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� model selection is a data-driven procedure to select a statistical model

from the data. It can be based, e.g., on information criteria (like AIC) or

Lasso-type approach

� LASSO is a widely used statistical methodology for simultaneous

estimation and variable selection.

� LASSO is also a shrinkage method which allows to select parsimonious

models.

� we develop the LASSO method for discretely observed diffusion process,

but first we recall some result in model selection based on information

criteria for these models

� we conclude with some numerical and empirical evidence to corroborate

the theoretical results
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Consider the one-dimensional stochastic differential equation

dXt = b(Xt, α)dt+ σ(Xt, β)dWt

X0 = x0, where the parameter θ = (α, β) is such that θ ∈ Θα ×Θβ = Θ, Θα ⊂ R
p,

Θβ ⊂ R
q , and Θ convex. As usual, b(·, ·) and σ(·, ·) are two known (up to α and β) regular

functions such that a solution of SDE exists.

X is supposed to be ergodic and the asymptotic is ∆n → 0, n∆n = T → ∞ and n∆2
n → 0

as n → ∞.

The aim is to try to identify the underlying continuous model on the basis of discrete

observations using AIC (Akaike Information Criterion) statistics defined as (Akaike 1973,1974)

AIC = −2ℓn

(

θ̂(ML)
n

)

+ 2dim(Θ),

where θ̂
(ML)
n is the true maximum likelihood estimator and ℓn(θ) is the log-likelihood
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Akaike’s index idea is to penalize this value

−2ℓn

(

θ̂(ML)
n

)

with the dimension of the parameter space

2 dim(Θ)

Thus, as the number of parameter increases, the fit may be better, i.e. −2ℓn

(

θ̂
(ML)
n

)

decreases, at the cost of overspecification and dim(Θ) compensate for this effect.

When comparing several models for a given data set, the models such that the AIC is lower is

preferred.
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In order to calculate

AIC = −2ℓn

(

θ̂(ML)
n

)

+ 2dim(Θ),

we need to evaluate the exact value of the log-likelihood ℓn(·) at point θ̂
(ML)
n .

Problem: for discretely observed diffusion processes the true likelihood function is not known in

most cases

An approximate likelihood (local gaussian, hermite polynomial expansion, etc.) may be good for

estimation purposes but not necessarily to obtain good estimates of ℓn

(

θ̂
(ML)
n

)

. See, e.g. I.

(2008) for a review.
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Uchida and Yoshida (2005) considered the following approximation of the log-likelihood ℓn due to

Dacunha-Castelle and Florens-Zmirou (1986)

un(θ) =
n
∑

k=1

u(∆n, Xi−1, Xi, θ) ,

where

u(t, x, y, θ) = −1

2
log(2πt)− log σ(y, β)− S2(x, y, β)

2t
+H(x, y, θ) + tg̃(x, y, θ) ,

with
S(x, y, β) =

∫ y

x

du

σ(u, β)
, H(x, y, θ) =

∫ y

x

B(u, θ)

σ(u, β)
du

g̃(x, y, θ) = −1

2

{

C(x, θ) + C(y, θ) +
1

3
B(x, θ)B(y, θ)

}

C(x, θ) =
1

2
B2(x, θ) +

1

2
Bx(x, θ)σ(x, β), B(x, θ) =

b(x, α)

σ(x, β)
− 1

2
σx(x, β)
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Uchida and Yoshida (2005) proposed to use the previous approximation of the

likelihood and instead of the true ML estimator, the approximated ML estimator

(AML) of the local gaussian approximation is plugged into AIC. So the

proposed AIC statistics is as follows

AIC = −2un

(

θ̂(AML)
n

)

+ 2dim(Θ) .

This statistics is a proper approximation of the true AIC statistics, i.e.

E{un(θ0)− ℓn(θ0)} = o(1).

Notice again that if un does not properly approximate the true ℓn the AIC

statistics is completely useless.

The sde package for the R statistical environment implements this AIC

statistics as the function sdeAIC.
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We compare three models

dXt = −α1(Xt − α2)dt+ β1
√

XtdWt (true model),

dXt = −α1(Xt − α2)dt+
√

β1 + β2XtdWt (competing model 1),

dXt = −α1(Xt − α2)dt+ (β1 + β2Xt)
β3dWt (competing model 2),

We call the above models Mod1, Mod2 and Mod3.

We generate data from Mod1 with parameters

dXt = −(Xt − 10)dt+ 2
√

XtdWt ,

and initial value X0 = 8. We use n = 1000 and ∆ = 0.1.

We test the performance of the AIC statistics for the three competing models
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dXt = −(Xt − 10)dt+ 2
√

XtdWt (true model),

dXt = −α1(Xt − α2)dt+ β1

√

XtdWt (Model 1)

dXt = −α1(Xt − α2)dt+
√

β1 + β2XtdWt (Model 2)

dXt = −α1(Xt − α2)dt+ (β1 + β2Xt)
β3dWt (Model 3)

Model selection via AIC
Model 1 Model 2 Model 3

(true)

99.2 % 0.6 % 0.2 %

QMLE estimates under the different models
α1 α2 β1 β2 β3

Model 1 1.10 8.05 0.90

Model 2 1.12 8.07 2.02 0.54

Model 3 1.12 9.03 7.06 7.26 0.61
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The Least Absolute Shrinkage and Selection Operator (LASSO) is a useful and

well studied approach to the problem of model selection and its major

advantage is the simultaneous execution of both parameter estimation and

variable selection (see Tibshirani, 1996; Knight and Fu, 2000, Efron et al.,

2004).

To simplify the idea: take a full specified regression model

Y = θ0 + θ1X1 + θ2X2 + · · ·+ θkXk

perform least squares estimation under L1 constraints, i.e.

θ̂ = argmin
θ

{

(Y − θX)T (Y − θX) +
k
∑

i=1

|θi|
}

model selection occurs when some of the θi are estimated as zeros.
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In the AIC framework, one needs to evaluate the AIC statistics for all possible

submodels (a HUGE number), compare the various AIC’s and then choose the

model with the smallest AIC.

Some heuristic methods like stepwise-regression are possible to reduce the

number of models to consider though.

R has ‘step’ in base and ‘stepAIC’ in MASS.

An additional feature of the LASSO method is that it is shrinkage estimator

(estimates with reduced standard errors)

Ok, but how does it work for diffusion processes? Why are diffusion processes

so special?
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Let Xt be a multidmensional diffusion process solution to

dXt = b(α,Xt)dt+ σ(β,Xt)dWt

α = (α1, ..., αp)
′ ∈ Θp ⊂ R

p, p ≥ 1

β = (β1, ..., βq)
′ ∈ Θq ⊂ R

q, q ≥ 1

b : Θp × R
d → R

d, σ : Θq × R
d → R

d × R
m and Wt, t ∈ [0, T ], is a

standard Brownian motion in R
m.

We assume that the functions b and σ are known up to α and β.

We denote by θ = (α, β) ∈ Θp ×Θq = Θ the parametric vector and with

θ0 = (α0, β0) its unknown true value.
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For a matrix A, we denote by A−1 the inverse of A and let

Σ(β, x) = σ(β, x)σ(β, x)′.

The sample path of Xt is observed only at n+ 1 equidistant discrete times ti,
such that ti − ti−1 = ∆n < ∞ for 1 ≤ i ≤ n (with t0 = 0 and tn = T ). We

denote by Xn = {Xti}0≤i≤n our random sample with values in R
(n+1)×d.

The asymptotic scheme adopted in this talk is the following:

T = n∆n → ∞, ∆n → 0 and n∆2
n → 0 as n → ∞.

This asymptotic framework is called rapidly increasing design and the condition

n∆2
n → 0 means that ∆n shrinks to zero slowly.

Implications: the parameters β are
√
n – consistent while the parameters α in

the drift are only
√
n∆n – consistent. This requires a non trivial adaptation of

the LASSO method.
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A1. there exists a constant C such that

|b(α0, x)− b(α0, y)|+ |σ(β0, x)− σ(β0, y)| ≤ C|x− y|;

A2. infβ,x det(Σ(β, x)) > 0;

A3. the process Xt, t ∈ [0, T ], is ergodic for every θ with invariant probability measure µθ ;

A4. if the coefficients b(α, x) = b(α0, x) and σ(β, x) = σ(β0, x) for all x (µθ0 -almost surely),
then α = α0 and β = β0;

A5. for all m ≥ 0 and for all θ ∈ Θ, supt E|Xt|m < ∞;

A6. for every θ ∈ Θ, the coefficients b(α, x) and σ(β, x) are five times differentiable with respect to x
and the derivatives are bounded by a polynomial function in x, uniformly in θ;

A7. the coefficients b(α, x) and σ(β, x) and all their partial derivatives respect to x up to order 2 are
three times differentiable with respect to θ for all x in the state space. All derivatives with respect to
θ are bounded by a polynomial function in x, uniformly in θ.

A1 ensures the existence and uniqueness of a solution to the SDE for the value θ0 = (α0, β0) of θ ∈ Θ,

while A4 is the identifiability condition. From now on we assume that the conditions A1 −A7 hold.
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We can discretize the SDE

Xt+dt −Xt = b(α,Xt)dt+ σ(β,Xt)(Wt+dt −Wt),

and the increments Xt+dt −Xt are then independent Gaussian random variables with mean

b(α,Xt)dt and variance-covariance matrix Σ(β, x)dt. Therefore the transition density of the

process can be written as a simple Gaussian density.
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Hn(Xn, θ) =
1

2

n
∑

i=1

{

log det(Σi−1(β)) +
1

∆n

(∆Xi −∆nbi−1(α))
′Σ−1

i−1
(β)(∆Xi −∆nbi−1(α))

}

where ∆Xi = Xti −Xti−1
, Σi(β) = Σ(β,Xti) and bi(α) = b(α,Xti).

This quasi-likelihood has been introduced by, e.g., Yoshida (1992), Genon-Catalot and Jacod

(1993) and Kessler (1997) and used to obtain quasi-MLE estimators.

Hn plays the role of the negative log-likelihood (−ℓn of previous part of the talk) for this model.

The quasi-MLE θ̃n for this model is the solution of the following problem

θ̃n = (α̃n, β̃n)
′ = argmin

θ
Hn(Xn, θ)
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Consider the matrix (of rates of convergence)

ϕ(n) =

( 1
n∆n

Ip 0

0 1
nIq

)

where Ip and Iq are respectively the identity matrix of order p and q. Let

I(θ) =
(

Γα = [Ikj
b (α)]k,j=1,...,p 0

0 Γβ = [Ikj
σ (β)]k,j=1,...,q

)

where

Ikj
b (α) =

∫

1

σ2(β, x)

∂b(α, x)

∂αk

∂b(α, x)

∂αj
µθ(dx) ,

Ikj
σ (β) = 2

∫

1

σ2(β, x)

∂σ(β, x)

∂βk

∂σ(β, x)

∂βj
µθ(dx) .
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Lemma 1 (see e.g., Kessler, 1997). Let Λn(θ) = ϕ(n)1/2Ḧn(Xn, θ)ϕ(n)
1/2. Under the

conditions A1 −A7, and n∆n → ∞, n∆2
n → 0, ∆n → 0 as n → ∞, the following two

properties hold true

i) for ǫn → 0, as n → ∞, then

Λn(θ0)
p→ I(θ0)

sup
||θ||≤ǫn

|Λn(θ + θ0)− Λn(θ0)| = op(1)

ii) for each θ ∈ Θ, θ̃n is a consistent estimator of θ and asymptotically Gaussian, i.e.

ϕ(n)−1/2(θ̃n − θ)
d→ N(0, I(θ)−1)
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The classical adaptive LASSO objective function for the present model is then

min
α,β







Hn(α, β) +

p
∑

j=1

λn,j |αj |+
q
∑

k=1

γn,k|βk|







λn,j and γn,k are appropriate sequences representing an adaptive amount of

shrinkage for each element of α and β.

Adaptiveness is essential to avoid the situation in which larger parameter are

estimated with larger bias (up to missing consistency)

Unfortunately, the above is a non-linear optimization problem under L1

constraints which might be numerically challenging to solve. Luckily, following

Wang and Leng (2007), the minimization problem can be transformed into a

quadratic minimization problem (under L1 constraints) which is asymptotically

equivalent to minimizing the original LASSO objective function.
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By Taylor expansion of the original LASSO objective function, for θ around θ̃n (the QMLE

estimator)

Hn(Xn, θ) = Hn(Xn, θ̃n) + (θ − θ̃n)
′
Ḣn(Xn, θ̃n) +

1

2
(θ − θ̃n)

′
Ḧn(Xn, θ̃n)(θ − θ̃n)

+op(1)

= Hn(Xn, θ̃n) +
1

2
(θ − θ̃n)

′
Ḧn(Xn, θ̃n)(θ − θ̃n) + op(1)

with Ḣn and Ḧn the gradient and Hessian of Hn with respect to θ.
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We define the adaptive LASSO estimator the solution to the quadratic problem

under L1 constraints

θ̂n = (α̂n, β̂n) = argmin
θ

F(θ).

with

F(θ) = (θ − θ̃n)Ḧn(Xn, θ̃n)(θ − θ̃n)
′ +

p
∑

j=1

λn,j |αj |+
q
∑

k=1

γn,k|βk|

We will discuss adaptiveness later



LASSO cautions

Summary

Information Criteria

Shrinkage Estimation

Numerical Evidence

Application to real data

24 / 46

� Adaptiveness: without adaptiveness, larger (true) parameters are

estimated with more bias because of the penalization

� Speed of convergence: in diffusion models the speed of the parameters

in the drift (α) and diffusion (β) are different (big difference w.r.t. i.i.d.

models)

� Oracle property: the method should correctly estimate as zero the

parameters which are truly zero

We will present formally the oracle property of the adaptive LASSO estimator.



Adaptive sequences

Summary

Information Criteria

Shrinkage Estimation

Numerical Evidence

Application to real data

25 / 46

Without loss of generality, we assume that the true model, indicated by

θ0 = (α0, β0), has parameters α0j and β0k equal to zero for p0 < j ≤ p and

q0 < k ≤ q, while α0j 6= 0 and β0k 6= 0 for 1 ≤ j ≤ p0 and 1 ≤ k ≤ q0.

Denote by θ∗ = (α∗, β∗)′ the vector corresponding to the nonzero

parameters, where α∗ = (α1, ..., αp0)
′ and β∗ = (β1, ..., βq0)

′, while

θ◦ = (α◦, β◦)′ is the vector corresponding to the zero parameters where

α◦ = (αp0+1, ..., αp)
′ and β◦ = (βq0+1, ..., βq)

′.

Therefore,

TRUE : θ0 = (α0, β0)
′ = (α∗

0, α
◦
0, β

∗
0 , β

◦
0)

′

LASSO : θ̂n = (α̂∗
n, α̂

◦
n, β̂

∗
n, β̂

◦
n)

′

MLE : θ̃n = (α̃∗
n, α̃

◦
n, β̃

∗
n, β̃

◦
n)

′
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C1. µn√
n∆n

→ 0 and νn√
n
→ 0 where µn = max{λn,j , 1 ≤ j ≤ p0} and

νn = max{γn,k, 1 ≤ k ≤ q0};

C2. κn√
n∆n

→ ∞ and ωn√
n
→ ∞ where κn = min{λn,j , j > p0} and

ωn = min{γn,k, k > q0}.

Assumption C1 implies that the maximal tuning coefficients µn and νn for the

parameters αj and βk, with 1 ≤ j ≤ p0 and 1 ≤ k ≤ q0, tends to infinity

slower than
√
n∆n and

√
n respectively.

Analogously, we observe that C2 means that that the minimal tuning coefficient

for the parameter αj and βk, with j > p0 and k > q0, tends to infinity faster

than
√
n∆n and

√
n respectively.
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Theorem 2. Under conditions A1 −A7 and C1, one has that

||α̂n − α0|| = Op

(

(n∆n)
−1/2

)

and ||β̂n − β0|| = Op

(

n−1/2
)

.

Theorem 3. Under conditions A1 −A7 and C2, we have that

P (α̂◦
n = 0) → 1 and P (β̂◦

n = 0) → 1. (1)

From Theorem 2, we can conclude that the estimator θ̂n is consistent.

Theorem 3 says us that all the estimates of the zero parameters are correctly

set equal to zero with probability tending to 1
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One as to prove the existence of a consistent local minimizer; this is implied by that fact that for

an arbitrarily small ε > 0, there exists a sufficiently large constant C , such that

lim
n→∞

P

{

inf
z∈Rp+q:||z||=C

F(θ0 + ϕ(n)1/2z) > F(θ0)

}

> 1− ε, (2)

with z = (u, v)′ = (u1, ..., up, v1, ..., vq)
′. After some calculations, we obtain that

F(θ0 + ϕ(n)1/2z)−F(θ0)

≥z′ϕ(n)1/2Ḧn(Xn, θ̃n)ϕ(n)
1/2z + 2z′ϕ(n)1/2Ḧn(Xn, θ̃n)ϕ(n)

1/2ϕ(n)−1/2(θ0 − θ̃n)

−
[

p0
µn√
n∆n

||u||+ q0
νn√
n
||v||

]

= Ξ1 + Ξ2 − Ξ3
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Let τmin(A) is the minimal eigenvalue of A. Then, Lemma 1, being ||z|| = C , Ξ1 is uniformly

larger than τmin(ϕ(n)
1/2

Ḧn(Xn, θ̃n)ϕ(n)
1/2)C2 and

τmin(ϕ(n)
1/2

Ḧn(Xn, θ̃n)ϕ(n)
1/2)C2 p→ C2τmin(I(θ0)).

Moreover, Lemma 1 also implies that

||ϕ(n)1/2Ḧn(Xn, θ̃n)ϕ(n)
1/2ϕ(n)−1/2(θ0 − θ̃n)|| = Op(1)

and then Ξ2 is bounded and linearly dependent on C .

Therefore, for C sufficiently large, F(θ0 + ϕ(n)1/2z)−F(θ0) dominates Ξ1 + Ξ2 with

arbitrarily large probability. Further, from the condition C1, one has that Ξ3 = op(1).

Strict convexity of F(θ) implies that the consistent local minimum is the consistent global one.
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Let I0(θ∗0) the (p0 + q0)× (p0 + q0) submatrix of I(θ) at point θ∗0 and

introduce the following rate of convergence matrix

ϕ0(n) =

( 1
n∆n

Ip0 0

0 1
nIq0

)

Theorem 4 (Oracle property). Under conditions A1 −A7 and C1 − C2, we

have that

ϕ0(n)
− 1

2 (θ̂∗n − θ∗0)
d→ N(0, I−1

0 (θ∗0)) (3)

where θ∗0 is the subset of non-zero true parameters.
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Clearly, the theoretical and practical implications of our method rely to the

specification of the tuning parameter λn,j and γn,k.

The tuning parameters should be chosen as is Zou (2006) in the following way

λn,j = λ0|α̃n,j |−δ1 , γn,k = γ0|β̃n,j |−δ2 (4)

where α̃n,j and β̃n,k are the unpenalized QML estimator of αj and βk
respectively, δ1, δ2 > 0 and usually taken unitary. The asymptotic results hold

under the additional conditions

λ0√
n∆n

→ 0, (n∆n)
δ1−1

2 λ0 → ∞

and
γ0√
n
→ 0, n

δ2−1

2 γ0 → ∞

as n → ∞.
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The “standard” approach adopted by Wang and Leng (2007) also holds when

the diffusion process has the same parametric vector θ in both drift and

diffusion coefficients.

In this context, we use the following objective function

(θ − θ̃n)
′
Ḧn(Xn, θ̃n)(θ − θ̃n) +

p
∑

j=1

λn,j |θj |,

where Hn can represent the quasi-likelihood function as well as an alternative

contrast function (see, e.g., Aı̈t-Sahalia, 2002, and Kessler and Sorensen

1999).

In order to establish the properties of the LASSO estimator, we have to

consider a slightly different hypotheses and asymptotic setting, for example the

mesh ∆n = ∆ is fixed and n → ∞.
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To show the oracle properties of the lasso, we consider the following

1-dimensional SDE

dXt = (θ1 − θ2Xt)dt+ (θ3 + θ4Xt)
θ5dWt, X0 = 1

We simulate 1000 trajectories of this process with true parameter vector

θ = (θ1 = 1, θ2 = 0.1, θ3 = 0, θ4 = 2, θ5 = 0.5)

In order to get as close as possible to the asymptotic scheme of this talk, we

consider the following simulation setup: for a given number n of observations,

we set T = n
1

3 (time horizon) and ∆n = T/n.

Then we take n = 100 and obtain ∆n = 0.046, while for n = 1000, we have

that ∆n = 0.01.



Oracle property

Summary

Information Criteria

Shrinkage Estimation

Numerical Evidence

Application to real data

35 / 46

We simulate 1000 trajectories of this process according to the second Milstein

scheme

Xti+1
= Xti +

(

b− 1

2
σσx

)

∆n + σZ
√

∆n +
1

2
σσx∆nZ

2

+∆
3

2
n

(

1

2
bσx +

1

2
bxσ +

1

4
σ2σxx

)

Z +∆2
n

(

1

2
bbx +

1

4
bxxσ

2

)

with Z ∼ N(0, 1), bx and bxx (resp. σx and σxx) are the first and second

partial derivative in x of the drift (resp. diffusion) coefficient. This scheme has

weak second-order convergence and guarantees good numerical stability (see,

Milstein, 1978)

Next plot shows the oracle property as n increases from n = 100 (up) to

n = 1000 (bottom)



0 θ1 = 1 4.54 0θ2 = 0.1 4.61 0θ3 = 0 5 0 θ4 = 2 5 0θ5 = 0.5 5

0.04 θ1 = 1 4.73 0θ2 = 0.1 3.19 0θ3 = 0 2.12 0.24 θ4 = 2 3.98 0.36θ5 = 0.5 1.14
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θ1 θ2 θ3 θ4 θ5 % θ3 = 0
True 1.0 0.1 0.0 2.0 0.5

Qmle: n = 100 2.58 1.04 0.27 1.89 0.75
(1.47) (0.91) (0.57) (1.10) (0.87)

Lasso: λ0 = γ0 = 1, n = 100 1.92 0.69 0.17 1.69 0.78 78%
(1.10) (0.84) (0.41) (0.92) (0.93)

Lasso: λ0 = γ0 = 5, n = 100 0.70 0.11 0.14 1.30 0.79 87%
(0.56) (0.38) (0.37) (0.80) (0.96)

Qmle: n = 1000 2.07 0.56 0.11 1.90 0.52
(1.25) (0.52) (0.27) (0.37) (0.06)

Lasso: λ0 = γ0 = 1, n = 1000 1.74 0.42 0.07 1.94 0.51 84%
(1.01) (0.49) (0.25) (0.35) (0.06)

Lasso: λ0 = γ0 = 5, n = 1000 0.93 0.11 0.05 1.94 0.51 91%
(0.47) (0.29) (0.22) (0.33) (0.08)

Monte Carlo standard errors in parentheses; 1000 Monte Carlo replications for each sample size
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We consider this two dimensional geometric Brownian motion process solution

to the stochastic differential equation

(

dXt

dYt

)

=

(

1− µ11Xt + µ12Yt

2 + µ21Xt − µ22Yt

)

dt+

(

σ11Xt −σ12Yt

σ21Xt σ22Yt

)(

dWt

dBt

)

with initial condition (X0 = 1, Y0 = 1) and Wt, t ∈ [0, T ], and

Bt, t ∈ [0, T ], are two independent Brownian motions.

This model is a classical model for pricing of basket options in mathematical

finance.

We assume that α = (µ11 = 0.9, µ12 = 0, µ21 = 0, µ22 = 0.7)′ and

β = (σ11 = 0.3, σ12 = 0, σ21 = 0, σ22 = 0.2)′, θ = (α, β).
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µ11 µ12 µ21 µ22 σ11 σ12 σ21 σ22

True 0.9 0.0 0.0 0.7 0.3 0.0 0.0 0.2

Qmle: n = 100 0.96 0.05 0.25 0.81 0.30 0.04 0.01 0.20
(0.08) (0.06) (0.27) (0.15) (0.03) (0.05) (0.02) (0.02)

Lasso: λ0 = γ0 = 1, n = 100 0.86 0.00 0.05 0.71 0.30 0.02 0.01 0.20
(0.12) (0.00) (0.13) (0.09) (0.03) (0.05) (0.02) (0.02)

% of times θi = 0 0.0 99.9 80.2 0.0 0.3 67.2 66.7 0.1

Lasso: λ0 = γ0 = 5, n = 100 0.82 0.00 0.00 0.66 0.29 0.01 0.00 0.20
(0.12) (0.00) (0.00) (0.09) (0.03) (0.03) (0.01) (0.02)

% of times θi = 0 0.0 100.0 99.9 0.0 0.4 86.9 89.7 0.2

Qmle: n = 1000 0.95 0.03 0.21 0.79 0.30 0.04 0.01 0.20
(0.07) (0.04) (0.25) (0.13) (0.03) (0.06) (0.02) (0.02)

Lasso: λ0 = γ0 = 1, n = 1000 0.88 0.00 0.08 0.73 0.30 0.02 0.01 0.20
(0.08) (0.00) (0.16) (0.09) (0.03) (0.05) (0.01) (0.02)

% of times θi = 0 0.0 99.7 72.1 0.0 0.1 67.5 66.6 0.1

Lasso: λ0 = γ0 = 5, n = 1000 0.86 0.00 0.00 0.68 0.29 0.01 0.00 0.20
(0.09) (0.00) (0.01) (0.06) (0.03) (0.04) (0.01) (0.02)

% of times θi = 0 0.0 100.0 99.4 0.0 0.2 87.8 89.9 0.2
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LASSO estimation of the U.S. Interest Rates monthly data from 06/1964 to 12/1989. These data

have been analyzed by many author including Nowman (1997), Aı̈t-Sahalia (1996), Yu and

Phillips (2001) and it is a nice application of LASSO.

Reference Model α β γ

Merton (1973) dXt = αdt+ σdWt 0 0

Vasicek (1977) dXt = (α+ βXt)dt+ σdWt 0

Cox, Ingersoll and Ross (1985) dXt = (α+ βXt)dt+ σ
√
XtdWt 1/2

Dothan (1978) dXt = σXtdWt 0 0 1

Geometric Brownian Motion dXt = βXtdt+ σXtdWt 0 1

Brennan and Schwartz (1980) dXt = (α+ βXt)dt+ σXtdWt 1

Cox, Ingersoll and Ross (1980) dXt = σX
3/2
t dWt 0 0 3/2

Constant Elasticity Variance dXt = βXtdt+ σXγ
t dWt 0

CKLS (1992) dXt = (α+ βXt)dt+ σXγ
t dWt
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Model Estimation Method α β σ γ
Vasicek MLE 4.1889 -0.6072 0.8096 –

CKLS Nowman 2.4272 -0.3277 0.1741 1.3610

CKLS Exact Gaussian 2.0069 -0.3330 0.1741 1.3610
(Yu & Phillips) (0.5216) (0.0677)

CKLS QMLE 2.0822 -0.2756 0.1322 1.4392
(0.9635) (0.1895) (0.0253) (0.1018)

CKLS QMLE + LASSO 1.5435 -0.1687 0.1306 1.4452
with mild penalization (0.6813) (0.1340) (0.0179) (0.0720)

CKLS QMLE + LASSO 0.5412 0.0001 0.1178 1.4944
with strong penalization (0.2076) (0.0054) (0.0179) (0.0720)

LASSO selected: Cox, Ingersoll and Ross (1980) model

dXt =
1

2
dt+ 0.12 ·X3/2

t dWt
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An example of Lasso estimation using yuima package. We make use of real

data with CKLS model

dXt = (α+ βXt)dt+ σXγ
t dWt

> library(Ecdat)

> data(Irates)

> rates <- Irates[,"r1"]

> plot(rates)

> require(yuima)

> X <- window(rates, start=1964.471, end=1989.333)

> mod <- setModel(drift="alpha+beta*x", diffusion=matrix("sigma*x^gamma",1,1))

> yuima <- setYuima(data=setData(X), model=mod)
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> lambda10 <- list(alpha=10, beta =10, sigma =10, gamma =10)

> start <- list(alpha=1, beta =-.1, sigma =.1, gamma =1)

> low <- list(alpha=-5, beta =-5, sigma =-5, gamma =-5)

> upp <- list(alpha=8, beta =8, sigma =8, gamma =8)

> lasso10 <- lasso(yuima, lambda10, start=start, lower=low, upper=upp,

method="L-BFGS-B")

Looking for MLE estimates...

Performing LASSO estimation...

> round(lasso10$mle, 3) # QMLE

sigma gamma alpha beta

0.133 1.443 2.076 -0.263

> round(lasso10$lasso, 3) # LASSO

sigma gamma alpha beta

0.117 1.503 0.591 0.000

dXt = (α+ βXt)dt+ σXγ
t dWt

dXt = 0.6dt+ 0.12X
3

2

t dWt
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