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Quasi-likelihood analysis (QLA):
QLA for ergodic diffusion processes

N




QLA for ergodic diffusion processes

A d-dimensional stationary diffusion process sat-
isfying the stochastic differential equation

dX+ = a( Xy, 09)dt + b( Xy, 01)dwe, Xo = x0.

e w; is an r-dimensional standard Wiener process
independent of the initial value zy.

e /1 and » are unknown parameters with 6, €
0; C R

e The distribution of xj possibly depends on the
parameters.

e The true value of the unknown parameter is
denoted by 0* = (07, 05).



QLA for ergodic diffusion processes: Assumptions®

[D1] (i) The mappings a : R x O, — R? and b: R? x ©; — R?
have continuous derivatives satisfying

Sup ‘(‘9@2@(3:, 6)| < C(1+ )¢ (0 <i<4)
o

IS
and
Sup ‘8%85119(:1:,(91)‘ <C+]z))% (0<i<4:0<5<2)
01€01

for some constant C.
(ii) B(x,01) = bt/ (x,6,) is elliptic uniformly in (z,6;).

(iii ) For some constant C,

sup |a(w1, 02) — a2, 02)| + sup |b(z1,01) — b(wa, 61)]
B9 01€0

< C‘$1—$2’ <$1,ZE2 ERd>.

(1V> X € np>0 Lp(Pg*)



QLA for ergodic diffusion processes:
Quasi-likelihood function

Now we want to estimate the unknown param-
eters with the discrete-time observations

Xn = (th')?:()v
where t;, = th with h = h,, depending on n € N.
For this purpose, we consider a quasi-likelihood

function

pn(Xna ‘9)

- H (2mh d/Q\B<Xt 012

X exp (—%B(th 1,(9 ) 1 {(AiX — ha(Xtil,@))@Q})

Wlth AZX = th. — th’—l



QLA for ergodic diffusion processes: Quasi MLE

The maximum likelihood type estimator

én — (él,na éQ,n)

is an estimator that maximizes p,(x,,0) in 0 =

(91,92) €0 =071 X 0.



QLA for ergodic diffusion processes: Mixing condition™

We assume a mixing property for X:

'D2] There exists a positive constant a such that
ax(h) <ale ™ (h>0),
where

ax(h) = sup Sup | Py« |AN B] — Py« |A] Py« |B]|.
teRy Aco|Xpr<t,
Beo | Xypir>t+h]

We will assume that h — 0 and nh?> — 0 as n —
c0. Moreover, we assume that for some positive
constant ¢), nh > n for large n.



QLA for ergodic diffusion processes: Information
matrices™

Set

F1<(9*>[u1, ul] = F(@Q; 9*>[U1, Ul]

- 1/{5»31 Uz, 0)[u®2, Bz, 07)]

2
> 1B, 91)I
jael o8 52 g [T,y 100
=5 tr { B~"(9p, B)B~ (99, B)(x, 67)[u?]} v(dz)

for u; € R™. Let
0705 = [ Bl 67 Opya(o.03)lus): ol )] vl

for u; € R"2,



QLA for ergodic diffusion processes

Theorem 1. Under [D1|, [D2] and certain identifi-
ability conditions, for any sequence of the maxi-
mum likelihood type estimators for 6 = (61, 65), it

holds that
(V01— 07),v/nh(0, — 63))
=7 (¢1,G2) ~ Nony s (0, diang [T1(69%) 1, To(6%) 7))
as n — oco. Moreover,
Ege | F(v/n(01 — 07), Vah(By — 03)| — E[£(¢1, o)

as n — oo for all continuous functions f of at most
polynomial growth.



QLA for ergodic diffusion processes: Comments*

1. Prakasa Rao (1983,1988) presented asymptotic
results for an ergodic diffusion process under
a sampling scheme.

2. The joint weak convergence was given in Yoshida
(1992).

3. Kessler (1997) treated a local Gaussian ap-
proximation with higher order correction terms
to relax the rate of convergence of h to zero.



QLA for ergodic diffusion processes:
Bayesian type estimator

The Bayesian method can apply to the stochas-
tic differential equations.

Asymptotic results can be obtained.



QLA for ergodic diffusion processes:
Bayesian type estimator

We consider the same estimation problem as
before:

e a d-dimensional stationary diffusion process

dX¢ = a( Xy, 02)dt + b( Xy, 01)dw, Xy = xp.
e the discrete-time observations

Xn = (Xt;)iz0;

where t; = 1h with h = h;,, depending on n € N.



QLA for ergodic diffusion processes:
Bayesian type estimator

e a quasi-likelihood function

pn(Xna (9)

n

11 :
i (2mh) 2 B(X, 00|
1 _
cexp (5B 1,007 [0 — ha(Xs 0077
with A, X = th. — th’—l‘




QLA for ergodic diffusion processes:
Bayesian type estimator

Adaptive Bayesian type estimator (Y 2005)

The adaptive Bayesian type estimator is defined
as follows.

(i) First fix a value of 5 and compute the Bayesian
estimator with some prior distribution of 6; by
the quasi-likelihood.

(ii) Next by using the first step estimator, we
compute the Bayesian estimator for 6.



QLA for ergodic diffusion processes:
Adaptive Bayesian type estimator

Theorem 2. For adaptive Bayes type estimator
(01, 02,) for 6 = (01,07), it holds that

(\/ﬁ(éljn — 07), Vnh(fs,, — 95))

=0 (G1,Go) ~ Ny (0 diag [11(6%) 1, To(6%) 1))

as n — oo. Moreover,

Ege | F(V/n(0) — 07), Vh(By — 03)| = E[£(¢1, o)

as n — oo for all continuous functions f of at most
polynomial growth.



QLA for ergodic diffusion processes: Comments*

1. The program by Ibragimov-Has’minskii and Ku-
toyants shows the way of constructing the QLA
for stochastic processes.

2. Polynomial type large deviation inequality plays
a role. (2005, now on-line of AISM)

3. Recently Uchida and Yoshida proved the same
properties under the condition that nh” — 0 for
any p > 2 by a more precise quasi-likelihood
function, using an adaptive method.



QLA for ergodic diffusion processes: Comments

4. Shimizu and Yoshida (2006) obtained asymp-
totic normality for a maximul likelihood type
estimator for a diffusion process with jumps.

5. Ogihara and Yoshida (2009) gave quasi-likelihood
analysis and proved asymptotic normality and
moment convergence for a diffusion process with
jumps.



Quasi-likelihood analysis (QLA):
QLA for volatility in the finite time-horizon




QLA for volatility in the finite time-horizon

e An m-dimensional Ito process satisfying the
stochastic differential equation

dYy = budt + o( Xy, 0)dwe, t€0,T], (1)
e w: an r-dimensional standard Wiener process
on some stochastic basis (2, F, (Ft);cjo 1 P)

e ) and X: progressively measurable processes
with values in R and Rd, respectively. b is
unobservable, completely unknown.

e o: an R ® R’-valued function defined on R x

O,
e O: is a bounded domain in R?

e 0" denotes the true value of 0.



QLA for volatility in the finite time-horizon

e Data: Z, = (X, Y}, Jo<k<n With t, = kh for h =
hn — T/n.

e For example, when b; = b(Y:, t) and X; = (Y3, 1),
Y is the time-inhomogeneous diffusion process.



QLA for volatility in the finite time-horizon

e Asymptotic theory of estimation of the volatil-
ity parameter with high frequency data ob-
served on a fixed interval has been developed.

— Dohnal (1987): the local asymptotic mixed
normality (LAMN) property for the likeli-
hood

— Genon-Catalot and Jacod (1993, 1994): the
asymptotic mixed normality of the minimum
contrast estimator



QLA for volatility™

e We will see the asymptotic mixed normality
and convergence of moments of both the maxi-
mum likelihood type estimator and the Bayesian
type estimator for a quasi-likelihood function.

e The Ibragimov-Has’minskii-Kutoyants scheme
is applied.

e A key point is to obtain the polynomial type
large deviation inequality for the statistical ran-
dom field.



QLA for volatility: Recall the model

e An m-dimensional Ito process satisfying the
stochastic differential equation

dYy = budt + o( Xy, 0)dwe, t€0,T], (2)

e Data: Z, = (X3,,Y%, Jo<k<n With £, = kh for h =
hn — T/n.



QLA for volatility

e Quasi log likelihood function:

n

1
H,(0) = —% log(2mh) — 5 Z { log det S(X¢,_,,0)
k=1

+h151<xtk1,e>[<AkY>®2J},

S = %2,



QLA for volatility

e 0,,: the maximum likelihood type estimator de-
fined as

aS

Hy, (0r) = sup Hy(0). (3)

e Let 6, be the Bayes type estimator for a prior
density 7 : © — R, defined as

G — ( /@ exp(Hnw))ww)de)l /@ 9 exp(HL, (6))(0)d6(A)

We assume that 7 is continuous and 0 < infycg 7(0) <
Supgeo T(0) < oo.



QLA for volatility™
e Define the random field Z,(u) for u € U, by

Zon(1) = exp {Hn (9* + %u> - Hn<9*)} ,

e Let

20) = exp (16200 - 516

where T(0*) = (I'/(6*)) with

) T
[ (p%) = % /O tr ((09,9)5(05,5)5(X1.0%))

and ( is a p-dimensional standard normal ran-
dom variable independent of I'(6%).

1,7=1,....p



QLA for volatility™

e By setting i, = \/n(f, — 6%),
Uy = (/ Loy (0) 7 (07 + (1/\/ﬁ)u)du>
Up
. /U T (W) (0% + (1 V/mdu.,  (5)

—1

e Let

i = ( /R pZ(u)du)_l /R uZ{u)du (: r<e*>—1/2g) (6)



QLA for volatility™

e Then the convergences

iy = /n(fn — 0°) = @ and E[f(in)] — E[f(@)] (f € C}(R”

as well as the quasi MLE 60,, follow from the
convergence

Ly, iy plus
Polynomial type large deviation inequality

P sup  Zp(u) > e | < 7
| uERP: |u|>r r




QLA for volatility: Quasi-MLE

Theorem 3.
(a) v/n(fy — 0%) —9T) T(g%)~1/2%¢

(b) For all continuous functions f of at most poly-
nomial growth,

B f(V/al0n—0)] — B [£0(07) /%)

as n — .



QLA for volatility: Quasi-Bayesian Estimator

Theorem 4. (Uchida and Y 2008)
(a) V(O — 6%) =BT T (%) 1%

(b) For all continuous functions f of at most poly-
nomial growth,

B (/= 0)] — B [£007) /%)

as n — 0.



QLA for volatility:
Examples and simulation results

e Consider the one-dimensional diffusion process
dX; = Xydt + exp{0sin® X;}dw;, te€[0,1, Xy=0,
where 0 € [—7, 7].

e the uniform prior 7(0)

e The simulations were done for each h,, = 1/50,
1/250, 1/500.

e For the true model with 6* = 1, 10000 indepen-
dent sample paths are generated by the Mil-
stein scheme, and the means and the standard
deviations of the estimators are computed and
shown in Table 1 below.



Table 1:
hn, mean s.d. mean s.d.
1/50 0.90938 0.55704 0.97465/0.47647

1/250/0.981810.23022/0.99714 0.22370
1/500/0.99354 0.16436|1.00164 0.16236

e The statistical model is completely degenerate
at t = 0. Nalve nondegeneracy conditions can-
not apply. However, it is solved by another

machinery (Uchida and Y).



[Nonsynchronous covariance estimation




Nonsynchronous covariance estimation

o (Xy, Yt)te[o,T] : two-dimensional 10 process

e A semiparametric problem arises if we want to
estimate the (possibly random) “parameter”

6 = [X,Y).



Nonsynchronous covariance estimation

e If the two sequences of data are synchronously
observed, the sum of cross products
Ny
> AXAY
1=1
is a natural estimator of 6§ because it may con-
verge in probability to 6:
Ny
> AXAY P
1=1
if the maximum lag of the time points tends

to 0 in probability, as it is well known in the
stochastic analysis.

Indeed, we can regard this as a definition of
X, Y.



Nonsynchronous covariance estimation

Non-synchronous sampling.

e The families
I, ={I'i=1,...,Nj}and o = {J7,j =1,..., Ny}
are partitions of the interval |0,7| correspond-
ing to the observing times of X; and X5 respec-
tively.

e Notation
AZ'X — f[i dXt and A]Y — ij Cﬂ/t



Nonsynchronous covariance estimation

e Naive synchronization

—If one applies the “realized volatility” esti-
mator to the real tick data, a certain inter-
polation such as previous-tick interpolation
and linear interpolation will be necessary.

— However, it is known that such a naive syn-
chronization causes estimation bias.

— Nonsynchronicity can cause ”Epps effect”.



Nonsynchronous covariance estimation

e Malliavin and Mancino (2002) have proposed
a Fourier transform based estimator.

e Reno (2003) utilizes it to investigate numeri-
cally biases of Epps-type in case of a bivariate
continuous-time version of GARCH(1,1) pro-
cess.



Nonsynchronous covariance estimation

e For estimation of /, Hayashi and Yoshida pro-
posed

) = Z Z NXAGY 1 pie i
R

® This estimator satisfies:

— No interpolation is used so that it does not
depend on any tuning parameter such as the
grid size.

— It is a finite sum. No cut-off number is in-
volved.

— It attains asymptotically minimum variance.

— The summation is essentially one-dimensional.



Nonsynchronous covariance estimation®

Theoretical statistical requires the basic asymp-
totic properties:

e consistency of the estimator
e asymptotic distribution of the error
e efficiency and optimality

® precise approximation to the error distribution



Nonsynchronous covariance estimation:
Consistency

The estimator @ is consistent as the maximum
lag of the observation times tends to 0 in proba-

bility

4 N
AN
whenever

max{|I"|, [.J7|} =P 0.
L,




Nonsynchronous covariance estimation:
Nonsynchronous covariance process®

o 5= F,F = (Ft)cgr, ,P): astochastic basis
o X = (Xy)icr, and Y = (V3);cr,: 1td processes

(Si) icZ, and (T) ez, two sequences of stop-

ping times that are increasing a.s., S’ 1 oo and
T 1 0o, and SV =0, TV = 0

e Random intervals and indicator functions:
I — {Si—l,si), Ji = [Tj_l,Tj),
If =Yg g (), J} =Yg iy (®),
I'(t) = {SHM, SiAt), J(t) = [Tf—lAt,TjAt),

ra(t) = sup |[I'(t)| v sup [J(1)].
icN jEN



Nonsynchronous covariance estimation:
Nonsynchronous covariance process

For a stochastlc process V' and an interval I, let

Definition 1. The nonsynchronous covariation
process of X and Y associated with sampling

designs 7 = (Ii)z‘eN and 7 = (‘]j)jeN is the pro-
cess

(X, YV} = Z X(I 751{]@ NJI(t)#£a}
1,)=1

~




Nonsynchronous covariance estimation:
Stable convergence of the estimation error

e The estimation error of {X,Y} is given by
M ={X.Y}, - [X.Y], =Y, LK/, (7)

1) _
where K, = 1{[i(t)mJJ'(t);é@} and

L= (1-x) (L) + (Ley) (18 x) .

e When X and Y are local martingales, M;" is a
local martingale with

MM =Y (K?Kfj’) - [U’J’,LZ”J”L (8)

Z?.]?Z 7]



Nonsynchronous covariance estimation:
Stable convergence of the estimation error®

A sequence of random elements X" defined on
a probability space ({2, F, P) is said to converge
stably in law to a random element X defined on
an appropriate extension ({2, F,P) of ({2, F,P) if
ElYg(X")] — E|Yg(X)] for any F-measurable and
bounded random variable Y and any bounded
and continuous function g.



Nonsynchronous covariance estimation:
Stable convergence of the estimation error

Denote | X| = |X, X] and [Y| = [Y,Y] as usual. Let
= 3 (1) ) (P0) K7+ 31y (1)
5] )
+y X, Y] (Jj(t))z ~ )XY ((1@ 2 JJ') (t))Q.
J ,)

[A1] There exists an F-adapted, nondecreasing,
continuous process (1}), R, such that bﬁth” P
Vi as n — oo for every t.



Nonsynchronous covariance estimation:
Stable convergence of the estimation error

-

Theorem 5. (HY 2006, 2008, 2010 SPA on—line)\
Suppose that |[Al] and a regularity condition are
fulfilled and that there exists an F-predictable
process w such that V. = | w2ds. Then

_1

b2 SRRy
in C(Ry) as n — oo, where M = | wsdWs and W
is a one-dimensional Wiener process (defined

on an extension of B) independent of F.
N /)




Nonsynchronous covariance estimation:
Convergence of the sampling measures”

The empirical distribution functions of the sam-
pling times are defined by

H,(t) = Z FOF, Hy(t):=) |7,

J

where |-| is the Lebesgue measure.



Nonsynchronous covariance estimation:
Convergence of the sampling measures”

[A1] There exists a possibly random, nondecreas-
ing, functions H', H?, H'? and H™? on [0,T],
such that each HF = fot hrds for some density
LY, and that b, 1HY(t) L H*(t) as n — oo for
everyt € Ry and k=1,2,1N2,1x%2.



Nonsynchronous covariance estimation:
Convergence of the sampling measures”

4 N

Theorem 6. (HY 2006, 2008)

Suppose that [A1'] and certain regularity con-
ditions are fulfilled, and that each [X]|, |Y] and
X, Y] is absolutely continuous with a bounded
derivative a.s. Then

by P {X, VY - X, V) 5 M

in C(Ry) as n — oo, where M is the process
given in Theorem 5 with ws given by

ws = \/IXLLIVILAE2 4 (X, Y])2 (hd + B2 — hL2)(0)

N J




Nonsynchronous covariance estimation:
Example: Poisson sampling

The partitions II; is given by a Poison random
measure on |0,7] with intensity np; for each i =
1,2. Suppose that II = (II I12) is independent of
(X,Y).

If the functions o0y, 09 and p are continuous,
then the sequence /n(f, — 0) converges in distri-
bution to a centered Gaussian random variable
with variance

(2 +2>/T 2 02 (1 4 pA)dt — — /T< 2t
S L 0140 P — 01,t02,tPt) at.
p1 po) Jo MR pr+p2Jo T




Nonsynchronous covariance estimation:*
Comments

e Related works are Barndorfi-Nielsen and Shep-
hard (2004), and Mykland and Zhang (2006),
and Hoshikawa, Kanatani, Nagai and Nishiyama
(2008).

e There is vast literature on nonsynchronisity
with microstructure noise. Robert and Rosen-
baum (2008) gave a new insight into the non-
synchronous covariance estimator under mi-
crostructure noise. See also Ubukata and Oya

(2008).

e Recently, Markus Bibinger proposed a rate-
optimal estimator of a new version of the non-
synchronous covariance estimator to overcome
the microstructure noise.



e It is possible to derive asymptotic expansion
of M7 in the case without feedback to the dif-
fusion coeflicient, where the first order limit is
central (Dalayan and Y, to appear in ATHP).



Nonsynchronous covariance estimation:
Data analysis with YUIMA Package

> load(file="ba.data”)

> load(file="ge.data”)

> load(file="gm.data”)

> load(file="cc.data”)

> all.yuima<-cbind.yuima(ba.data,ge.data,gm.data,cc.data)

>cce(all.yuima)

,2] ;3] ;4]

[»1]

119.138171e-04

7.284301e-05

1.139381e-04

1.220833e-04

o
1L

117.284301e-05

8.312598e-04

5.703226e-05

8.153857e-05

o
1L

1.139381e-04

5.703226e-05

3.617391e-04

5.319538e-05

N N~

o
L

1.220833e-04

8.153857e-05

5.319538e-05

3.014167e-04




Nonsynchronous covariance estimation:
Lead-lag estimation

o Let X = (Xt)t€R+ and Y= <Yt)t€[—(9*,oo) be Ito
processes for a suitable filtration, and assume

that Y = (Y;);cr, is given by Y; =Y;_p-.

e Estimation of 6* deserve investigation because
when 0* > 0, X is regarded as the leader and Y
as the follower.

e We propose a lead-lag estimator and provide

the convergence rate. This is a joint work with
M. Hoffmann and M. Rosenbaum.



Nonsynchronous covariance estimation:
Lead-lag estimation

e In this situation, we proposed the estimator

0, = argmax |U"(0)|,

where

= Y X(YUlgngs 0y
[.JI<T



Nonsynchronous covariance estimation:
Lead-lag estimation

e We can prove the consistency of Oy,

'Theorem 7. Under certain regularity condi-

tions,

710, — 0) =P 0 n— oo

on the event {|X, }?]T # 0} for a sequence of
positive constants 7, tending to 0 as n — o©
such that r, /7, —P 0 as n — oo. Here 7, is the
maximum length of the inter-arrival times of

observations in [0, 7].
N /




Nonsynchronous covariance estimation:
Lead-lag estimation

sec. cor.

BA-CCE

1.4751087 0.2348809
BA-GE

-18.1460249 0.1311659
BA-GM

-4.1453611 0.1692068
CCE-GE

-27.4679106 0.1760048
CCE-GM
120.3912058 0.2170557
GE-GM

1.7497747 0.1282431



Higher-order asymptotics for the realized
volatility




Asymptotic expansion

e Small 0 expansion

— Watanabe (AP1987), Kusuoka and Stroock
(JFA1991)

— Applications to statistics:
Y (PTRF1992,1993),
Dermoune and Kutoyants (Stochastics1995),
Sakamoto and Y (JMA1996, SISP1998),
Uchida and Y (SISP2004),
Masuda and Y (StatProbLet2004), .....



— Application to option pricing:
Y (JJSS1992%),
Kunitomo and Takahashi (MathFinance2001),
Uchida and Y (SISP2004),
Takahashi and Y (SISP2004, JJSS2005),
Osajima (SSRN2007),
Takahashi and Takehara (2009,2010),
Andersen and Hutchings (SSRN2009),
Antonov and Misirpashaev (SSRN2009),
Chenxu Li (ColumbiaUniv2010),

* http://www.journalarchive.jst.go.jp/jnlpdf.php?cdjournal=jjss1970&cdvol=22&noissue=2&startpage=139&lang=ja&from=jnltoc



e Mixing expansion:
— Kusuoka and Y (PTRF2000), Y (PTRF2004)

— Applications to statistics:
Y (PTRF97),
Sakamoto and Y (JJSS2003, AISM2004, AISM2009,
JJSS2008, CommStat2010),
Uchida and Y (SISP2006,SUTJMath2006),
Kutoyants and Y (SISP2007), ....

— Applications to finance: Masuda and Y (SPA2005)
— Regenerative method: Fukasawa (PTRF2008)



e Distributional martingale expansion (Central
limit)
— Yoshida (PTRF1997)
— Statistics: Y, Sakamoto and Y (SISP1998),
— Finance: Fukasawa (FinanceStoch2009)

e Here we discuss the martingale expansion in
mixed normal limit and its application.



Question: Quadratic form for a diffusion process

e stochastic differential equation

t t
0 0

e quadratic form of the increments of X:

n

U, = Z C(th_Q(AjX)Qa
=1

where A; X = X, — Xt and t; = j/n.

e Give the asymptotic expansion for the normal-
ized error

Zn — \/E(Un — Uoo);
where Uy, = [ ¢(Xs)o(Xs)%ds.



Stochastic expansion

1

where

n t S
n 2
M" = v/n E 2(:75].1015].1/ / dwydws,
j=1 Lji—1/tj-1
and

n [1] tj t S
Ny, = GTLZCt._ Ot: 10y dw, dwsdwy
j—174—1 ! t t t
j=1 —Lhy =181
tj

J



1=1 j—1
" t t
+2n Z Ct 10'75j_1bt]._1 / dw dt
j=1 tj—1Jtj-1
- 1]
+n Z Ct]—1bt]—1 +n Z Ct]—lgtj—lbt]_l
J=1 j=1
" ti ot
_ 1] 2 J
n Z GOt ] dwgdt
1=1 j—1Yt—-1
LN~ 0 R )
2
m — Ctj_lgt]'_l n z; Ctj—lo-tj_lo-tj—l + OM(l)
p— .]:

Here 0,/(1) denotes a term of o(1) as n — oo with
respect to D5 ,-norms of any order.



We wrote b; for b(X;) and o; for o(X;). The Ito
decomposition of o; = 0(X;) is denoted by

t t
o = 0y +/ aE]de +/ JLO]ds.
0 0

Though agl] and OLQ] have a simple expression with
b, o0 and Xg, those symbols are convenient to sim-
plify the notation. This rule will be applied for
other functionals.



Reference variable

For a reference variable, we will consider

l !
E, = E;ﬂ(){tjl) or I, = F = /O B(Xy)dt.



Nondegeneracy™

Let a(z) = c¢(z)o(z)?. Let

b(x1) — 50(21)0,0(71)

Vo(z1, 29) = 7o) ]

for 1 € Rand zy € R, The Lie algebra generated
by

Vi, Vi Vi) (3,5 = 0, 1), [Vi, [Vi, Vil o ke = 0,1), ..

at (r1,x9) is denoted by Lie|V|; Vi|(x1, z9).
Assume that supp(X() is compact. Moreover,
for nondegeneracy, we assume

[H1] inf, g |a(x)]| > 0.
[H2 Lie[Vj; V1](X),0) = R as.



2nd order specification”™

(M0070007NOO - / \/_CL XS dBS)
1 ]
4 4
/ 4v2 a(Xs)?dBs + / —a(X)?dB.,
0 3 0 9

1 1
/ quB;/ - / hsds) :
0 0

where (B, B, B”) is a three-dimensional standard
Wiener process, independent of 7, defined on the
extension (), and

1
hy = Ctb% + Ctby]()‘t — 501[;)] 0752 — cgl]atay].



Adaptive random symbol

The adaptive random symbol o(z,iu,iv) is given

by
o(z,1u,1v) = 2?2/01 a(XS)?)ds(/Ol OL(XS)QQZS)_1 (iu)?

1
+1u / hdt.
0



Anticipative random symbol (1)

The random symbol o ,-(iu, 7v) admits the expres-
sion

01U, V)
S

1 1

_— o/(Xt)DTXtdt(—uQ / o/ (X,) Dy Xydt + i / ﬁ’(Xt)[v]DSXtdt)
T ] S ] S
+< — U2 Oé/<Xt>DrXtdt + Z/ ﬁ/(Xt)[U]DTXtdt>

.<_uz

u

1

| {"(X))D,X;D,X; + ' (X;)D,D, X, }dt

/
/Slo/(XODSXtdt _l—i/lﬁ/(Xt)[U]Dthdt)
/

i / (8"(X))[v] D, X, D X; + B'(X) ]DTDSXt}dt)

for » < s, where the prime ’ stands for the deriva-
tive in z1 € R.



The processes DXy and D,D;X; are determined
according to routine; for example, D,;X; satisfies
the equation

t t
Ds Xy = o(Xs) —I—/ ﬁ/(Xt)DSXtdt—l—/ O'/(Xt)DSXtdwt
s s

for s <t. D,D;X; admits a similar equation.



Anticipative random symbol (2)

Now we obtain the anticipative random symbol

1
a(tu,iv) :/ iua(Xs)os s(iu, iv) ds
0
with
1 1 2
0 (i, iv) = (—u2 / o (X3) Dy Xydt + i / 6’(Xt)[v]Dthdt)
S S

1
—u? / {o/ (X)) (DsX1)? + o (Xy)Ds D Xy Ydt
S

1
+4 / (8" (X)) (DsXy)? + B'(Xy)[v] Ds Ds Xy Yt



Formula: Martingale expansion in mixed normal
limits (Y 2008) *

Set

o =0+0, (10)

p"o(x)

pn(z,z) = E [Cb(za Woo, Coo)‘Foo —x

+rp B [U(Z, 02, aa:)*{¢(za Woo, C1<><>)|F<>o =X pFOO(37>}'

With Watanabe’s delta functional, we can write
pn(za 33) = F [gb(z, Woo, Coo>5a:(Foo)]

+rpE [a(z, 0. 8:1:)*{¢(2’3 Woo, Coc)dr(Foo) }] |

x Available as a preprint.



Asymptotic expansion: the quadratic form

Theorem 8. Suppose that [H1] and |[H2| are satis-
fied. Then for any positive numbers M and -,
()
Sup = o| —
feE(M ) v

E[f(Zn,Fn)} —/ f(z,2)pn(z, x)dzdx
R1+d;

as n — oo, where £(M,~) is the set of measurable

functions f: R!T% — R satisfying |f(z, z)| < M(1 +

2| 4 |z])Y for all (z,z) € R x R%,




Comment: Martingale expansion in mixed nor-
mal limits

It is possible to give the asymptotic expansion of
the conditional law L{Z,|F,} in the same frame-
work we applied for the expansion of the joint

law L{(Zy, Fn)}.



