
An Extension
of

CreditGrades
model

approach with
Lévy
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Introduction

It is important to consider the linkeage between credit and equity markets.

.

Significance of modelling for linkage between credit and equity

.

.

.

. ..

.

.

Relative value analysis between credit(CDS etc.) and equity(equity option
etc.) markets.

Covertible bond arbitrage

Capital structure arbitrage

The CreditGrades model presented by Finger et al[2002] is one of the most
approved approaches to link between credit and equity markets, however
there exist some drawbacks.

We proposes an extended CreditGrades model for pricing equity options and
CDSs simultaneously, in order to overcome these drawbacks.
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Basics of Credit Models

.

Two main types of Credit Models

.

.

.

. ..

.

.

Firm value model: Fundamental approach for valuing defaultable debt,
which based on modeling a stochastic process for the firm’s value.
”Fundamental” in the sense of linking debt pricing and equity pricing.

- Classic firm value model (Merton[1976]),
- CreditGrades model (Finger et al.[2002]),
- Extended CreditGrades model (Sepp[2006], Ozeki et al.[2010]), etc.

Intensity based model: The default process is usually defined as a one-jump
process which can jump from no-default to default, and the probability of a
jump in a given time interval is governed by the default intensity.

- Duffie and Singleton[1999], etc.
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Firm value model and B/S
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Figure: Relation between a firm value model and B/S
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Lévy

Processes

Introduction

Basics of
Credit Model

CreditGrades
Model

Extended
model

Numerical
Examples

Conclusion

Settings of standard model

(Ω,F , {Ft}0≤t≤T∗ , Q) be a filtered probability space, where T∗ is some time
horizon, and Q is a risk neutral probability measure.

V0 := S0 + B is the initial asset value, where S0 is the initial stock price,
and B is the firm’s debt. In this model, B is identified with the default
barrier for simplicity.

The firm’s asset value follows Vt = V0e
σWt− 1

2
σ2t , where Wt is a standard

Brownian motion, so Vt is a continuous process.

The time τ of the default on time interval (0, T ] is defined as

τ = inf{t ∈ (0, T ] : Vt ≤ B}, (1)

We define the dynamics of the equity price as

St =

(

(Vt − B)e
R t
0 (rs−ds )ds = (V0e

σWt− 1
2
σ2t − B)e

R t
0 (rs−ds )ds if t < τ,

0 otherwise,

(2)
where rt is a deterministic risk-free interest rate, and dt is a deterministic
dividend yield of the firm’s equity.
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Pricing equity option and CDS

The equity option price C with strike K and maturity T is given by

C = EQ
h

e−
R T
0 rtdt (ST − K)+ 1{τ>T}

i

= EQ
»

e−
R T
0 rtdt

“

V0e
XT − K

”+
1{τ>T}

–

, (3)

where Xt = σWt − 1
2
σ2t and the CDS per premium c is given by

c =(1 − R)

1 − e−
R T
0 rtdtQ(τ > T ) −

Z T

0
rte

−
R t
0 ruduQ(τ > t)dt

Z T

0
e−

R t
0 ruduQ (τ > t) dt

. (4)

Q (τ > t) is the survival probability until time t (under the risk neutral
measure Q).
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(Cont’d) Pricing equity option and CDS

In the standard CreditGrades model, the analytical formulae of equity
option prices and survival probabilities can be obtained.
(Finger et al. [2002], Sepp [2006])
The equity option prices are given by

Cσ =Cσ
BS (T , S0 + B, K + B, r̄ , d̄)

−
S0 + B

B
Cσ

BS (T ,
B2

S0 + B
, K + B, r̄ , d̄),

where r̄ =
1

T

Z T

0
rtdt, d̄ =

1

T

Z T

0
dtdt,

(5)

and Cσ
BS (T , S , K , r , d) is the Black-Scholes price of a call option.

The survival probability of the standard model with an asset volatility σ can
be calculated by the following formula:

Q(τ > T ; σ) =

N

0

@

log
“

S0+B
B

”

− 1
2
σ2T

σ
√

T

1

A−
S0 + B

B
N

0

@

log
“

B
S0+B

”

− 1
2
σ2T

σ
√

T

1

A ,
(6)

where N (·) is the cumulative distribution function of standard normal
distribution.
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Features and drawbacks

The equity volatility σS
t is given by the following local volatility function:

σS
t = σ

St + B

St
= σ

„

1 +
B

St

«

. (7)

Therefore, the standard model can describe the implied equity volatility
skew naturally. However, it is not able to reflect unpredictable credit events
into the implied volatility, since σS

t depends only on the leverage ratio of
the firm’s debt.

In this model, the default events are predictable, since the model assumes a
continuous dynamics. As a result, if the current value of the firm is remote
from the barrier, both the default probability and the credit spread in
short-term are close to zero.

Introducing a stochastic default barrier considered to be a solution to this
problem, however it is difficult to choose the appropriate distribution of the
stochastic behavior of the barrier, since it is usually unobservable.
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Features

.

Features of Extended Model

.

.

.

. ..

.

.

The firm’s asset value process include jumps, so is not predictable.

The model describes more realistic firm’s value dynamics.

The model can generates a realistic value for short term CDS spread.

The model can fits to a realistic implied volatility surface.

　

Examples: Modelling including jumps in the firm’s value model

Sepp [2006]: Extended CreditGrades model

Cariboni and Schoutens [2007]

Madan and Schoutens [2008], etc.
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Settings of extended model

(Ω,F , {Ft}0≤t≤T∗ , Q) be a filtered probability space, where T∗ is some time
horizon, and Q is a risk neutral probability measure.

Settings of Extended Model¶ ³
V0 := S0 + B is the initial asset value, where S0 is the initial stock
price, and B is the firm’s debt. In this model, B is identified with the
default barrier for simplicity.

The firm’s asset value follows Vt = V0eXt , where Xt is a Lévy process.

The time τ of the default on time interval (0, T ] is defined as

τ = inf{t ∈ (0, T ] : Vt ≤ B}, (8)

We define the dynamics of the equity price as

St =

(

(Vt − B)e
R t
0 (rs−ds )ds = (V0eXt − B)e

R t
0 (rs−ds )ds if t < τ,

0 otherwise,

(9)
where rt is a deterministic risk-free interest rate, and dt is a
deterministic dividend yield of the firm’s equity.µ ´
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Examples of Choosing Lévy process Xt

.

Examples

.

.

.

. ..

.

.

Xt =: µt + σWt + Z̄t ,

standard model: Z̄t = 0,

Exponential Jump (EJCG): Z̄t = −
PNt

j=1 Yj ,

where Nt , t ≥ 0 denote Poisson process with intensity λ, and
`

Yj

´

j∈N are

i.i.d. random variable according to exponential distribution with parameter
a.

Gamma Jump (GJCG): Z̄t = −Gt ,
where the Lévy density of Gt is given by the following gamma distribution:

ΠG (x) =
λe−ax

x
1x>0, (10)

Inverse Gaussian Jump (IGJCG): Z̄t = −It ,
where the Lévy density of It is given by the following inverse gaussian
distribution:

ΠI (x) =
λ exp

`

− 1
2
a2x
´

√
2πx3/2

1x>0, (11)
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(cont’d) Examples of Choosing Lévy process Xt

Characteristic Exponent ψX (θ)¶ ³
exp {−tψX (θ)} := E

ˆ

e iθXt
˜

,µ ´
Xt = µt + σWt + Z̄t =: µt + Zt , (12)

µ = ψZ (−i) , (Condition for Martingale property)

.

Characteristic exponent for each process

.

.

.

. ..

.

.

standard model: ψZ (θ) = 1
2
σ2θ2,

Exponential Jump (EJCG): ψZ (θ) = 1
2
σ2θ2 + λ

“

1 − a
a+iθ

”

,

Gamma Jump (GJCG): ψZ (θ) = 1
2
σ2θ2 + λ log

“

1 + iθ
a

”

,

Inverse Gaussian Jump (IGJCG): ψZ (θ) = 1
2
σ2θ2 + λ

“√
a2 + 2iθ − a

”

,
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Pricing equity option and CDS

The equity option price C with strike K and maturity T is given by

C = EQ
h

e−
R T
0 rtdt (ST − K)+ 1{τ>T}

i

= EQ
»

e−
R T
0 rtdt

“

V0e
XT − K

”+
1{τ>T}

–

, (13)

and the CDS per premium c is given by

c =(1 − R)

1 − e−
R T
0 rtdtQ(τ > T ) −

Z T

0
rte

−
R t
0 ruduQ(τ > t)dt

Z T

0
e−

R t
0 ruduQ (τ > t) dt

. (14)

Note that

{τ > T} =



min
0≤s≤T

Vs > B

ff

=



min
0≤s≤T

Xs > log

„

S0

S0 + B

«ff

.

If the joint distribution of (XT , NT ) :=
`

XT , min0≤s≤T Xs
´

are known, this
expectations can be calculated.
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Wiener-Hopf Factorization

.

Wiener-Hopf Factorization (Sato, 1999)

.

.

.

. ..

.

.

Factorization identities of the Laplace fransform (in t) of the distribution Xt of a
Lévy process by using the Laplace transforms (in t) of the distributions of the
supremum process, infimum process, etc.

Wiener-Hopf Factorization for a Minumum Process¶ ³
The Laplace transform in t of the joint characteristic function of (Nt , Xt−Nt)
is given by

q

Z +∞

0
e−qtE

h

e ixNt+iy(Xt−Nt )
i

dt = Φ+
q,X (y)Φ−

q,X (x),

for any q > 0 and x , y ∈ R, where Nt = min0≤s≤t Xs , and

Φ+
q,X (θ) = exp



Z +∞

0
t−1e−qtdt

Z +∞

0

“

e iθx − 1
”

dFXt (x)

ff

,

Φ−
q,X (θ) = exp



Z +∞

0
t−1e−qtdt

Z 0

−∞

“

e iθx − 1
”

dFXt (x)

ff

.µ ´
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(Cont’d) Wiener-Hopf Factorization

We cannot get the closed form of distribution function FX in general.

.

Spectrally Negative Lévy Processes

.

.

.

. ..

.

.

The Lévy Processes that have only negative jumps.

Suitable for modelling of credit events.

Wiener-Hopf factors Φ+
q,X , Φ−

q,X are given by simple forms.

Wiener-Hopf Factor of Spectrally Negative Lévy Processes¶ ³
Φ+

q,X (θ) =
ηq

ηq − iθ
,

Φ−
q,X (θ) =

q (ηq − iθ)

ηq (q + ψX (θ))
,

(15)

where ηq is the unique positive real root of q + ψX (−iηq) = 0.µ ´
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Wiener-Hopf Factorization: standard model and EJCG

In case of the Standard model, the equation q + ψX (−iηq) = 0 can be
rewritten as the following two degree polynomial equation:

σ2η2
q − σ2ηq − 2q = 0. (16)

Then ηq can be obtained analytically by solving the above equation, that is,

ηq =
1

2
+

1

σ

s

σ2

4
+ 2q. (17)

In case of the Exponential Jump Model (EJCG), the equation
q + ψX (−iηq) = 0 can be rewritten as the following third degree
polynomial equation:

σ2η3
q + (aσ2 + 2µ)η2

q + 2(aµ − λ − q)ηq − 2aq = 0. (18)

Then ηq can be obtained analytically by the Cardano formula.

In other cases (GJCG,IGJCG), numerical computation such as the Newton
method is needed in order to obtain the value of ηq .
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Pricing formula for equity option

The equity option price C with strike K and maturity T is given by the following
representation:

C = EQ
h

e−
R T
0 rtdt (ST − K)+ 1{τ>T}

i

= e−
R T
0 dtdt(S0 + B)f (T , k, b) + Cσ,

(19)
where

f (T , k, b) :=
1

2πi

Z ς+i∞

ς−i∞
eqT 1

(2π)2

ZZ

R2
e−(iu+α)k−(iv+β)bκ(q, u, v)dudvdq

κ(q, u, v) :=
Φ+

q,X (u − i [α + 1])Φ−
q,X (u + v − i [α + β + 1])

q(iu + α)(iv + β)(iu + α + 1)

−
Φ+

q,Y (u − i [α + 1])Φ−
q,Y (u + v − i [α + β + 1])

q(iu + α)(iv + β)(iu + α + 1)
,

k := log

 

Be
R T
0 (rt−dt )dt + K

(S0 + B)e
R T
0 (rt−dt )dt

!

, b := log

„

B

S0 + B

«

.

Φ±
q,X (·) and Φ±

q,Y (·) denote the Wiener-Hopf factors of the Lévy process Xt and a

Gaussian process Yt := σWt − 1
2
σ2t respectively.
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Pricing formula for CDS

The survival probability Q(τ > t) is given by the following representation:

Q(τ > t) = g(t, b) + Q(τ > t; σ), (20)

where

g(t, b) :=
1

2πi

Z ς+i∞

ς−i∞
eqt 1

2π

Z

R
e−(iu+α)bξ(q, u)dudq,

ξ(q, u) :=
Φ−

q,X (u − iα) − Φ−
q,Y (u − iα)

q(iu + α)
,

b := log

„

B

S0 + B

«

.

(21)

The CDS per premium c can be calculated by

c =(1 − R)

1 − e−
R T
0 rtdtQ(τ > T ) −

Z T

0
rte

−
R t
0 ruduQ(τ > t)dt

Z T

0
e−

R t
0 ruduQ (τ > t) dt

. (22)
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Derivation of pricing formula for equity option

The equity call option price C can be expressed as follows:

C = E
h

e−
R T
0 rtdt (ST − K)+ 1{τ>T}

i

= E
»

e−
R T
0 rtdt

“

Ṽ0e
XT − K̃

”+
1{min0≤s≤T Xs > b}

–

= e−
R T
0 rtdt Ṽ0 E

»

“

eXT − ek
”+

1{NX
T

> b}

–

,

(23)

where k := log(K̃/Ṽ0) and NX
T := min0≤s≤T Xs .

Similarly, the call price Cσ of the standard CreditGrades model with a
Gaussian process Yt := σWt − 1

2
σ2t is given by

Cσ = e−
R T
0 rtdt Ṽ0 E

»

“

eYT − ek
”+

1{NY
T

> b}

–

, (24)

where NY
T := min0≤s≤T Ys .
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(Cont’d) Derivation of pricing formula for equity option

We calculate the difference between the call price of the Extended model
and that of the standard model.

f (T , k, b) :=
C − Cσ

e−
R T
0 rtdt Ṽ0

= E
»

“

eXT − ek
”+

1{NX
T

> b}

–

− E
»

“

eYT − ek
”+

1{NY
T

> b}

–

=
“

ex − ek
”+

1{y > b}

n

ρXT ,NX
T

(x , y) − ρYT ,NY
T

(x , y)
o

,

(25)

where ρX ,Z (·, ·) denote the joint density function of (X , Z).

Consider the Fourier transform of the function (k, b) 7→ eαk+βbf (T , k, b):

F (T , u, v) :=

ZZ

R2
e iuk+ivbeαk+βbf (T , k, b)dkdb

=
ΨXT ,NX

T
(u − iα − i , v − iβ) − ΨYT ,NY

T
(u − iα − i , v − iβ)

(iu + α)(iv + β)(iu + α + 1)
,

(26)

where ΨX ,Z (·, ·) denote the joint characteristic function of (X , Z).
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(Cont’d) Derivation of pricing formula for equity option

α, β > 0 is used in order to avoid the singularity at u = 0 and v = 0 on the
integrands in the Fourier inversion.(Carr and Madan[1999])

Next, consider the Laplace transform of the function F (T , u, v)

κ(q, u, v) :=

Z +∞

0
e−qT F (T , u, v) dT

=
1

q(iu + α)(iv + β)(iu + α + 1)

×
n

Φ+
q,X (u − i [α + 1])Φ−

q,X (u + v − i [α + β + 1])

− Φ+
q,Y (u − i [α + 1])Φ−

q,Y (u + v − i [α + β + 1])
o

,

(27)

Then, the difference between the call price of the Extended model and that
of the standard model is obtained by the inverse Laplace transform and the
inverse Fourier transform numerically.

Since the call price of the standard model can be analytically calculated,we
can get that of Extended model.
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Derivation of pricing formula for CDS

The procedure is similar to that of calculating the call option price.

Consider the the difference between the survival probability of the Extended
model and that of the standard model:

g(b, t) := Q(τ > t) − Q(τ > t; σ) = E
h

1{NX
t >b} − 1{NY

t >b}

i

,

=

Z

R

“

1{y>b}ρNX
t

(y) − 1{y>b}ρNY
t

(y)
”

dy ,
(28)

and the Fourier transform of function b 7→ eαbg(b, t):

G (u, t) =

Z

R
e iubeαbg(b, t)db

=
ΨNX

t
(u − iα) − ΨNY

t
(u − iα)

iu + α
.

(29)
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(Cont’d) Derivation of pricing formula for CDS

Next, consider the Laplace transform of the function t 7→ G(u, t):

ξ(q, u) =

Z +∞

0
e−qtG(u, t)dt.

=
1

q(iu + α)

n

Φ−
q,X (u − iα) − Φ−

q,Y (u − iα)
o

.

(30)

Then, the difference between the call price of the survival probability and
that of the standard model is obtained by the inverse Laplace transform
and the inverse Fourier transform numerically.

Since the survival probability of the standard model can be analytically
calculated, we can get that of Extended model.
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Gaver-Stehfest algorithm

For function f̃ (·) of certain class defined on [0,∞), the inverse Laplace transform
f of f̃ is given by

f (t) := lim
n→∞

fn(t), (31)

where

fn(t) =
ln 2

t

(2n)!

n!(n − 1)!

n
X

k=0

(−1)k
n!

k!(n − k)!
f̃

„

(n + k)
ln 2

t

«

,

f̃ (t) =

Z ∞

0
e−ts f (s)ds. (32)

Using an n-point Richardson extrapolation, f (t) is approximated by f ∗n (t) for
sufficiently large n, where

f ∗n (t) =
n
X

k=1

(−1)n−k kn

k!(n − k)!
fk (t). (33)
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Numerical Examples
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(Reappeared) settings of extended model

(Ω,F , {Ft}0≤t≤T∗ , Q) be a filtered probability space, where T∗ is some time
horizon, and Q is a risk neutral probability measure.

Settings of Extended Model¶ ³
V0 := S0 + B is the initial asset value, where S0 is the initial stock
price, and B is the firm’s debt. In this model, B is identified with the
default barrier for simplicity.

The firm’s asset value follows Vt = V0eXt , where Xt is a Lévy process.

The time τ of the default on time interval (0, T ] is defined as

τ = inf{t ∈ (0, T ] : Vt ≤ B}, (34)

We define the dynamics of the equity price as

St =

(

(Vt − B)e
R t
0 (rs−ds )ds = (V0eXt − B)e

R t
0 (rs−ds )ds if t < τ,

0 otherwise,

(35)
where rt is a deterministic risk-free interest rate, and dt is a
deterministic dividend yield of the firm’s equity.µ ´
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(Reappeared) settings of extended model

(Ω,F , {Ft}0≤t≤T∗ , Q) be a filtered probability space, where T∗ is some time
horizon, and Q is a risk neutral probability measure.

Settings of Extended Model¶ ³
V0 := S0 + B is the initial asset value, where S0 is the initial stock
price, and B is the firm’s debt. In this model, B is identified with the
default barrier for simplicity.

The firm’s asset value follows Vt = V0eXt , where Xt is a Lévy process.

The time τ of the default on time interval (0, T ] is defined as

τ = inf{t ∈ (0, T ] : Vt ≤ B}, (34)

We define the dynamics of the equity price as

St =

(

(Vt − B)e
R t
0 (rs−ds )ds = (V0eXt − B)e

R t
0 (rs−ds )ds if t < τ,

0 otherwise,

(35)
where rt is a deterministic risk-free interest rate, and dt is a
deterministic dividend yield of the firm’s equity.µ ´
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Models for numerical examples

.

Models

.

.

.

. ..

.

.

Exponential Jump (EJCG): ψZ (θ) = 1
2
σ2θ2 + λ

“

1 − a
a+iθ

”

,

Gamma Jump (GJCG): ψZ (θ) = 1
2
σ2θ2 + λ log

“

1 + iθ
a

”

,

Inverse Gaussian Jump (IGJCG): ψZ (θ) = 1
2
σ2θ2 + λ

“√
a2 + 2iθ − a

”

,

Xt = µt + σWt + Z̄t =: µt + Zt ,

µ = ψZ (−i) , (Condition for Martingale property)

　

In the case where λ = 0, these models is identical to standard CreditGrades
model, i.e. Z̄t = 0.
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Parameters

.

Parameters

.

.

.

. ..

.

.

Using parameters are as follows:

σ = 0.2, λ = 0.00, 0.25, 0.50, 1.00,

a = 10(EJCG), 8(GJCG), 4(IGJCG),

S0 = 100, B = 100, rt = dt = 0, for all t ≥ 0.

　

The greater λ is, the more jump occurs.

The leverage ratio in each model equals to B/S0 = 1.0.
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Numerical Examples of option implied volatility by EJCG

Figure: Implied Volatilities on the 3-Month Options by EJCG
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Figure: Implied Volatilities on the 6-Month Options by EJCG
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Numerical Examples of option implied volatility by GJCG

Figure: Implied Volatilities on the 3-Month Options by GJCG
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Figure: Implied Volatilities on the 6-Month Options by GJCG
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Numerical Examples of option implied volatility by IGJCG

Figure: Implied Volatilities on the 3-Month Options by IGJCG
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Figure: Implied Volatilities on the 6-Month Options by IGJCG
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Lévy

Processes

Introduction

Basics of
Credit Model

CreditGrades
Model

Extended
model

Numerical
Examples

Conclusion

Interpretation for numerical result: option implied volatility

(Remind) The standard model can describe the implied equity volatility
skew naturally. However, it is not able to reflect unpredictable credit events
into the implied volatility, since the local volatility function σS

t depends only
on the leverage ratio of the firm’s debt.

Different volatility skew curves of the firms can be obtained using different
types of our extended models with suitable parameters, even if the leverage
ratios are the same values.
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Numerical Examples: CDS Premium

Table: CDS per Premiums (bp)

Model λ 1-Year 2-Year 3-Year 4-Year 5-Year

Standard 0.00 6 59 126 185 209

0.25 24 95 169 221 252
EJCG 0.50 45 136 210 261 293

1.00 96 212 289 331 347

0.25 25 92 153 190 209
GJCG 0.50 42 119 181 217 234

1.00 79 175 236 268 278

0.25 22 91 152 191 210
IGJCG 0.50 37 118 182 219 236

1.00 71 172 239 273 283
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Interpretation for numerical result: CDS premium

(Remind) In the Standard model, the default events are predictable, since
the model assumes a continuous dynamics. As a result, if the current value
of the firm is remote from the barrier, both the default probability and the
credit spread in short-term are close to zero.

Our Extended models are able to generate higher short-term spreads
without a stochastic default barrier.
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Conclusion

Reviewing the basics.

Reviewing the CreditGrades model: features and drawbacks.

Introducing Extended model.

Confirming the features of Extended Model by Numerical Examples.

Future interest: calibrating real market data and doing empirical analysis.
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Thank you for your kind
attention!!
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