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Menu

• Quasi-likelihood analysis (QLA)

– QLA for ergodic diffusion processes

– QLA for ergodic jump-diffusions

– QLA for volatility in finite time-horizon

• Nonsynchronous covariance estimation

– Limit theorem

– Lead-lag estimate

• Higher-order asymptotics for the realized volatil-
ity
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QLA for ergodic diffusion processes� �
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QLA for ergodic diffusion processes

A d-dimensional stationary diffusion process sat-
isfying the stochastic differential equation

dXt = a(Xt, θ2)dt + b(Xt, θ1)dwt, X0 = x0.

• wt is an r-dimensional standard Wiener process
independent of the initial value x0.

• θ1 and θ2 are unknown parameters with θi ∈
Θi ⊂ Rmi

• The distribution of x0 possibly depends on the
parameters.

• The true value of the unknown parameter is
denoted by θ∗ = (θ∗1 , θ

∗
2).
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QLA for ergodic diffusion processes: Assumptions∗

[D1 ] (i ) The mappings a : Rd × Θ2 → Rd and b : Rd × Θ1 → Rd

have continuous derivatives satisfying

sup
θ2∈Θ2

∣∣∂i
θ2
a(x, θ2)

∣∣ ≤ C(1 + |x|)C (0 ≤ i ≤ 4)

and

sup
θ1∈Θ1

∣∣∂j
x∂

i
θ1
b(x, θ1)

∣∣ ≤ C(1 + |x|)C (0 ≤ i ≤ 4 ; 0 ≤ j ≤ 2)

for some constant C.

(ii ) B(x, θ1) = bb′(x, θ1) is elliptic uniformly in (x, θ1).

(iii ) For some constant C,

sup
θ2∈Θ2

|a(x1, θ2) − a(x2, θ2)| + sup
θ1∈Θ1

|b(x1, θ1) − b(x2, θ1)|

≤ C|x1 − x2| (x1, x2 ∈ Rd).

(iv ) X0 ∈
∩

p>0 Lp(Pθ∗).
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QLA for ergodic diffusion processes:
Quasi-likelihood function

Now we want to estimate the unknown param-
eters with the discrete-time observations

xn = (Xti)
n
i=0,

where ti = ih with h = hn depending on n ∈ N.

For this purpose, we consider a quasi-likelihood
function

pn(xn, θ)

=

n∏
i=1

1

(2πh)d/2|B(Xti−1, θ1)|1/2

× exp

(
− 1

2h
B(Xti−1, θ1)

−1
[
(∆iX − ha(Xti−1, θ2))

⊗2
])

with ∆iX = Xti − Xti−1.
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QLA for ergodic diffusion processes: Quasi MLE

The maximum likelihood type estimator

θ̂n = (θ̂1,n, θ̂2,n)

is an estimator that maximizes pn(xn, θ) in θ =
(θ1, θ2) ∈ Θ = Θ1 × Θ2.
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QLA for ergodic diffusion processes: Mixing condition∗

We assume a mixing property for X:

[D2 ] There exists a positive constant a such that

αX(h) ≤ a−1e−ah (h > 0),

where

αX(h) = sup
t∈R+

sup
A∈σ[Xr;r≤t],

B∈σ[Xr;r≥t+h]

|Pθ∗ [A ∩ B] − Pθ∗ [A] Pθ∗ [B]| .

We will assume that h → 0 and nh2 → 0 as n →
∞. Moreover, we assume that for some positive
constant ε0, nh ≥ nε0 for large n.
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QLA for ergodic diffusion processes: Information
matrices∗

Set

Γ1(θ
∗)[u1, u1] := Γ(θ2; θ

∗)[u1, u1]

:=
1

2

∫ {
∂2

θ1
B−1(x, θ1)[u

⊗2
1 , B(x, θ∗1)]

+∂2
θ1

log
|B(x, θ1)|
|B(x, θ∗1)|

[u⊗2
1 ]

}∣∣∣
θ1=θ∗1

ν(dx)

=
1

2

∫
tr

{
B−1(∂θ1B)B−1(∂θ1B)(x, θ∗1)[u

⊗2
1 ]

}
ν(dx)

for u1 ∈ Rm1. Let

Γ2(θ
∗)[u⊗2

2 ] =

∫
Rd

B(x, θ∗1)−1[∂θ2
a(x, θ∗2)[u2], ∂θ2

a(x, θ∗2)[u2]] ν(dx)

for u1 ∈ Rm2.
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QLA for ergodic diffusion processes

Theorem 1. Under [D1], [D2] and certain identifi-
ability conditions, for any sequence of the maxi-
mum likelihood type estimators for θ = (θ1, θ2), it
holds that(√

n(θ̂1 − θ∗1),
√

nh(θ̂2 − θ∗2)
)

→d (ζ1, ζ2) ∼ Nm1+m2

(
0, diag [Γ1(θ

∗)−1, Γ2(θ
∗)−1]

)
as n → ∞. Moreover,

Eθ∗
[
f (
√

n(θ̂1 − θ∗1),
√

nh(θ̂2 − θ∗2))
]
→ E [f (ζ1, ζ2)]

as n → ∞ for all continuous functions f of at most
polynomial growth.
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QLA for ergodic diffusion processes: Comments∗

1. Prakasa Rao (1983,1988) presented asymptotic
results for an ergodic diffusion process under
a sampling scheme.

2. The joint weak convergence was given in Yoshida
(1992).

3. Kessler (1997) treated a local Gaussian ap-
proximation with higher order correction terms
to relax the rate of convergence of h to zero.
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QLA for ergodic diffusion processes:
Bayesian type estimator

The Bayesian method can apply to the stochas-
tic differential equations.

Asymptotic results can be obtained.
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QLA for ergodic diffusion processes:
Bayesian type estimator

We consider the same estimation problem as
before:

• a d-dimensional stationary diffusion process

dXt = a(Xt, θ2)dt + b(Xt, θ1)dwt, X0 = x0.

• the discrete-time observations

xn = (Xti)
n
i=0,

where ti = ih with h = hn depending on n ∈ N.
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QLA for ergodic diffusion processes:
Bayesian type estimator

• a quasi-likelihood function

pn(xn, θ)

=

n∏
i=1

1

(2πh)d/2|B(Xti−1, θ1)|1/2

× exp

(
− 1

2h
B(Xti−1, θ1)

−1
[
(∆iX − ha(Xti−1, θ2))

⊗2
])

with ∆iX = Xti − Xti−1.
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QLA for ergodic diffusion processes:
Bayesian type estimator

Adaptive Bayesian type estimator (Y 2005)

The adaptive Bayesian type estimator is defined
as follows.

(i) First fix a value of θ2 and compute the Bayesian
estimator with some prior distribution of θ1 by
the quasi-likelihood.

(ii) Next by using the first step estimator, we
compute the Bayesian estimator for θ1.
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QLA for ergodic diffusion processes:
Adaptive Bayesian type estimator

Theorem 2. For adaptive Bayes type estimator
(θ̃1,n, θ̃2,n) for θ = (θ1, θ2), it holds that(√

n(θ̃1,n − θ∗1),
√

nh(θ̃2,n − θ∗2)
)

→d (ζ1, ζ2) ∼ Nm1+m2

(
0, diag [Γ1(θ

∗)−1, Γ2(θ
∗)−1]

)
as n → ∞. Moreover,

Eθ∗
[
f (
√

n(θ̃1 − θ∗1),
√

nh(θ̃2 − θ∗2))
]
→ E [f (ζ1, ζ2)]

as n → ∞ for all continuous functions f of at most
polynomial growth.
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QLA for ergodic diffusion processes: Comments∗

1. The program by Ibragimov-Has’minskii and Ku-
toyants shows the way of constructing the QLA
for stochastic processes.

2. Polynomial type large deviation inequality plays
a role. (2005, now on-line of AISM)

3. Recently Uchida and Yoshida proved the same
properties under the condition that nhp → 0 for
any p ≥ 2 by a more precise quasi-likelihood
function, using an adaptive method.
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QLA for ergodic diffusion processes: Comments

4. Shimizu and Yoshida (2006) obtained asymp-
totic normality for a maximul likelihood type
estimator for a diffusion process with jumps.

5. Ogihara and Yoshida (2009) gave quasi-likelihood
analysis and proved asymptotic normality and
moment convergence for a diffusion process with
jumps.

17



� �� �
Quasi-likelihood analysis (QLA):
QLA for volatility in the finite time-horizon� �

� �

18



QLA for volatility in the finite time-horizon

• An m-dimensional Itô process satisfying the
stochastic differential equation

dYt = btdt + σ(Xt, θ)dwt, t ∈ [0, T ], (1)

• w: an r-dimensional standard Wiener process
on some stochastic basis (Ω,F , (Ft)t∈[0,T ], P )

• b and X: progressively measurable processes
with values in Rm and Rd, respectively. b is
unobservable, completely unknown.

• σ: an Rm⊗Rr-valued function defined on Rd×
Θ,

• Θ: is a bounded domain in Rp

• θ∗ denotes the true value of θ.
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QLA for volatility in the finite time-horizon

• Data: Zn = (Xtk, Ytk)0≤k≤n with tk = kh for h =
hn = T/n.

• For example, when bt = b(Yt, t) and Xt = (Yt, t),
Y is the time-inhomogeneous diffusion process.
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QLA for volatility in the finite time-horizon

• Asymptotic theory of estimation of the volatil-
ity parameter with high frequency data ob-
served on a fixed interval has been developed.

– Dohnal (1987): the local asymptotic mixed
normality (LAMN) property for the likeli-
hood

– Genon-Catalot and Jacod (1993, 1994): the
asymptotic mixed normality of the minimum
contrast estimator
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QLA for volatility∗

• We will see the asymptotic mixed normality
and convergence of moments of both the maxi-
mum likelihood type estimator and the Bayesian
type estimator for a quasi-likelihood function.

• The Ibragimov-Has’minskii-Kutoyants scheme
is applied.

• A key point is to obtain the polynomial type
large deviation inequality for the statistical ran-
dom field.
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QLA for volatility: Recall the model

• An m-dimensional Itô process satisfying the
stochastic differential equation

dYt = btdt + σ(Xt, θ)dwt, t ∈ [0, T ], (2)

• Data: Zn = (Xtk, Ytk)0≤k≤n with tk = kh for h =
hn = T/n.
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QLA for volatility

• Quasi log likelihood function:

Hn(θ) = −nm

2
log(2πh) − 1

2

n∑
k=1

{
log det S(Xtk−1

, θ)

+h−1S−1(Xtk−1
, θ)[(∆kY )⊗2]

}
,

S = σ⊗2.
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QLA for volatility

• θ̂n: the maximum likelihood type estimator de-
fined as

Hn(θ̂n) = sup
θ∈Θ

Hn(θ). (3)

• Let θ̃n be the Bayes type estimator for a prior
density π : Θ → R+ defined as

θ̃n =

(∫
Θ

exp(Hn(θ))π(θ)dθ

)−1 ∫
Θ

θ exp(Hn(θ))π(θ)dθ.(4)

We assume that π is continuous and 0 < infθ∈Θ π(θ) ≤
supθ∈Θ π(θ) < ∞.
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QLA for volatility∗

• Define the random field Zn(u) for u ∈ Un by

Zn(u) = exp

{
Hn

(
θ∗ +

1√
n
u

)
− Hn(θ∗)

}
,

• Let

Z(u) = exp

(
Γ(θ∗)1/2ζ [u] − 1

2
Γ(θ∗)[u, u]

)
,

where Γ(θ∗) = (Γij(θ∗))i,j=1,...,p with

Γij(θ∗) =
1

2T

∫ T

0
tr

(
(∂θi

S)S−1(∂θj
S)S−1(Xt, θ

∗)
)

dt

and ζ is a p-dimensional standard normal ran-
dom variable independent of Γ(θ∗).
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QLA for volatility∗

• By setting ũn =
√

n(θ̃n − θ∗),

ũn =

(∫
Un

Zn(u)π(θ∗ + (1/
√

n)u)du

)−1

×
∫

Un

uZn(u)π(θ∗ + (1/
√

n)u)du. (5)

• Let

ũ =

(∫
Rp

Z(u)du

)−1 ∫
Rp

uZ(u)du
(
= Γ(θ∗)−1/2ζ

)
.(6)
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QLA for volatility∗

• Then the convergences

ũn =
√

n(θ̃n − θ∗) →d ũ and E[f (ũn)] → E[f (ũ)] (f ∈ C↑(Rp))

as well as the quasi MLE θ̂n follow from the
convergence

Zn →d Z plus

Polynomial type large deviation inequality

P

[
sup

u∈Rp:|u|≥r
Zn(u) ≥ e−r

]
≤ CL

rL
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QLA for volatility: Quasi-MLE

Theorem 3.

(a)
√

n(θ̂n − θ∗) →ds(FT ) Γ(θ∗)−1/2ζ

(b) For all continuous functions f of at most poly-
nomial growth,

E
[
f (
√

n(θ̂n − θ∗))
]
→ E

[
f (Γ(θ∗)−1/2ζ)

]
as n → ∞.
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QLA for volatility: Quasi-Bayesian Estimator

Theorem 4. (Uchida and Y 2008)

(a)
√

n(θ̃n − θ∗) →ds(FT ) Γ(θ∗)−1/2ζ

(b) For all continuous functions f of at most poly-
nomial growth,

E
[
f (
√

n(θ̃n − θ∗))
]
→ E

[
f (Γ(θ∗)−1/2ζ)

]
as n → ∞.
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QLA for volatility:
Examples and simulation results

• Consider the one-dimensional diffusion process

dXt = Xtdt + exp{θ sin2 Xt}dwt, t ∈ [0, 1], X0 = 0,

where θ ∈ [−π, π].

• the uniform prior π(θ)

• The simulations were done for each hn = 1/50,
1/250, 1/500.

• For the true model with θ∗ = 1, 10000 indepen-
dent sample paths are generated by the Mil-
stein scheme, and the means and the standard
deviations of the estimators are computed and
shown in Table 1 below.
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Table 1:

θ̂n θ̃n

hn mean s.d. mean s.d.
1/50 0.90938 0.55704 0.97465 0.47647
1/250 0.98181 0.23022 0.99714 0.22370
1/500 0.99354 0.16436 1.00164 0.16236

• The statistical model is completely degenerate
at t = 0. Näıve nondegeneracy conditions can-
not apply. However, it is solved by another
machinery (Uchida and Y).
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Nonsynchronous covariance estimation

• (Xt, Yt)t∈[0,T ] : two-dimensional Iô process

• A semiparametric problem arises if we want to
estimate the (possibly random) “parameter”

θ = [X,Y ].
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Nonsynchronous covariance estimation

• If the two sequences of data are synchronously
observed, the sum of cross products

N1∑
i=1

∆iX∆iY

is a natural estimator of θ because it may con-
verge in probability to θ:

N1∑
i=1

∆iX∆iY →p θ

if the maximum lag of the time points tends
to 0 in probability, as it is well known in the
stochastic analysis.

Indeed, we can regard this as a definition of
[X, Y ].
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Nonsynchronous covariance estimation

Non-synchronous sampling.

• The families
Π1 = {Ii, i = 1, . . . , N1} and Π2 = {Jj, j = 1, . . . , N2}
are partitions of the interval [0, T ] correspond-
ing to the observing times of X1 and X2 respec-
tively.

• Notation
∆iX =

∫
Ii dXt and ∆jY =

∫
Jj dYt.
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Nonsynchronous covariance estimation

• Näıve synchronization

– If one applies the “realized volatility” esti-
mator to the real tick data, a certain inter-
polation such as previous-tick interpolation
and linear interpolation will be necessary.

– However, it is known that such a naive syn-
chronization causes estimation bias.

– Nonsynchronicity can cause ”Epps effect”.
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Nonsynchronous covariance estimation

• Malliavin and Mancino (2002) have proposed
a Fourier transform based estimator.

• Reno (2003) utilizes it to investigate numeri-
cally biases of Epps-type in case of a bivariate
continuous-time version of GARCH(1,1) pro-
cess.
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Nonsynchronous covariance estimation

• For estimation of θ, Hayashi and Yoshida pro-
posed

θ̂ =
∑

i

∑
j

∆iX∆jY 1{Ii∩Jj 6=∅}

• This estimator satisfies:

– No interpolation is used so that it does not
depend on any tuning parameter such as the
grid size.

– It is a finite sum. No cut-off number is in-
volved.

– It attains asymptotically minimum variance.

– The summation is essentially one-dimensional.
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Nonsynchronous covariance estimation∗

Theoretical statistical requires the basic asymp-
totic properties:

• consistency of the estimator

• asymptotic distribution of the error

• efficiency and optimality

• precise approximation to the error distribution
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Nonsynchronous covariance estimation:
Consistency

The estimator θ̂ is consistent as the maximum
lag of the observation times tends to 0 in proba-
bility

� �

θ̂ →p θ

whenever

max
i,j

{|Ii|, |Jj|} →p 0.

� �
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Nonsynchronous covariance estimation:
Nonsynchronous covariance process∗

• B = (Ω,F ,F = (Ft)t∈R+
, P ): a stochastic basis

• X = (Xt)t∈R+
and Y = (Yt)t∈R+

: Itô processes

•
(
Si

)
i∈Z+

and
(
T j

)
j∈Z+

: two sequences of stop-

ping times that are increasing a.s., Si ↑ ∞ and
T j ↑ ∞, and S0 = 0, T 0 = 0

• Random intervals and indicator functions:

Ii =
[
Si−1, Si

)
, Jj =

[
T j−1, T j

)
,

Ii
t = 1[Si−1,Si)(t), J

j
t = 1[T j−1,T j)(t),

Ii(t) =
[
Si−1 ∧ t, Si ∧ t

)
, Jj(t) =

[
T j−1 ∧ t, T j ∧ t

)
,

rn(t) = sup
i∈N

|Ii(t)| ∨ sup
j∈N

|Jj(t)|.
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Nonsynchronous covariance estimation:
Nonsynchronous covariance process

For a stochastic process V and an interval I, let
V (I)t =

∫ t 1I(s−)dVs.

� �
Definition 1. The nonsynchronous covariation
process of X and Y associated with sampling
designs I :=

(
Ii

)
i∈N and J :=

(
Jj

)
j∈N is the pro-

cess

{X, Y }t =

∞∑
i,j=1

X(Ii)tY (Jj)t1{Ii(t)∩Jj(t) 6=∅}

� �
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Nonsynchronous covariance estimation:
Stable convergence of the estimation error

• The estimation error of {X,Y } is given by

Mn
t := {X,Y }t − [X,Y ]t =

∑
i,j L

ij
t K

ij
t , (7)

where K
ij
t = 1{Ii(t)∩Jj(t) 6=∅} and

L
ij
t =

(
Ii
− · X

)
−
·
(
J

j
− · Y

)
t
+

(
J

j
− · Y

)
−
·
(
Ii
− · X

)
t
.

• When X and Y are local martingales, Mn
t is a

local martingale with

[Mn,Mn]t =
∑

i,j,i′,j′

(
K

ij
−K

i′j′
−

)
·
[
Lij, Li′j′

]
t

(8)
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Nonsynchronous covariance estimation:
Stable convergence of the estimation error∗

A sequence of random elements Xn defined on
a probability space (Ω,F , P ) is said to converge
stably in law to a random element X defined on
an appropriate extension (Ω̃, F̃ , P̃ ) of (Ω,F , P ) if
E [Y g (Xn)] → E [Y g (X)] for any F-measurable and
bounded random variable Y and any bounded
and continuous function g.
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Nonsynchronous covariance estimation:
Stable convergence of the estimation error

Denote [X ] = [X,X ] and [Y ] = [Y, Y ] as usual. Let

V̄ n
t =

∑
i,j

[X ]
(
Ii(t)

)
[Y ]

(
Jj(t)

)
K

ij
t +

∑
i

[X, Y ]
(
Ii(t)

)2

+
∑
j

[X,Y ]
(
Jj(t)

)2
−

∑
i,j

[X,Y ]
((

Ii ∩ Jj
)

(t)
)2

.

[A1] There exists an F-adapted, nondecreasing,
continuous process (Vt)t∈R+

such that b−1
n V̄ n

t →P

Vt as n → ∞ for every t.
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Nonsynchronous covariance estimation:
Stable convergence of the estimation error

� �
Theorem 5. (HY 2006, 2008, 2010 SPA on-line)
Suppose that [A1] and a regularity condition are
fulfilled and that there exists an F-predictable
process w such that V· =

∫ ·
0 w2

sds. Then

b
−1

2
n Mn Stably→ M

in C(R+) as n → ∞, where M =
∫ ·
0 wsdW̃s and W̃

is a one-dimensional Wiener process (defined
on an extension of B) independent of F .

� �
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Nonsynchronous covariance estimation:
Convergence of the sampling measures∗

The empirical distribution functions of the sam-
pling times are defined by

H1
n(t) :=

∑
i

|Ii(t)|2, H2
n(t) :=

∑
j

|Jj(t)|2,

H1∩2
n (t) :=

∑
i,j

|(Ii ∩ Jj)(t)|2, H1∗2
n (t) :=

∑
i,j

|Ii(t)||Jj(t)|Kij
t ,

where |·| is the Lebesgue measure.
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Nonsynchronous covariance estimation:
Convergence of the sampling measures∗

[A1′] There exists a possibly random, nondecreas-
ing, functions H1, H2, H1∩2 and H1∗2 on [0, T ],

such that each Hk =
∫ t
0 hk

sds for some density

hk, and that b−1
n Hk

n(t)
P→ Hk(t) as n → ∞ for

every t ∈ R+ and k = 1, 2, 1 ∩ 2, 1 ∗ 2.
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Nonsynchronous covariance estimation:
Convergence of the sampling measures∗

� �
Theorem 6. (HY 2006, 2008)
Suppose that [A1′] and certain regularity con-
ditions are fulfilled, and that each [X ], [Y ] and
[X,Y ] is absolutely continuous with a bounded
derivative a.s. Then

b
−1/2
n ({X,Y } − [X,Y ])

L→ M

in C(R+) as n → ∞, where M is the process
given in Theorem 5 with ws given by

ws =

√
[X ]′s[Y ]′sh1∗2

s + ([X,Y ]′)2 (h1
s + h2

s − h1∩2
s ).(9)

� �
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Nonsynchronous covariance estimation:
Example: Poisson sampling

The partitions Πi is given by a Poison random
measure on [0, T ] with intensity npi for each i =
1, 2. Suppose that Π = (Π1

n, Π2
n) is independent of

(X,Y ).
If the functions σ1, σ2 and ρ are continuous,

then the sequence
√

n(θ̂n − θ) converges in distri-
bution to a centered Gaussian random variable
with variance

c =

(
2

p1
+

2

p2

) ∫ T

0
σ2

1,tσ
2
2,t(1 + ρ2

t )dt − 2

p1 + p2

∫ T

0
(σ1,tσ2,tρt)

2dt.
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Nonsynchronous covariance estimation:∗

Comments

• Related works are Barndorff-Nielsen and Shep-
hard (2004), and Mykland and Zhang (2006),
and Hoshikawa, Kanatani, Nagai and Nishiyama
(2008).

• There is vast literature on nonsynchronisity
with microstructure noise. Robert and Rosen-
baum (2008) gave a new insight into the non-
synchronous covariance estimator under mi-
crostructure noise. See also Ubukata and Oya
(2008).

• Recently, Markus Bibinger proposed a rate-
optimal estimator of a new version of the non-
synchronous covariance estimator to overcome
the microstructure noise.
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• It is possible to derive asymptotic expansion
of Mn

T in the case without feedback to the dif-
fusion coefficient, where the first order limit is
central (Dalayan and Y, to appear in AIHP).
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Nonsynchronous covariance estimation:
Data analysis with YUIMA Package

> load(file=”ba.data”)
> load(file=”ge.data”)
> load(file=”gm.data”)
> load(file=”cc.data”)
> all.yuima<-cbind.yuima(ba.data,ge.data,gm.data,cc.data)
>cce(all.yuima)

[,1] [,2] [,3] [,4]
[1,] 9.138171e-04 7.284301e-05 1.139381e-04 1.220833e-04
[2,] 7.284301e-05 8.312598e-04 5.703226e-05 8.153857e-05
[3,] 1.139381e-04 5.703226e-05 3.617391e-04 5.319538e-05
[4,] 1.220833e-04 8.153857e-05 5.319538e-05 3.014167e-04
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Nonsynchronous covariance estimation:
Lead-lag estimation

• Let X = (Xt)t∈R+
and

◦
Y = (

◦
Y t)t∈[−θ∗,∞) be Itô

processes for a suitable filtration, and assume

that Y = (Yt)t∈R+
is given by Yt =

◦
Y t−θ∗.

• Estimation of θ∗ deserve investigation because
when θ∗ > 0, X is regarded as the leader and Y
as the follower.

• We propose a lead-lag estimator and provide
the convergence rate. This is a joint work with
M. Hoffmann and M. Rosenbaum.
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Nonsynchronous covariance estimation:
Lead-lag estimation

• In this situation, we proposed the estimator

θ̂n = argmax |Un(θ)|,
where

Un(θ) =
∑

I,J :I≤T

X(I)Y (J)1{I∩J−θ 6=∅}.
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Nonsynchronous covariance estimation:
Lead-lag estimation

• We can prove the consistency of θ̂n.� �
Theorem 7. Under certain regularity condi-
tions,

r̄−1
n (θ̂n − θ∗) →p 0 n → ∞

on the event {[X,
◦
Y ]T 6= 0} for a sequence of

positive constants r̄n tending to 0 as n → ∞
such that rn/r̄n →p 0 as n → ∞. Here rn is the
maximum length of the inter-arrival times of
observations in [0, T ].� �
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Nonsynchronous covariance estimation:
Lead-lag estimation

sec. cor.
BA-CCE
1.4751087 0.2348809
BA-GE
-18.1460249 0.1311659
BA-GM
-4.1453611 0.1692068
CCE-GE
-27.4679106 0.1760048
CCE-GM
120.3912058 0.2170557
GE-GM
1.7497747 0.1282431
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� �� �
Higher-order asymptotics for the realized
volatility� �

� �
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Asymptotic expansion

• Small σ expansion

– Watanabe (AP1987), Kusuoka and Stroock
(JFA1991)

– Applications to statistics:
Y (PTRF1992,1993),
Dermoune and Kutoyants (Stochastics1995),
Sakamoto and Y (JMA1996, SISP1998),
Uchida and Y (SISP2004),
Masuda and Y (StatProbLet2004), .....
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– Application to option pricing:
Y (JJSS1992∗),
Kunitomo and Takahashi (MathFinance2001),
Uchida and Y (SISP2004),
Takahashi and Y (SISP2004, JJSS2005),
Osajima (SSRN2007),
Takahashi and Takehara (2009,2010),
Andersen and Hutchings (SSRN2009),
Antonov and Misirpashaev (SSRN2009),
Chenxu Li (ColumbiaUniv2010),
....

∗ http://www.journalarchive.jst.go.jp/jnlpdf.php?cdjournal=jjss1970&cdvol=22&noissue=2&startpage=139&lang=ja&from=jnltoc
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• Mixing expansion:

– Kusuoka and Y (PTRF2000), Y (PTRF2004)

– Applications to statistics:
Y (PTRF97),
Sakamoto and Y (JJSS2003, AISM2004, AISM2009,
JJSS2008, CommStat2010),
Uchida and Y (SISP2006,SUTJMath2006),
Kutoyants and Y (SISP2007), ....

– Applications to finance: Masuda and Y (SPA2005)

– Regenerative method: Fukasawa (PTRF2008)
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• Distributional martingale expansion (Central
limit)

– Yoshida (PTRF1997)

– Statistics: Y, Sakamoto and Y (SISP1998),

– Finance: Fukasawa (FinanceStoch2009)

• Here we discuss the martingale expansion in
mixed normal limit and its application.
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Question: Quadratic form for a diffusion process

• stochastic differential equation

Xt = X0 +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dws.

• quadratic form of the increments of X:

Un =

n∑
j=1

c(Xtj−1)(∆jX)2,

where ∆jX = Xtj − Xtj−1 and tj = j/n.

• Give the asymptotic expansion for the normal-
ized error

Zn =
√

n(Un − U∞),

where U∞ =
∫ 1
0 c(Xs)σ(Xs)

2ds.
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Stochastic expansion

Zn = Mn
1 +

1√
n
Nn,

where

Mn
t =

√
n

n∑
j=1

2ctj−1σ
2
tj−1

∫ t

tj−1

∫ s

tj−1

dwrdws,

and

Nn = 6n

n∑
j=1

ctj−1σtj−1σ
[1]
tj−1

∫ tj

tj−1

∫ t

tj−1

∫ s

tj−1

dwudwsdwt

+2

n∑
j=1

ctj−1btj−1σtj−1

∫ tj

tj−1

dwt
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+2n
n∑

j=1

ctj−1σtj−1σ
[1]
tj−1

∫ tj

tj−1

(t − tj−1)dwt

+2n
n∑

j=1

ctj−1σtj−1btj−1

∫ tj

tj−1

∫ t

tj−1

dwsdt

+n−1
n∑

j=1

ctj−1b
2
tj−1

+ n−1
n∑

j=1

ctj−1σtj−1b
[1]
tj−1

−n
n∑

j=1

c
[1]
tj−1

σ2
tj−1

∫ tj

tj−1

∫ t

tj−1

dwsdt

− 1

2n

n∑
j=1

c
[0]
tj−1

σ2
tj−1

− 1

n

n∑
j=1

c
[1]
tj−1

σtj−1σ
[1]
tj−1

+ oM (1).

Here oM (1) denotes a term of o(1) as n → ∞ with
respect to Ds,p-norms of any order.
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We wrote bt for b(Xt) and σt for σ(Xt). The Itô
decomposition of σt = σ(Xt) is denoted by

σt = σ0 +

∫ t

0
σ

[1]
s dws +

∫ t

0
σ

[0]
s ds.

Though σ
[1]
s and σ

[2]
s have a simple expression with

b, σ and Xs, those symbols are convenient to sim-
plify the notation. This rule will be applied for
other functionals.
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Reference variable

For a reference variable, we will consider

Fn =
1

n

n∑
j=1

β(Xtj−1) or Fn = F∞ :=

∫ 1

0
β(Xt)dt.
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Nondegeneracy∗

Let a(x) = c(x)σ(x)2. Let

V0(x1, x2) =

[
b(x1) − 1

2σ(x1)∂x1σ(x1)

β(x1)

]
and V1(x1, x2) =

[
σ(x1)

0

]

for x1 ∈ R and x2 ∈ Rd1. The Lie algebra generated
by

V1, [Vi, Vj] (i, j = 0, 1), [Vi, [Vj, Vk]] (i, j, k = 0, 1), ....

at (x1, x2) is denoted by Lie[V0; V1](x1, x2).
Assume that supp(X0) is compact. Moreover,

for nondegeneracy, we assume

[H1] infx∈R |a(x)| > 0.

[H2] Lie[V0; V1](X0, 0) = R1+d1 a.s.
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2nd order specification∗

(M∞,
◦
C∞, N∞) =d

( ∫ 1

0

√
2a(Xs)dBs,∫ 1

0

4
√

2

3
a(Xs)

2dBs +

∫ 1

0

4

3
a(Xs)

2dB′
s,∫ 1

0
qsdB′′

s +

∫ 1

0
hsds

)
,

where (B, B′, B′′) is a three-dimensional standard
Wiener process, independent of F , defined on the
extension Ω̄, and

ht = ctb
2
t + ctb

[1]
t σt −

1

2
c
[0]
t σ2

t − c
[1]
t σtσ

[1]
t .
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Adaptive random symbol

The adaptive random symbol σ(z, iu, iv) is given
by

σ(z, iu, iv) =
2z

3

∫ 1

0
a(Xs)

3ds
( ∫ 1

0
a(Xs)

2ds
)−1

(iu)2

+iu

∫ 1

0
htdt.
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Anticipative random symbol (1)

The random symbol σs,r(iu, iv) admits the expres-
sion

σs,r(iu, iv)

= u2

∫ s

r

α′(Xt)DrXtdt
(
− u2

∫ 1

s

α′(Xt)DsXtdt + i

∫ 1

s

β′(Xt)[v]DsXtdt
)

+
(
− u2

∫ 1

r

α′(Xt)DrXtdt + i

∫ 1

r

β′(Xt)[v]DrXtdt
)

·
(
− u2

∫ 1

s

α′(Xt)DsXtdt + i

∫ 1

s

β′(Xt)[v]DsXtdt
)

+
(
− u2

∫ 1

s

{α′′(Xt)DrXtDsXt + α′(Xt)DrDsXt}dt

+i

∫ 1

s

{β′′(Xt)[v]DrXtDsXt + β′(Xt)[v]DrDsXt}dt
)

for r ≤ s, where the prime ′ stands for the deriva-
tive in x1 ∈ R.
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The processes DsXt and DrDsXt are determined
according to routine; for example, DsXt satisfies
the equation

DsXt = σ(Xs) +

∫ t

s
β′(Xt)DsXtdt +

∫ t

s
σ′(Xt)DsXtdwt

for s ≤ t. DrDsXt admits a similar equation.
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Anticipative random symbol (2)

Now we obtain the anticipative random symbol

σ̄(iu, iv) =

∫ 1

0
iu a(Xs)σs,s(iu, iv) ds

with

σs,s(iu, iv) =
(
− u2

∫ 1

s
α′(Xt)DsXtdt + i

∫ 1

s
β′(Xt)[v]DsXtdt

)2

−u2
∫ 1

s
{α′′(Xt)(DsXt)

2 + α′(Xt)DsDsXt}dt

+i

∫ 1

s
{β′′(Xt)[v](DsXt)

2 + β′(Xt)[v]DsDsXt}dt
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Formula: Martingale expansion in mixed normal
limits (Y 2008) ∗

Set

σ = σ + σ̄, (10)

pn(z, x) = E

[
φ(z; W∞, C∞)

∣∣∣∣F∞ = x

]
pF∞(x)

+rnE

[
σ(z, ∂z, ∂x)∗

{
φ(z; W∞, C∞)

∣∣∣∣F∞ = x

]
pF∞(x)

}
.

With Watanabe’s delta functional, we can write

pn(z, x) = E

[
φ(z; W∞, C∞)δx(F∞)

]
+rnE

[
σ(z, ∂z, ∂x)∗

{
φ(z; W∞, C∞)δx(F∞)

}]
.

∗ Available as a preprint.
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Asymptotic expansion: the quadratic form

Theorem 8. Suppose that [H1] and [H2] are satis-
fied. Then for any positive numbers M and γ,

sup
f∈E(M,γ)

∣∣∣∣E[
f (Zn, Fn)

]
−

∫
R1+d1

f (z, x)pn(z, x)dzdx

∣∣∣∣ = o

(
1√
n

)
as n → ∞, where E(M,γ) is the set of measurable
functions f : R1+d1 → R satisfying |f (z, x)| ≤ M(1 +
|z| + |x|)γ for all (z, x) ∈ R × Rd1.
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Comment: Martingale expansion in mixed nor-
mal limits

It is possible to give the asymptotic expansion of
the conditional law L{Zn|Fn} in the same frame-
work we applied for the expansion of the joint
law L{(Zn, Fn)}.
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