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• Catastrophe (cat) bonds: popular securitization products linked to
catastrophic insurance risks

• Successive disasters in 1990’s (e.g., Hurricane Andrew) had threatened
the capacity of the traditional reinsurance market.

=⇒ The issues of cat bonds started.

Cat bond structure:

• Principal is reduced if pre-defined catastrophic events occur before a
maturity.

• Coupon rate: LIBOR + constant spread
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• Insurance contract between a firm (insured) and an insurance company
(insurer)
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• The insurance company creates a special purpose vehicle (SPV) for the
securitization of the insurance risk.
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• SPV issues cat bonds to investors to cover the contingent payout.

• The bond makes coupon payments to investors of LIBOR plus constant
spreads.
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• SPV enters into a total-return swap with a highly rated counterparty to
get LIBOR-based cash flows.
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• SPV makes the contingent payout to the insured after the triggering
event.
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• Insured: East Japan Railway Company

• Insurance company: Munich Re

• Triggering event: Earthquake in Tokyo

• Issue amount: USD 260 million

• Bond period: 2007/10 – 2012/10

• Specified area: A and B \ A, where

A = {x ∈ R2 : |x − {Tokyo Station}| ≤ 40km},

B = {x ∈ R2 : |x − {Tokyo Station}| ≤ 70km}.
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• Coupon rate: 3 month LIBOR + 275bp

• Amount paid at maturity: principal× (1 − reduction rate)

Reduction Rate

Magnitude A B \ A

≥ 7.7 1.000 1.000
7.6 1.000 0.750
7.5 1.000 0.500
7.4 1.000 0.375
7.3 1.000 0.250
7.2 0.750 0.125
7.1 0.500 0.000
7.0 0.250 0.000

≤ 6.9 0.000 0.000
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• A natural and interesting question is how to determine the constant
spread in the coupon payments of a cat bond.

• However, little attempts have been made to the mathematical analysis
of this problem except Barrieu–El Karoui (2002).

Barrieu–El Karoui’s approach

• The whole structure of the securitization is considered:

◦ Optimal insurance constract: insured vs insurance company

◦ Optimal price and coupon: insurance company vs investor
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Insurance risk

• Loss: Θ = M
∑n

i=1 1εi
βi

◦ n (year): the maturity

◦ βi: a capitalization factor of year i to n. E.g., βi = (1 + r)n−i

◦ εi: a triggering event

◦ M : loss upon the triggering events

Assumption

• βi: deterministic

• No investment in a financial market
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Problem 1: Optimal reinsurance agreement

Insured Insurane CompanyCompensation J(�)Premium �

Utility U1(x) = �e�1x Utility U2(x) = �e�2x
• Agents: an insured (utility: U1(x) = −e−γ1x) and an insurance company

(utility: U2(x) = −e−γ2x)

• Premium: π

• Compensation: J(Θ) such that 0 ≤ J(Θ) ≤ Θ

Resulting wealths at maturity (year n)

• Insured: −πβ0 − Θ + J(Θ)

• Insurance company: πβ0 − J(Θ)



Barrieu–El Karoui’s approach

14 / 35

Optimal π and J ?

• Insurance company will accept this deal if

E[U2(πβ0 − J(Θ))] ≥ E[U2(0)] = −1.

• Thus, the insured designs this contract so as to

maximize
π, J

E[U1(−πβ0 − Θ + J(Θ))]

under E[U2(πβ0 − J(Θ))] ≥ −1.

• Optimal π and J can be obtained by the classical variational method.
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Problem 2: Optimal design of a cat bond

• Insurance company decides to issue a cat bond to manage the risk w.r.t.
the reinsurance contract.

SPV InvestorsPrie 	Coupons s & prinipal N

Utility U2(x) = �e�2x Utility U3(x) = �e�3x
• Actual principal: N − (α/M)Θ

• Price: Φ

• Coupon: s

Resulting wealths at year n

• SPV (insurance company): πβ0 − J(Θ) + Φβ0 − s
∑n

i=1 βi −N +
α

M
Θ

• Investor: −Φβ0 + s
∑n

i=1 βi + N −
α

M
Θ
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Optimal Φ, α and s ?

• Investor will accept this deal if

EU3

(

−Φβ0 + s
n
∑

i=1

βi + N −
α

M
Θ

)

≥ E[U3(0)] = −1

where U3(x) = −e−γ3x is the utility function of the investor.

• Thus, SPV designs this bond so as to

maximize
Φ, α, s

EU2

(

πβ0 − J(Θ) + Φβ0 − s

n
∑

i=1

βi − N +
α

M
Θ

)

under EU3

(

−Φβ0 + s
n
∑

i=1

βi + N −
α

M
Θ

)

≥ −1.

• Optimal Φ, α and s can be obtained by the classical variational method.



Formulation

17 / 35

Our formulation allows

• both agents to invest in a dynamic financial market;

• stochastic interest rates.

Fixed principal: H := F1{τ>T} + Ff(Z)1{τ≤T}.

Here,

• (Ω,G, P): prob.sp.

• T ∈ (0,∞): the maturity

• τ : the random time of the occurrence of a predefined cat event

• Z: an index related to the cat event, with values in a Polish space K.

• f : K → [0, 1]: a reduction rule of the principal, Borel measurable

• τ and Z are assumed to be mutually independent under P.
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Example: the case of a single earthquake disaster.

• The trigger Z(ω) can be captured by a 3-dimensional random variable
Z = (Z1, Z2, Z3).

• (Z1, Z2): the focus of the targeted earthquake

• Z3: the corresponding magnitude

• K = R3

• f(Z) =
∑m

j=1 1Cj
(Z1, Z2)gj(Z3)

◦ gj : a nonincreasing function for each j

◦ C1, . . . , Cm ⊂ R2: a partition of the predefined area.
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Available information for agents:

(Bond) market information + cat information

Market setup:

• F = {Ft}t≥0: a filtration with usual conditions

◦ the filtration F is the information structure used for investing
interest rate instruments.

• {rt}t≥0: a short rate process, F-adapted

• T : the terminal time of the market.

• {Bt}0≤t≤T : the money market account process, Bt = exp(
∫ t

0 rsds)

• Xt = (X1
t , . . . , Xd

t ), 0 ≤ t ≤ T : the price of the d-risky assets,
F-semimartingale with continuous paths
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• {βt}0≤t≤T : the discount process, βt = 1/Bt

• X̃i
t := βtX

i
t , 0 ≤ t ≤ T : the discounted price process

• Assume that there exists a unique Q ∼ P such that {X̃i
t}0≤t≤T is a

(Q, F)-martingale for i = 1, . . . , d.

• Assume that EQ[(βT )2] < ∞ and
∑d

i=1 EQ[(X̃i
T )2] < ∞.

• Then our market is complete.

◦ This statement is equivalent to that the process
X̃t = (X̃1, . . . , X̃

d
t ), 0 ≤ t ≤ T , has the martingale representation

property.
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Setup for cat information:

• H = {Ht}t≥0: the catastrophe information

◦ Ht := σ(NΛ
u : u ≤ t, Λ ∈ B(K)), t ≥ 0

◦ NΛ
t := 1{Z∈Λ}1{τ≤t}, t ≥ 0, Λ ∈ B(K).

• G: the full filtration, G = F ∨ H

• Assume that F is independent of τ and Z.

• Note that the {X̃t}0≤t≤T is a (Q, G)-martingale.
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On trading strategies:

• G: the available information for the market participants

• (φ0
t , φ

1
t , . . . , φ

d
t ), 0 ≤ t ≤ T : trading strategy, G-predictable process s.t.

∫ T

0
|φ0

t |dBt < ∞,

∫ T

0
(φi

t)
2d[Xi, Xi]t < ∞, a.s., i = 1, . . . , d.

• φ0
t : the number of shares of the money market account held by an agent

at time t.

• φi
t: the number of shares of i-th risky asset held by the agent at time t

for i = 1, . . . , d.

The resulting wealth Vt of the agent at time t is then given by

Vt = φ0
t Bt +

d
∑

i=1

φi
tX

i
t .
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• Γ = {Γt}0≤t≤T : the cumulative wealth received or consumed by the
agent on (0, t], a finite variation, càdlàg, G-adapted process with Γ0 = 0

If the agent is financed by only the initial wealth V0 and Γ, then the process
Vt is formally described by

dVt = dΓt + φ0
t dBt +

d
∑

i=1

φi
tdXi

t .

• Ṽt := βtVt, the discounted wealth

By the product formula,

Ṽt = V0 +
d
∑

i=1

∫ t

0
φi

sdX̃i
s +

∫ t

0
βsdΓs, 0 ≤ t ≤ T.
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The trading strategies φ = {(φ1
t , . . . , φ

d
t )}0≤t≤T are restricted to the class of

processes such that

EQ

[
∫ T

0
(φi

t)
2d[X̃i, X̃i]t

]

< ∞, i = 1, . . . , d.

• Γ = {Γt}0≤t≤T : cumulative income process, a finite variation, càdlàg,

G-adapted process with Γ0 = 0 such that EQ

[

∫ T

0 βtd|Γ|t

]

< ∞, where

{|Γ|t}0≤t≤T is the total variation process of Γ.

• Vt = V v,φ,Γ
t , 0 ≤ t ≤ T , denotes the wealth process for an initial wealth

v, a trading strategy φ and a cumulative income process Γ.
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• We identify cumulative coupon payments on (0, t] with Γt such that Γ is
a cumulative income process with increasing paths.

• The originator issues the bond with price p and cumulative coupon
process Γ.

Resulting discounted wealths at T

• the issuer: p + Ṽ v,φ,−Γ
T − βT H

◦ v: a given initial wealth of the issuer

◦ φ: a trading strategy of the issuer

• the investor: −p + Ṽ v′,φ′,Γ
T + βT H

◦ v′: a given initial wealth of the investor

◦ φ′: a trading strategy of the investor



Optimal design problem
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• The issuer is willing to sell the bond if p + Ṽ v,φ,−Γ
T − βT H ≥ v a.s.

• The investor will be interested in this deal if s/he can find φ′ such that

−p + Ṽ v′,φ′,Γ
T + βT H ≥ v′ a.s.

Problem� �
Minimize the bond price p subject to

• the issuer’s constraint: p+ Ṽ v,φ,−Γ
T −βT H ≥ v, a.s. for some trading

strategy φ and cumulative coupon process Γ;

• the investor’s constraint: −p + Ṽ v′,φ′,Γ
T + βT H ≥ v′, a.s. for some

trading strategy φ′.

� �
• Our formulation does not rely on utility functions.
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If p and Γ satisfy the constraints of the transaction, then

−

∫ T

0
φtdX̃t ≤ p −

∫ T

0
βtdΓt − βT H ≤

∫ T

0
φ′

tdX̃t a.s.,

so that
∫ T

0 (φt + φ′
t)dX̃t ≥ 0 a.s. ∴ φ′ = −φ.

Thus our original problem is reduced to the following minimization problem:

p̂ := inf

{

p ∈ R : p +

∫ T

0
φtdX̃t −

∫ T

0
βtdΓt = βT H for some φ,Γ

}

.

Here φ and Γ range over all trading strategies and cumulative coupon
processes respectively.
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• Assume that P(τ > t) > 0 for t ≥ 0 and that t 7→ log P(τ > t) is
differentiable.

• Denote by γ the hazard rate function of τ : P(τ > t) = e−
R t

0
γ(s)ds.

• Let µ(dt × dz) be the random measure on ((0,∞) × K,B((0,∞) × K))
determined uniquely by µ((0, t] × Λ) = NΛ

t .

• The G-predictable process

λ(t, Λ) = 1{t≤τ}γ(t)P(Z ∈ Λ), 0 ≤ t ≤ T, Λ ∈ B(K),

gives the intensity kernel of µ with respect to Q and G.
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• Denote by D the set of all bounded G-predictable process {κt}0≤t≤T

such that κt > −1, 0 ≤ t ≤ T , a.s.

• For κ ∈ D, the process

Zκ
t = (1 + κτ1{τ≤t}) exp

(

−

∫ t

0
1{s≤τ}κsγ(s)ds

)

, 0 ≤ t ≤ T,

is a positive (Q, G)-martingale.

• For κ ∈ D, define the probability measure Qκ by dQκ/dQ = Zκ
T .

• Under Qκ the intensity kernel for µ(dt×dz) is given by (1+κt)λ(t, dz).

• Since [X̃, Zκ] = 0, EQ[Zκ
t X̃t|Gs] = Zκ

s X̃s for s ≤ t.

• Hence {X̃t} is a (Qκ, G)-martingale.

• Thus, {Qκ : κ ∈ D} is a class of the equivalent martingale measures.
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Let {Ut}0≤t≤T be the right-continuous version of

Ut = ess sup
κ∈D

EQκ [βT H | Gt], 0 ≤ t ≤ T.

Proposition� �
If there exist φ and Γ such

Ut = U0 +

∫ t

0
φsdX̃s −

∫ t

0
βsdΓs, 0 ≤ t ≤ T,

then U0 is an optimal price and Γ is an optimal cumulative coupon process.
� �

• This representation is called an optional decomposition of {Ut}0≤t≤T .

• El Karoui–Quentz (1995): Brownian models

• Kramkov (1996) and Föllmer–Kabanov (1998): general semimartingale
models
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Notation

• {Yt}0≤t≤T : the continuous version of Yt = EQ[βT |Gt] = EQ[βT |Ft].

• {DT
t }0≤t≤T : the price process of the zero-coupon bond with maturity

T , given by

DT
t = BtYt = EQ

[

e−
R T

t
rsds

∣

∣

∣
Ft

]

.

• Since the market without cat information is assumed to be complete,
there exists a trading strategy {ϕt}0≤t≤T such that

Yt = Y0 +

∫ t

0
ϕsdX̃s, 0 ≤ t ≤ T.

• Define the trading strategy {ϕ̂t} by

ϕ̂t = Fϕt

(

1{t≤τ} + f(Z)1{t>τ}

)

, 0 ≤ t ≤ T.
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Theorem� �
The process {Ut}0≤t≤T is represented as

Ut = FYt

(

1{τ>t} + f(Z)1{τ≤t}

)

, 0 ≤ t ≤ T.

Moreover, the optional decomposition of {Ut}0≤t≤T is given by

Ut = U0 +

∫ t

0
ϕ̂sdX̃s − F

∫ t

0

∫

K

(1 − f(z))Ysµ(ds × dz), 0 ≤ t ≤ T.

Thus the optimal price p̂ and the cumulative coupon process {Γ̂t}0≤t≤T

are given respectively by

p̂ = FDT
0 , Γ̂t = F

∫ t

0

∫

K

(1 − f(z))DT
s µ(ds × dz).

� �



Outline of the proof
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• Lt := (1 − f(Z))1{τ≤t}.

• Ut = FYt − F ess infκ∈D EQκ [YT LT |Gt].

Then,

EQκ [YT LT |Gt] = YtLt + EQκ

[
∫ T

t

Ls−dYs +

∫ T

t

YsdLs

∣

∣

∣

∣

Gt

]

→ YtLt,

as κt = κ ց −1. From this, we have Ut = FYt(1 − Lt).
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• Consider a LIBOR-based coupon payments

• The discounted value of this cash flow stream:

n
∑

j=1

δF (L(Tj−1) + s)βTj
1{Tj<τ},

◦ 0 = T0 < T1 < · · · < Tn = T are dates of coupon payments with
constant fraction δ = Ti − Ti−1

◦ L(Tj−1) =
1−D

Tj

Tj−1

δD
Tj

Tj−1

, j = 1, . . . , n, is the discretely compounded

LIBOR rate prevailing at Tj−1 over the period from Tj−1 to Tj .

• The issuer provides this cash flow stream to the investor by entering into
a swap contract.
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The spread s must satisfy

EQ

[
∫ T

0
βtdΓ̂t

]

= EQ





n
∑

j=1

δF (L(Tj−1) + s)βTj
1{Tj<τ}





if Q is the valuation measure.

It is straightforward to see that the spread s is given by

s =
(1 − E[f(Z)])EQ[βT ]P(τ ≤ T ) −

∑n
j=1 EQ[βTj−1

− βTj
]P(Tj < τ)

δ
∑n

j=1 EQ[βTj
]P(Tj < τ)

.
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