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2 GKS, Fast Simulation of Multifactor Portfolio Credit Risk, Operations Research September, 2008.
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Rare Events and Large Deviations

Katrina, Tsunami, Sichuan, Black Monday, LTCM, 9/11, . . .

Very low chance of occurrences.

Probability measured by the order of magnitude: Large deviations

analysis.

Crude Monte Carlo is impractical.
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Crude Monte Carlo

Crude Monte Carlo simulation of E[h(L)].

Sample h(L) independently and use the CLT.

I Generate L(1), . . . , L(n);

I Infer based on
∑n

i=1 h(L(i))
n .

In general, Monte Carlo is SIMPLE but SLOW!
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Rare Event Simulation

Estimation of q = P(A) = E[1A] by Qn = 1
n

∑n
i=1 Xi

I Var(Qn) = q−q2

n ≈ q
n if q ≈ 0.

Half Width of CI

HW = C ×
√

Var(Qn) = C ×
√

q
n

Relative Error

RE = HW
q = C√

qn →∞ as q → 0 for fixed n.
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Variance Reduction via Importance Sampling

Assume the existence of a density f (·) of a stochastic loss L.

Speed-up the Monte Carlo simulation of

Ef [h(L)] =

∫
h(x)f (x)dx

Ef [h(L)] = Eg

[
h(L)f (L)
g(L)

]
Importance Sampling (IS):

1 Choose well a new density g(·) which approximates the

importance function h(·)× f (·);

2 Generate iid L(i)’s from g(·);

3 Infer from 1
n

∑n
i=1 h(L(i))f (L(i))/g(L(i)).
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Variance Reduction via Importance Sampling

Assume the existence of a density f (·) of a stochastic loss L.

Ef [h(L)] = Eg

[
h(L)f (L)
g(L)

]
Second moment of IS estimator

Ef [h(L)2] vs. Ef

[
h(L)2f (L)

g(L)

]
Importance function: If g(·) ∼ h(·)× f (·), then the variance is 0.

How to choose a GOOD g(·)?
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Large Deviations and Optimal Importance Sampling

For a rare event sequence {An},

lim
n→∞

1

n
logP(An) = −α or P(An) = e−αn+o(n).

For another probability measure Q and its Radon-Nikodym

derivative Z = dP
dQ ,

I New unbiased estimator via change of measures

P(An) = EP[1An ] = EQ [Z1An ]

I Second moment of new estimator

EQ
[
Z 21An

]
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Large Deviations and Optimal Importance Sampling

For a rare event sequence {An}, limn→∞
1
n logP(An) = −α.

Assume that we find a sequence {Qn} and {Zn = dP
dQn
} such that

lim sup
n→∞

1

n
logEQn

[
Z 2
n1An

]
≤ −2α.

Since lim inf
n→∞

1

n
logEQn

[
(1AnZn)2

]
≥ lim inf

n→∞

1

n
log
((

EQn [1AnZn]
)2
)

= 2 lim inf
n→∞

1

n
logEP[1An ]

= −2α,

limn→∞
1
n logEQn

[
(1AnZn)2

]
= −2α

implies the optimality of {Qn}.

Wanmo Kang Simulation of Portfolio Credit Risk



Large Deviations and Optimal Importance Sampling

For a rare event sequence {An}, limn→∞
1
n logP(An) = −α.

Assume that we find a sequence {Qn} and {Zn = dP
dQn
} such that

lim sup
n→∞

1

n
logEQn

[
Z 2
n1An

]
≤ −2α.

Since lim inf
n→∞

1

n
logEQn

[
(1AnZn)2

]
≥ lim inf

n→∞

1

n
log
((

EQn [1AnZn]
)2
)

= 2 lim inf
n→∞

1

n
logEP[1An ]

= −2α,

limn→∞
1
n logEQn

[
(1AnZn)2

]
= −2α

implies the optimality of {Qn}.

Wanmo Kang Simulation of Portfolio Credit Risk



Large Deviations and Optimal Importance Sampling

For a rare event sequence {An}, limn→∞
1
n logP(An) = −α.

Assume that we find a sequence {Qn} and {Zn = dP
dQn
} such that

lim sup
n→∞

1

n
logEQn

[
Z 2
n1An

]
≤ −2α.

Since lim inf
n→∞

1

n
logEQn

[
(1AnZn)2

]
≥ lim inf

n→∞

1

n
log
((

EQn [1AnZn]
)2
)

= 2 lim inf
n→∞

1

n
logEP[1An ]

= −2α,

limn→∞
1
n logEQn

[
(1AnZn)2

]
= −2α

implies the optimality of {Qn}.

Wanmo Kang Simulation of Portfolio Credit Risk



Large Deviations and Optimal Importance Sampling

For a rare event sequence {An}, limn→∞
1
n logP(An) = −α.

Assume that we find a sequence {Qn} and {Zn = dP
dQn
} such that

lim sup
n→∞

1

n
logEQn

[
Z 2
n1An

]
≤ −2α.

Since lim inf
n→∞

1

n
logEQn

[
(1AnZn)2

]
≥ lim inf

n→∞

1

n
log
((

EQn [1AnZn]
)2
)

= 2 lim inf
n→∞

1

n
logEP[1An ]

= −2α,

limn→∞
1
n logEQn

[
(1AnZn)2

]
= −2α

implies the optimality of {Qn}.

Wanmo Kang Simulation of Portfolio Credit Risk



An IS Estimator for Rare Event Simulation

Consider P(Sn > n(µ+ ε)) where Sn = X1 + . . .+ Xn and Xi IID with

mean µ.

Restrict g(·) (here Pθ) among an exponential family:

dPθ
dP

= eθ·Sn−n·ψ(θ)

where ψ(θ) = logE[eθX1 ].

How to choose θ?

θ : ψ′(θ) = µ+ ε

where ψ′(θ) = E[X1e
θX1 ]

E[eθX1 ]
= Eθ[X1].

It can be shown that Pθ is logarithmically optimal.

Heavy tailed cases: Asmussen, Binswanger, & Hojgaard (2000),

Juneja & Shahabuddin (2002)
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Importance Sampling: Call Option

Table: Variances of Monte Carlo estimators for the original BM and the

drifted BM using Girsanov Theorem. S0 = 100, r = 0.05, σ = 0.3.

Strike Price K 80 100 120 140 160 180 200
Option Value 26.6 14.3 7.0 3.2 1.4 0.6 0.2

STD for Crude MC 27.8 22.6 16.6 9.3 7.5 4.9 3.1
STD for MC with IS 97.4 27.8 10.0 2.6 1.7 0.7 0.3
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Credit Risk Models

Single name vs. Portfolio

Static vs. Dynamic

Pricing vs. Risk Management

Structural vs. Reduced-form

Light-tailed vs. Heavy-tailed

(Bassamboo, Juneja, Zeevi (2008), Chan, Kroese (2010))

Bottom-up vs. Top-down

(Longstaff, Rajan (2008), Errais, Giesecke, Goldberg (2009))
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Modelling of Portfolio Credit Risk

Structural Model Reduced-form Model

Dependence Asset Values Intensities

Copula function couples the uniform marginal distributions

Copula function separates the dependence structure from the

marginals
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Copula Function

Copula function, C (·), couples the uniform marginal distributions.

C (u1, . . . , un) = P(U1 ≤ u1, . . . ,Un ≤ un).

I C : [0, 1]n → [0, 1] and Uk ’s are uniform r.v.’s on [0, 1].

I Desire to find appropriate CF (·) such that

F (x1, . . . , xn) = CF (F1(x1), . . . ,Fn(xn))

since Fk(Xk) is a standard uniform if Xk ∼ Fk(·).

For any F (·),

F (x1, . . . , xn) = F (F−1
1 (F1(x1)), . . . ,F−1

n (Fn(xn))). So

CF (u1, . . . , un) = F (F−1
1 (u1), . . . ,F−1

n (un)).
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Gaussian Copula Function

Gaussian Copula

CGauss(u1, . . . , un) = ΦΣ(Φ−1
1 (u1), . . . ,Φ−1

n (un))

where ΦΣ stands for a multivariate normal CDF with zero mean

and Σ correlation.

Gaussian Copula as the Dependece Structure of Default Times, Tk

with Gaussian marginals i.e. Fi (Ti ) = Φi (Xi ) where (X1, . . . ,Xn) is

multivariate normal.

I F (t1, . . . , tn) = CGauss(F1(t1), . . . ,Fn(tn)) = ΦΣ(x1, . . . , xn)
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Single-Period Portfolio Credit Loss Model

Lm = `1Y1 + · · ·+ `mYm : Total loss from defaults

I `k : Loss resulting from default of k-th obligor

I Yk : Default indicator (= 0 or 1) for k-th obligor

I pk : Marginal probability that k-th obligor defaults

I m : The number of obligors

For some l , what is P(Lm > l) ?

For the portfolio credit risk, characterization of dependence

structure among defaults is very important.
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Modeling via Asset Values

Recall Lm = `1Y1 + · · ·+ `mYm : total loss from defaults

Let (X1, . . . ,Xm) be N(0, 1) variables (called latent variables

representing relative asset values) such that for some xk ,

Yk = 1{Xk > xk} =

{
1 if Xk > xk

0 otherwise.

Select xk such that

P(Yk = 1) = P(Xk > xk) = pk or xk = Φ−1(1− pk) .
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Dependence Structure: Gaussian Copula Model

Xk = a>k Z + bkεk , k = 1, . . . ,m.

I Z ∼ N(0, Id) : Systematic risk factors,

e.g. Macro economic indices, Country factors, Industrial

Sectors.

I εk ∼ N(0, 1), independent of Z and other εk ′ , k ′ 6= k :

Idiosyncratic risks.

Note that Xk ’s are independent given Z: Conditional Independence.

Industry standard for portfolio credit risk.

Neither analytical nor numerical results exist for P(Lm > l).

Large deviations and rare event simulation are viable alternatives.
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Effects of Dependence
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L = 1{X1 > x}+ . . .+ 1{X1000 > x}, Xk = ρN +
√

1− ρ2Nk , pk = 0.1
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Glasserman and Li (2005)

Large deviations results for homogeneous single factor model

(pk ≡ p, ck ≡ c , aj ≡ ρ ∈ R) i.e. Xk = ρZ +
√

1− ρ2εk

Provably efficient importance sampling algorithm for homogeneous

single factor model.

Importance sampling procedure for heterogeneous multifactor cases.

ψ(θ, z) = E[eθL|Z = z]

θx(z) : ∂ψ(θ,z)
∂θ = x

P(L > x |Z) = E[1{L>x}|Z] ≤ E[eθx (Z)(L−x)|Z] = eψ(θx (Z),Z)−xθx (Z)

P(L > x) = E[P(L > x |Z)] ≤ E[eψ(θx (Z),Z)−xθx (Z)]

µ = argmaxz eψ(θx (z),z)−xθx (z)− 1
2 z

>z
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GKS 2007, 2008

For heterogeneous multifactor Gaussian copula model,

I Large deviations results;

I Provably efficient importance sampling procedure.

For the t-Copula model,

I Heuristic importance sampling procedure.
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Finite Types Assumption

Recall the dependence structure,

Xk = a>k Z + bkεk .

We partition the m obligors into t types, t: fixed.

I {1, . . . ,m} =
⋃t

j=1 I
(m)
j (I(m)

j : disjoint )

I Obligors belonging to the same type have the same ak and bk .

I rj = limm→∞

∣∣∣I(m)
j

∣∣∣
m and Cj = limm→∞

1
m

∑
k∈I(m)

j

E[`k ]
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Two Rare Event Regimes

P(Lm > l) = P
(∑m

k=1 ckYk > l
)

= P
(∑m

k=1 ck1{Xk>xk} > l
)

(Recall xk = Φ−1(1− pk))

Large Loss Threshold (LLT) : e.g. 70% loss in one year. l is large.

Small Default Probability (SDP) : e.g. 5% loss in one week. xk is

large, i.e. pk is small.
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Two Rare Event Regimes

P(Lm > l) = P
(∑m

k=1 ckYk > l
)

= P
(∑m

k=1 ck1{Xk>xk} > l
)

(Recall xk = Φ−1(1− pk))

Make l or pk depend on m, i.e. p
(m)
k and lm. Then increase m to ∞.

Large Loss Threshold (LLT): Large lm and moderate pk . We use

lm = Φ(s
√

log m)
∑m

k=1 E[`k ] where 0 < s < 1 and pk independent

of m.

Small Default Probability (SDP): Small p
(m)
k and moderate lm.

`k = ck . We use p
(m)
k = Φ(−sj

√
m) where sj > 0, lm = q

∑m
k=1 ck

where 0 < q < 1.
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√

logm)
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I Small Default Probability (SDP)

e.g. 5% loss in one week. xk is large, i.e. pk is small.

Small p
(m)
k and moderate lm: `k = ck , p

(m)
k = Φ(−sj

√
m)

where sj > 0, lm = q
∑m

k=1 ck where 0 < q < 1.
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Large Deviations Analysis

in the Gaussian Copula Model
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Large Deviations Results for SDP

Theorem (GKS 2007)

Under finite types assumption, 0 < `k = ck ≤ c <∞, p
(m)
k = Φ(−sj

√
m)

where sj > 0 and lm = q
∑m

k=1 ck with 0 < q < 1,

lim
m→∞

1

m
logP(Lm > lm) = −1

2
‖γ∗‖2

where
Mq =

{
J ∈ {1, . . . , t} : max

J ′$J

∑
j∈J ′

Cj < qC <
∑
j∈J

Cj

}
,

GJ = {z : a>j z ≥ sj , j ∈ J } for J ∈Mq,

γJ =

{
argmin {‖z‖ : z ∈ GJ } if GJ 6= ∅
(∞, . . . ,∞)> if GJ = ∅,

‖γ∗‖ = min
J∈Mq

‖γJ ‖.
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Example: Two Risk Factors, 4 Obligor Types

C1 = 2, C2 = 2, C3 = 3, C4 = 3 : Maximum average loss for each type.

C = 10 : Maximum loss of portfolio.

q = 0.45 : 45% loss qC = 4.5 : Threshold

Mq =
{
J : max
J ′$J

∑
j∈J ′

Cj < qC <
∑
j∈J

Cj

}
= {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.
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Example: Two Risk Factors, 4 Obligor Types

a 1

a 2

a 3 a 4

(0,0)

C1 = 2, C2 = 2, C3 = 3, C4 = 3.

C = 10.

q = 0.45, qC = 4.5.

Mq = {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

GJ = {z : a>j z ≥ sj , j ∈ J }.
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Example: Two Risk Factors, 4 Obligor Types

a 1

a 2

a 3 a 4

G{2,4}
G{1,3}

(0,0)

C1 = 2, C2 = 2, C3 = 3, C4 = 3.

C = 10.

q = 0.45, qC = 4.5.

Mq = {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

G{1,3} = ///, G{2,3} ⊂ G{1,3}, G{2,4} = �,

G{1,4} ⊂ G{2,4}, G{3,4} = ∅

γJ =

{
argmin {‖z‖ : z ∈ GJ } if GJ 6= ∅
(∞, . . . ,∞)> if GJ = ∅,
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Example: Two Risk Factors, 4 Obligor Types

a 1

a 2

a 3 a 4

G{2,4}
G{1,3}

(0,0)

C1 = 2, C2 = 2, C3 = 3, C4 = 3.

C = 10.

q = 0.45, qC = 4.5.

Mq = {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

G{1,3} = ///, G{2,3} ⊂ G{1,3}, G{2,4} = �,

G{1,4} ⊂ G{2,4}, G{3,4} = ∅

γ{1,3} = •, γ{1,4} = •, γ{2,3} = •,
γ{2,4} = •, γ{3,4} = (∞,∞).

γ∗ = •.
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Fast Simulation in the Monte Carlo Simulation

of the Gaussian Copula Model
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Importance Sampling for Gaussian Copula

Given Z, Yk ’s are independent binary random variables.

There exist standard importance sampling(IS) procedures, involving

exponential twisting, to estimate the probability of the sum of

independent random variables exceeding a given threshold, i.e.∑m
k=1 ckYk > l .

Hence one procedure is: Generate Z and use conditional (on Z) IS.

However we also need to change the measure of Z, so that there is

greater chance of
∑m

k=1 ckYk > l (given Z).

This is accomplished by shifting the mean of Z.

We derive an appropriate shift and prove that it is asymptotically

optimal.

Wanmo Kang Simulation of Portfolio Credit Risk



Conditional IS on Defaults

CGF of LGD: Λk(θ) = logE
[
eθ`k

]
.

Exponential twisting: pk,θ(Z) = pk (Z)eΛk (θ)

1+pk (Z)(eΛk (θ)−1)
.

Likelihood ratio:

m∏
k=1

(
pk(Z)

pk,θ(Z)

)Yk
(

1− pk(Z)

1− pk,θ(Z)

)1−Yk

= e−
∑m

k=1 YkΛk (θ)+mψm(θ,Z)

Conditional CGF of Portfolio Loss:

ψm(θ, z) =
1

m
logE

[
eθLm

∣∣Z = z
]

=
1

m

m∑
k=1

log
(

1 + pk(z)
(

eΛk (θ) − 1
))

.
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Conditional IS on Loss Given Default

Exponential twisting: f`k ,θ(`) = f`k (`)eθYk`−Λk (θYk ).

Likelihood ratio:

m∏
k=1

f`k (`k)

f`k ,θ(`k)
=

m∏
k=1

e−θYk`k+Λk (Ykθ) = e−θ
∑m

k=1 Yk`k+
∑m

k=1 Λk (Ykθ).

Combined likelihood ratio:

e−θLm+mψm(θ,Z).
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Conditional Importance Function

E[`k ] ≡ 1, pk ≡ 0.01, a>1 = (0.85, 0), a>2 = (0, 0.25), a>3 = (0, 0.85), a>4 = (0, 0.25).
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Mean Shifting of Common Factors

G
(m)
j ,

{
z ∈ Rd : a>j z ≥ α

(m)
1 Φ−1(1− pj) + α

(m)
2 bjΦ

−1(q)
}

.

G
(m)
J ,

⋂
j∈J G

(m)
j for J ∈Mq

G (m) ,
⋃
J∈Mq

G
(m)
J .

Sufficient subfamily, Sq:

I Feasibility: For each J ∈ Sq, G
(m)
J 6= ∅ for all m;

I Covering property:
⋃
J∈Sq G

(m)
J = G (m) for all m.

µ
(m)
J , argmin

{
‖z‖ : z ∈ G

(m)
J

}
.

Sample Z from a mixture of N(µ
(m)
J , I).
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Example: Two Risk Factors, 4 Obligor Types

(0,0)

a 1

a 2

a 3 a 4

G{2,4}

G{1,3}
(m)

(m)

C1 = 2, C2 = 2, C3 = 3, C4 = 3.

C = 10.

q = 0.45, qC = 4.5.

Mq = {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

G
(m)
{1,3} = ///, G

(m)
{2,3} ⊂ G

(m)
{1,3}, G

(m)
{2,4} = �,

G
(m)
{1,4} ⊂ G

(m)
{2,4}, G

(m)
{3,4} = ∅
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Example: Two Risk Factors, 4 Obligor Types

(0,0)

a 1

a 2

a 3 a 4

G{2,4}

G{1,3}
(m)

(m)

Mq = {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

Reduction of Mq as Sq = {{1, 3}, {2, 4}}.
G (m) = G

(m)
{1,3} ∪ G

(m)
{2,4}

= G
(m)
{1,3} ∪ G

(m)
{1,4} ∪ G

(m)
{2,3} ∪ G

(m)
{2,4} ∪ G

(m)
{3,4}

µ
(m)
{1,3} = • , µ

(m)
{2,4} = •.

To sample Z, use the mixture of two bivariate

normal distributions with mean vectors • and •.
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Mixed Importance Sampling (MIS) Procedure

Factor shifting direction: choose the mean vectors µ1, . . . ,µk to

shift the common factors Z and their weights λ1, . . . , λk for k ≥ 1.

Main Loop: repeat for replications i = 1, . . . , λj · n, and for each

type j = 1, . . . , t

1 Sample Z from N(µj , I).

2 Find θm(Z) by argminθ≥0 {−θx + mψm(θ,Z)}.
3 Compute the twisted conditional default probabilities

pk,θm(Z)(Z), k = 1, . . . ,m and generate Yk , k = 1, . . . ,m.

4 For k with Yk = 1, generate the loss `k under the twisted

conditional distribution. If the loss is deterministic, set `k = ck .

5 Calculate I
(j)
i = 1{Lm > x}

×e−θm(Z)Lm+mψm(θm(Z),Z)
(∑k

i=1 λi exp
(
µi
>Z− 1

2µi
>µi

))−1

.

Return the estimate 1
n

∑t
j=1

∑λj ·n
i=1 I

(j)
i
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Necessity of Mixture

A single shift method suggested by Glasserman & Li:

I argmaxz P(L > x |Z = z)e−z
>z/2.

I argmaxz
{

Fx(z)− 1
2z
>z
}

where Fx(z) , −θx(z)x + mψ(θx(z), z).

An example

X2k−1 = 0.7Z1 +
√

0.51 ε2k−1

X2k = 0.65Z2 +
√

0.5775 ε2k

for k = 1, 2, . . . , 1000.

I pk ≡ 5%, `k ≡ 1, and m = 1000.

I P
(∑

1≤k≤1000 1
{

Xk > Φ−1(0.95)
}
> 0.3 · 1000

)
?
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MIS vs. Single Shift (q = 0.3)
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MIS vs. Single Shift (q = 0.8)
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Small Random Examples

30 instances of 25 types and 5 common factors.

I 60% of the factor-loading coefficients are non-zero. Each

coefficient comes from U(−0.2, 1). Then ‖aj‖ ∈ U(0.1, 0.7).

I ck ∈ U{1, 2, . . . , 30}.
I pk = 0.0255 + 0.0245× sin(16πk/m). pk ∈ (0.1%, 5%).

I q = 0.05, 0.075, . . . , 0.175.
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Large Sparse Example

8 instances of 100 types and 21–22 common factors.

I pk = 0.01 · (1 + sin(16πk/m)), k = 1, . . . , 1000.

I ck = 1 + 99
999 (k − 1), k = 1, . . . , 1000.

A =


F G

R
. . .

...

F G

 , G =


cG

. . .

cG

 .

Approximate Importance Sampling by PCA.

(αR , αF , αG )

# of Dominating Factors (0.8,0.4,0.4) (0.5,0.4,0.4) (0.2,0.4,0.4) (0.25, 0.15,0.05)

Single Factor in R21 79% 60% 25% 74%

Two Factors in R22 80% 64% 31% 77%
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Large Sparse Example

Loss x(q) P(Lm > x) V.R. Est.

10000 (20%) 0.0114 25

15000 (30%) 0.0056 44

20000 (40%) 0.0027 75

25000 (50%) 0.0013 127

30000 (60%) 0.0007 224

35000 (70%) 0.0002 441

40000 (80%) 7.4× 10−5 1081

Loss x(q) P(Lm > x) V.R. Est.

10000 (20%) 0.0077 16

15000 (30%) 0.0031 60

20000 (40%) 0.0012 120

25000 (50%) 0.0004 245

30000 (60%) 0.0001 584
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Tractability of Sizes

Types d Bound |V| n0.1 n0.3 n0.5 n0.7 n0.9

20 4 6195 574.6 16.9 48.5 44.5 14.3 0.2

20 5 21699 932.2 25.0 78.8 69.0 19.5 0.4

25 4 15275 1224.9 33.5 90.5 74.6 16.0 0.2

25 5 68405 2036.5 39.7 138.4 137.7 28.2 0.0
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Conclusion

Large deviations bounds on the tail of heterogeneous credit portfolio

Efficient simulation procedure for credit portfolio

Sometimes, we really need to consider the multiple factors!
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