On the design of catastrophe bonds

Yumiharu NAKANO, Tokyo Tech / JST

December 16, 2010

Cat bonds

- Catastrophe (cat) bonds: popular securitization products linked to catastrophic insurance risks
- Successive disasters in 1990's (e.g., Hurricane Andrew) had threatened the capacity of the traditional reinsurance market.
- \implies The issues of cat bonds started.

Cat bond structure:

- Principal is reduced if pre-defined catastrophic events occur before a maturity.
- Coupon rate: LIBOR + constant spread

 Insurance contract between a firm (insured) and an insurance company (insurer)

• The insurance company creates a special purpose vehicle (SPV) for the securitization of the insurance risk.

- SPV issues cat bonds to investors to cover the contingent payout.
- The bond makes coupon payments to investors of LIBOR plus constant spreads.

 SPV enters into a total-return swap with a highly rated counterparty to get LIBOR-based cash flows.

• SPV makes the contingent payout to the insured after the triggering event.

Example of catastrophe bonds

- Insured: East Japan Railway Company
- Insurance company: Munich Re
- Triggering event: Earthquake in Tokyo
- Issue amount: USD 260 million
- Bond period: 2007/10 2012/10
- Specified area: A and $B \setminus A$, where

$$A = \{x \in \mathbb{R}^2 : |x - \{\text{Tokyo Station}\}| \le 40 \text{km}\},\$$
$$B = \{x \in \mathbb{R}^2 : |x - \{\text{Tokyo Station}\}| \le 70 \text{km}\}.$$

Example of catastrophe bonds

- Coupon rate: 3 month LIBOR + 275bp
- Amount paid at maturity: principal \times (1 reduction rate)

Reduction Rate

Magnitude	A	$B \setminus A$
≥ 7.7	1.000	1.000
7.6	1.000	0.750
7.5	1.000	0.500
7.4	1.000	0.375
7.3	1.000	0.250
7.2	0.750	0.125
7.1	0.500	0.000
7.0	0.250	0.000
≤ 6.9	0.000	0.000

Optimal design problem

- A natural and interesting question is how to determine the constant spread in the coupon payments of a cat bond.
- However, little attempts have been made to the mathematical analysis of this problem except Barrieu–El Karoui (2002).

Barrieu–El Karoui's approach

- The whole structure of the securitization is considered:
 - Optimal insurance constract: insured vs insurance company
 - Optimal price and coupon: insurance company vs investor

Insurance risk

• Loss:
$$\Theta = M \sum_{i=1}^{n} 1_{\varepsilon_i} \beta_i$$

• n (year): the maturity

• β_i : a capitalization factor of year *i* to *n*. E.g., $\beta_i = (1+r)^{n-i}$

- ε_i : a triggering event
- $\circ~M$: loss upon the triggering events

Assumption

- β_i : deterministic
- No investment in a financial market

Problem 1: Optimal reinsurance agreement

- Agents: an insured (utility: U₁(x) = -e^{-γ₁x}) and an insurance company (utility: U₂(x) = -e^{-γ₂x})
- Premium: π
- Compensation: $J(\Theta)$ such that $0 \leq J(\Theta) \leq \Theta$

Resulting wealths at maturity (year n)

- Insured: $-\pi\beta_0 \Theta + J(\Theta)$
- Insurance company: $\pi\beta_0 J(\Theta)$

Optimal π and J ?

• Insurance company will accept this deal if

$$\mathbb{E}[U_2(\pi\beta_0 - J(\Theta))] \ge \mathbb{E}[U_2(0)] = -1.$$

• Thus, the insured designs this contract so as to

$$\begin{array}{ll} \underset{\pi, J}{\operatorname{maximize}} & \mathbb{E}[U_1(-\pi\beta_0 - \Theta + J(\Theta))] \\ \\ \text{under} & \mathbb{E}[U_2(\pi\beta_0 - J(\Theta))] \geq -1. \end{array}$$

• Optimal π and J can be obtained by the classical variational method.

Problem 2: Optimal design of a cat bond

• Insurance company decides to issue a cat bond to manage the risk w.r.t. the reinsurance contract.

- Actual principal: $N (\alpha/M)\Theta$
- Price: Φ
- Coupon: *s*

Resulting wealths at year \boldsymbol{n}

• SPV (insurance company): $\pi\beta_0 - J(\Theta) + \Phi\beta_0 - s\sum_{i=1}^n \beta_i - N + \frac{\alpha}{M}\Theta$

• Investor:
$$-\Phi\beta_0 + s\sum_{i=1}^n \beta_i + N - \frac{\alpha}{M}\Theta$$

Optimal Φ , α and s ?

• Investor will accept this deal if

$$\mathbb{E}U_3\left(-\Phi\beta_0 + s\sum_{i=1}^n \beta_i + N - \frac{\alpha}{M}\Theta\right) \ge \mathbb{E}[U_3(0)] = -1$$

where $U_3(x) = -e^{-\gamma_3 x}$ is the utility function of the investor.

• Thus, SPV designs this bond so as to

$$\begin{array}{ll} \underset{\Phi, \alpha, s}{\text{maximize}} & \mathbb{E}U_2\left(\pi\beta_0 - J(\Theta) + \Phi\beta_0 - s\sum_{i=1}^n \beta_i - N + \frac{\alpha}{M}\Theta\right)\\ \text{under} & \mathbb{E}U_3\left(-\Phi\beta_0 + s\sum_{i=1}^n \beta_i + N - \frac{\alpha}{M}\Theta\right) \geq -1. \end{array}$$

• Optimal Φ , α and s can be obtained by the classical variational method.

Our formulation allows

- both agents to invest in a dynamic financial market;
- stochastic interest rates.

Fixed principal: $H := F1_{\{\tau > T\}} + Ff(Z)1_{\{\tau \le T\}}$.

Here,

- $(\Omega, \mathcal{G}, \mathbb{P})$: prob.sp.
- $T \in (0,\infty)$: the maturity
- $\tau :$ the random time of the occurrence of a predefined cat event
- Z: an index related to the cat event, with values in a Polish space K.
- $f: K \rightarrow [0,1]$: a reduction rule of the principal, Borel measurable
- τ and Z are assumed to be mutually independent under \mathbb{P} .

Example: the case of a single earthquake disaster.

- The trigger $Z(\omega)$ can be captured by a 3-dimensional random variable $Z = (Z_1, Z_2, Z_3).$
- (Z_1, Z_2) : the focus of the targeted earthquake
- Z_3 : the corresponding magnitude
- $K = \mathbb{R}^3$
- $f(Z) = \sum_{j=1}^{m} 1_{C_j}(Z_1, Z_2)g_j(Z_3)$
 - g_j : a nonincreasing function for each j
 - $C_1, \ldots, C_m \subset \mathbb{R}^2$: a partition of the predefined area.

Available information for agents:

(Bond) market information + cat information

Market setup:

- $\mathbb{F} = \{\mathcal{F}_t\}_{t \geq 0}$: a filtration with usual conditions
 - the filtration \mathbb{F} is the information structure used for investing interest rate instruments.
- $\{r_t\}_{t\geq 0}$: a short rate process, \mathbb{F} -adapted
- T: the terminal time of the market.
- $\{B_t\}_{0 \le t \le T}$: the money market account process, $B_t = \exp(\int_0^t r_s ds)$
- $X_t = (X_t^1, \dots, X_t^d)$, $0 \le t \le T$: the price of the *d*-risky assets, \mathbb{F} -semimartingale with continuous paths

- $\{\beta_t\}_{0 \le t \le T}$: the discount process, $\beta_t = 1/B_t$
- $\tilde{X}_t^i := \beta_t X_t^i$, $0 \le t \le T$: the discounted price process
- Assume that there exists a unique $\mathbb{Q} \sim \mathbb{P}$ such that $\{\tilde{X}_t^i\}_{0 \leq t \leq T}$ is a (\mathbb{Q}, \mathbb{F}) -martingale for $i = 1, \ldots, d$.
- Assume that $\mathbb{E}_{\mathbb{Q}}[(\beta_T)^2] < \infty$ and $\sum_{i=1}^d \mathbb{E}_{\mathbb{Q}}[(\tilde{X}_T^i)^2] < \infty$.
- Then our market is complete.
 - This statement is equivalent to that the process $\tilde{X}_t = (\tilde{X}_1, \dots, \tilde{X}_t^d)$, $0 \le t \le T$, has the martingale representation property.

Setup for cat information:

• $\mathbb{H} = \{\mathcal{H}_t\}_{t \geq 0}$: the catastrophe information

•
$$\mathcal{H}_t := \sigma(N_u^{\Lambda} : u \leq t, \Lambda \in \mathcal{B}(K)), t \geq 0$$

• $N_t^{\Lambda} := \mathbb{1}_{\{Z \in \Lambda\}} \mathbb{1}_{\{\tau \leq t\}}, t \geq 0, \Lambda \in \mathcal{B}(K).$

- $\mathbb{G}:$ the full filtration, $\mathbb{G}=\mathbb{F}\vee\mathbb{H}$
- Assume that $\mathbb F$ is independent of τ and Z.
- Note that the $\{\tilde{X}_t\}_{0 \le t \le T}$ is a (\mathbb{Q}, \mathbb{G}) -martingale.

On trading strategies:

- $\bullet~\mathbb{G}$: the available information for the market participants
- $(\phi_t^0, \phi_t^1, \dots, \phi_t^d)$, $0 \le t \le T$: trading strategy, \mathbb{G} -predictable process s.t.

$$\int_0^T |\phi_t^0| dB_t < \infty, \quad \int_0^T (\phi_t^i)^2 d[X^i, X^i]_t < \infty, \text{ a.s.}, i = 1, \dots, d.$$

- ϕ_t^0 : the number of shares of the money market account held by an agent at time t.
- \$\phi_t^i\$: the number of shares of *i*-th risky asset held by the agent at time *t* for *i* = 1, ..., *d*.

The resulting wealth V_t of the agent at time t is then given by

$$V_t = \phi_t^0 B_t + \sum_{i=1}^d \phi_t^i X_t^i.$$

• $\Gamma = {\Gamma_t}_{0 \le t \le T}$: the cumulative wealth received or consumed by the agent on (0, t], a finite variation, càdlàg, \mathbb{G} -adapted process with $\Gamma_0 = 0$

If the agent is financed by only the initial wealth V_0 and Γ , then the process V_t is formally described by

$$dV_t = d\Gamma_t + \phi_t^0 dB_t + \sum_{i=1}^d \phi_t^i dX_t^i.$$

• $\tilde{V}_t := \beta_t V_t$, the discounted wealth

By the product formula,

$$\tilde{V}_t = V_0 + \sum_{i=1}^d \int_0^t \phi_s^i d\tilde{X}_s^i + \int_0^t \beta_s d\Gamma_s, \quad 0 \le t \le T$$

The trading strategies $\phi = \{(\phi_t^1, \dots, \phi_t^d)\}_{0 \le t \le T}$ are restricted to the class of processes such that

$$\mathbb{E}_{\mathbb{Q}}\left[\int_0^T (\phi_t^i)^2 d[\tilde{X}^i, \tilde{X}^i]_t\right] < \infty, \quad i = 1, \dots, d.$$

- $\Gamma = {\Gamma_t}_{0 \le t \le T}$: cumulative income process, a finite variation, càdlàg, \mathbb{G} -adapted process with $\Gamma_0 = 0$ such that $\mathbb{E}_{\mathbb{Q}} \left[\int_0^T \beta_t d |\Gamma|_t \right] < \infty$, where ${|\Gamma|_t}_{0 \le t \le T}$ is the total variation process of Γ .
- $V_t = V_t^{v,\phi,\Gamma}$, $0 \le t \le T$, denotes the wealth process for an initial wealth v, a trading strategy ϕ and a cumulative income process Γ .

Optimal design problem

- We identify cumulative coupon payments on (0, t] with Γ_t such that Γ is a cumulative income process with increasing paths.
- The originator issues the bond with price p and cumulative coupon process $\Gamma.$

Resulting discounted wealths at ${\cal T}$

• the issuer:
$$p + \tilde{V}_T^{v,\phi,-\Gamma} - \beta_T H$$

 $\circ~v$: a given initial wealth of the issuer

• ϕ : a trading strategy of the issuer

• the investor:
$$-p + \tilde{V}_T^{v',\phi',\Gamma} + \beta_T H$$

• v': a given initial wealth of the investor

• ϕ' : a trading strategy of the investor

Optimal design problem

- The issuer is willing to sell the bond if $p + \tilde{V}_T^{v,\phi,-\Gamma} \beta_T H \ge v$ a.s.
- The investor will be interested in this deal if s/he can find ϕ' such that $-p + \tilde{V}_T^{v',\phi',\Gamma} + \beta_T H \ge v'$ a.s.

- Problem

Minimize the bond price \boldsymbol{p} subject to

- the issuer's constraint: $p + \tilde{V}_T^{v,\phi,-\Gamma} \beta_T H \ge v$, a.s. for some trading strategy ϕ and cumulative coupon process Γ ;
- the investor's constraint: $-p + \tilde{V}_T^{v',\phi',\Gamma} + \beta_T H \ge v'$, a.s. for some trading strategy ϕ' .

• Our formulation does not rely on utility functions.

Reduction to super-hedging problem

If p and Γ satisfy the constraints of the transaction, then

$$-\int_0^T \phi_t d\tilde{X}_t \leq p - \int_0^T \beta_t d\Gamma_t - \beta_T H \leq \int_0^T \phi_t' d\tilde{X}_t \text{ a.s.},$$

so that $\int_0^T (\phi_t + \phi'_t) d\tilde{X}_t \ge 0$ a.s. $\therefore \phi' = -\phi$.

Thus our original problem is reduced to the following minimization problem:

$$\hat{p} := \inf \left\{ p \in \mathbb{R} : p + \int_0^T \phi_t d\tilde{X}_t - \int_0^T \beta_t d\Gamma_t = \beta_T H \text{ for some } \phi, \Gamma \right\}$$

Here ϕ and Γ range over all trading strategies and cumulative coupon processes respectively.

Intensity

- Assume that $\mathbb{P}(\tau > t) > 0$ for $t \ge 0$ and that $t \mapsto \log \mathbb{P}(\tau > t)$ is differentiable.
- Denote by γ the hazard rate function of τ : $\mathbb{P}(\tau > t) = e^{-\int_0^t \gamma(s) ds}$.
- Let $\mu(dt \times dz)$ be the random measure on $((0, \infty) \times K, \mathcal{B}((0, \infty) \times K))$ determined uniquely by $\mu((0, t] \times \Lambda) = N_t^{\Lambda}$.
- $\bullet\,$ The $\mathbb G\text{-}\mathsf{predictable}\,$ process

$$\lambda(t,\Lambda) = 1_{\{t \le \tau\}} \gamma(t) \mathbb{P}(Z \in \Lambda), \quad 0 \le t \le T, \quad \Lambda \in \mathcal{B}(K),$$

gives the intensity kernel of μ with respect to \mathbb{Q} and \mathbb{G} .

Equivalent martingale measures

- Denote by \mathcal{D} the set of all bounded \mathbb{G} -predictable process $\{\kappa_t\}_{0 \le t \le T}$ such that $\kappa_t > -1$, $0 \le t \le T$, a.s.
- For $\kappa \in \mathcal{D}$, the process

$$Z_t^{\kappa} = (1 + \kappa_\tau \mathbb{1}_{\{\tau \le t\}}) \exp\left(-\int_0^t \mathbb{1}_{\{s \le \tau\}} \kappa_s \gamma(s) ds\right), \quad 0 \le t \le T,$$

is a positive (\mathbb{Q}, \mathbb{G}) -martingale.

- For $\kappa \in \mathcal{D}$, define the probability measure \mathbb{Q}^{κ} by $d\mathbb{Q}^{\kappa}/d\mathbb{Q} = Z_T^{\kappa}$.
- Under \mathbb{Q}^{κ} the intensity kernel for $\mu(dt \times dz)$ is given by $(1 + \kappa_t)\lambda(t, dz)$.
- Since $[\tilde{X}, Z^{\kappa}] = 0$, $\mathbb{E}_{\mathbb{Q}}[Z_t^{\kappa} \tilde{X}_t | \mathcal{G}_s] = Z_s^{\kappa} \tilde{X}_s$ for $s \leq t$.
- Hence $\{\tilde{X}_t\}$ is a $(\mathbb{Q}^{\kappa}, \mathbb{G})$ -martingale.
- Thus, $\{\mathbb{Q}^{\kappa} : \kappa \in \mathcal{D}\}$ is a class of the equivalent martingale measures.

Reduction to optional decomposition problem

Let $\{U_t\}_{0 \le t \le T}$ be the right-continuous version of

$$U_t = \operatorname{ess\,sup} \mathbb{E}_{\mathbb{Q}^{\kappa}}[\beta_T H \,|\, \mathcal{G}_t], \quad 0 \le t \le T.$$

Proposition

If there exist ϕ and Γ such

$$U_t = U_0 + \int_0^t \phi_s d\tilde{X}_s - \int_0^t \beta_s d\Gamma_s, \quad 0 \le t \le T,$$

then U_0 is an optimal price and Γ is an optimal cumulative coupon process.

- This representation is called an optional decomposition of $\{U_t\}_{0 \le t \le T}$.
- El Karoui–Quentz (1995): Brownian models
- Kramkov (1996) and Föllmer–Kabanov (1998): general semimartingale models

Solution

Notation

- $\{Y_t\}_{0 \le t \le T}$: the continuous version of $Y_t = \mathbb{E}_{\mathbb{Q}}[\beta_T | \mathcal{G}_t] = \mathbb{E}_{\mathbb{Q}}[\beta_T | \mathcal{F}_t].$
- $\{D_t^T\}_{0\leq t\leq T}$: the price process of the zero-coupon bond with maturity T, given by

$$D_t^T = B_t Y_t = \mathbb{E}_{\mathbb{Q}} \left[e^{-\int_t^T r_s ds} \, \middle| \, \mathcal{F}_t \right].$$

 Since the market without cat information is assumed to be complete, there exists a trading strategy {φ_t}_{0≤t≤T} such that

$$Y_t = Y_0 + \int_0^t \varphi_s d\tilde{X}_s, \quad 0 \le t \le T.$$

• Define the trading strategy $\{\hat{arphi}_t\}$ by

$$\hat{\varphi}_t = F\varphi_t \left(\mathbb{1}_{\{t \le \tau\}} + f(Z) \mathbb{1}_{\{t > \tau\}} \right), \quad 0 \le t \le T.$$

Solution

Theorem The process $\{U_t\}_{0 \le t \le T}$ is represented as $U_t = FY_t \left(1_{\{\tau > t\}} + f(Z) 1_{\{\tau < t\}} \right), \quad 0 \le t \le T.$ Moreover, the optional decomposition of $\{U_t\}_{0 \le t \le T}$ is given by $U_t = U_0 + \int_0^t \hat{\varphi}_s d\tilde{X}_s - F \int_0^t \int_{\mathcal{W}} (1 - f(z)) Y_s \mu(ds \times dz), \quad 0 \le t \le T.$ Thus the optimal price \hat{p} and the cumulative coupon process $\{\Gamma_t\}_{0 \le t \le T}$ are given respectively by

$$\hat{p} = FD_0^T, \quad \hat{\Gamma}_t = F \int_0^t \int_K (1 - f(z)) D_s^T \mu(ds \times dz).$$

Outline of the proof

•
$$L_t := (1 - f(Z)) \mathbf{1}_{\{\tau \le t\}}.$$

•
$$U_t = FY_t - F \operatorname{ess\,inf}_{\kappa \in \mathcal{D}} \mathbb{E}_{\mathbb{Q}^{\kappa}}[Y_T L_T | \mathcal{G}_t].$$

Then,

$$\mathbb{E}_{\mathbb{Q}^{\kappa}}[Y_{T}L_{T}|\mathcal{G}_{t}] = Y_{t}L_{t} + \mathbb{E}_{\mathbb{Q}^{\kappa}}\left[\int_{t}^{T} L_{s-}dY_{s} + \int_{t}^{T} Y_{s}dL_{s} \middle| \mathcal{G}_{t}\right]$$
$$\rightarrow Y_{t}L_{t},$$

as $\kappa_t = \kappa \searrow -1$. From this, we have $U_t = FY_t(1 - L_t)$.

LIBOR-based coupon payments

- Consider a LIBOR-based coupon payments
- The discounted value of this cash flow stream:

$$\sum_{j=1}^{n} \delta F \left(L(T_{j-1}) + s \right) \beta_{T_j} \mathbb{1}_{\{T_j < \tau\}},$$

- $0 = T_0 < T_1 < \cdots < T_n = T$ are dates of coupon payments with constant fraction $\delta = T_i T_{i-1}$
- $L(T_{j-1}) = \frac{1 D_{T_{j-1}}^{T_j}}{\delta D_{T_{j-1}}^{T_j}}$, j = 1, ..., n, is the discretely compounded LIBOR rate prevailing at T_{j-1} over the period from T_{j-1} to T_j .
- The issuer provides this cash flow stream to the investor by entering into a swap contract.

LIBOR-based coupon payments

The spread s must satisfy

$$\mathbb{E}_{\mathbb{Q}}\left[\int_{0}^{T}\beta_{t}d\hat{\Gamma}_{t}\right] = \mathbb{E}_{\mathbb{Q}}\left[\sum_{j=1}^{n}\delta F\left(L(T_{j-1})+s\right)\beta_{T_{j}}\mathbf{1}_{\{T_{j}<\tau\}}\right]$$

if $\ensuremath{\mathbb{Q}}$ is the valuation measure.

It is straightforward to see that the spread s is given by

$$s = \frac{(1 - \mathbb{E}[f(Z)])\mathbb{E}_{\mathbb{Q}}[\beta_T]\mathbb{P}(\tau \le T) - \sum_{j=1}^n \mathbb{E}_{\mathbb{Q}}[\beta_{T_{j-1}} - \beta_{T_j}]\mathbb{P}(T_j < \tau)}{\delta \sum_{j=1}^n \mathbb{E}_{\mathbb{Q}}[\beta_{T_j}]\mathbb{P}(T_j < \tau)}$$