probability measure P̂ such that
the hypothesis (H) holds under P̂.
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Concluding remarks

Remarks:
1 In the recent paper by Coculescu et al. [CJN], the

existence of an equivalent probability measure for which
the hypothesis (H) holds was shown to be a sufficient
condition for a model with enlarged filtration to be
arbitrage-free, provided that the corresponding model
based on the filtration F enjoys this property.

2 The last proposition shows that if the hypothesis (HP)
holds then, under mild technical assumptions, the result
from [CJN] can be applied to progressive enlargement.

3 Our results can also be used for modeling asymmetric
information (weak insider trading) in a progressive
enlargement setting.
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