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Abstract

Weak approximations have been developed to calculate the expectation value of functionals
of stochastic di¤erential equations, and various numerical discretization schemes (Euler, Mil-
shtein) have been studied by many authors. We present a general framework based on semigroup
expansions for the construction of higher order discretization schemes and analyze its rate of
convergence. We also apply it to approximate general Lévy driven stochastic di¤erential equa-
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1 Introduction

Weak approximation problems play an important role in the numerical calculation of E[f(Xt(x))]
where Xt(x) is the solution of the stochastic di¤erential equation (SDE for short)

Xt(x) = x+

Z t

0

~V0(Xs�(x))ds+

Z t

0

V (Xs�(x))dBs +

Z t

0

h(Xs�(x))dYs: (1.1)

with smooth coe¢ cients ~V0 : RN ! RN ; V = (V1; : : : ; Vd); h : R
N ! RN 
Rd whose derivatives of

any order (� 1) are bounded. Here Bt is a d-dimensional standard Brownian motion and Yt is an
d-dimensional Lévy process associated with the Lévy triplet (b; 0; �) satisfying the conditionZ

Rd
0

(jyj2 _ jyjp)�(dy) <1:

for any p 2 N.
Our purpose is to �nd a discretization scheme (X(n)

t (x))t=0;T=n;:::;T for given T > 0 such that

jE[f(XT (x))]� E[f(X(n)
T (x))]j � C(T; f; x)

nm
:

We denote brie�y by E[f(XT (x))] � E[f(X(n)
T (x))] = O(1=nm) the above situation, and say that

X
(n)
T is a m-th order discretization scheme for Xt or that X

(n)
T is an approximation scheme of order

m. The Euler scheme is a 1st order scheme, and has been studied by many researchers. Talay-
Tubaro [22] shows the 1st order convergence of the Euler scheme and 2nd order convergence with
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the Romberg extrapolation for continuous di¤usions. The fact that the convergence rate of the Euler
scheme also holds for certain irregular functions f under a Hörmander type condition has been proved
by Bally-Talay [3] using Malliavin calculus. For the general Lévy driven case, the Euler-Maruyama
scheme was �rst studied in Protter- Talay [20], see also Jacod-Protter [9] and Jacod et al. [8] (for
smooth f). The Itô-Taylor (weak-Taylor) high order scheme is a natural extension of the Euler
scheme although is hard to simulate due to the use of multiple stochastic integrals. A discussion on
the Itô-Taylor scheme with the Romberg extrapolation can be found in Kloeden-Platen [10].
In the continuous di¤usion case, some new discretization schemes (also called Kusuoka type

schemes) which are of order m � 2 without the Romberg extrapolation have been introduced by
Kusuoka [13], Lyons-Victoir [15], Ninomiya-Victoir [18], Kusuoka-Ninomiya-Ninomiya [14] and Fu-
jiwara [6] (m = 6). The rate of convergence of these schemes is closely related to the stochastic
Taylor expansion, or series expansion of exponential maps on a noncommutative algebra.
The actual simulation is carried out using (quasi) Monte Carlo methods. That is, one computes

1
N

PN
i=1 f(X

(n);i
T (x)) where X(n);i

T (x), i = 1; :::; N denotes N i.i.d. copies of X(n)
T (x). Therefore,

using the law of large numbers, the �nal error 1
N

PN
i=1 f(X

(n);i
T (x)) � E[f(XT (x))] is of the order

O
�

1p
N
+ 1

nm

�
. Then the optimal asymptotic choice of n is O(nm) = O(

p
N).

The goal of the present article is two-fold. First, we introduce a general framework to study weak
approximation problems from the standpoint of operator (semigroup) expansions. That is given two
processes that have equal semigroup expansions up to some order lead after composition to two
processes that are closed in law. This goal is not new. In fact, using PDE techniques, Milshtein and
Talay between others proved various weak approximation results. Although our proof is essentially
the same it gives a new viewpoint that will help in de�ning new approximation schemes.
The next idea, is to decompose the generator associated with (1.1) in (say) d+2 components where

each component is associated with each component of the driving process (the whole Lévy process
is considered as one component). Then we prove that if each of these components is approximated
with an error of order m + 1 then the composition gives an error of order m. In the particular
case that each component can be characterized as the semigroup of a �ow-type process then the
composition leads to a composition-type approximation scheme.
Secondly, using the above strategy we provide approximations for solutions of (1.1). In partic-

ular, our approximations are valid for in�nite activity Lévy processes Y . We prove that in fact,
if one uses the Asmussen-Rosiński idea of approximating the jumps of size smaller than " with a
Brownian motion and we only simulate one jump of size bigger than " per each time interval in the
approximation is enough to provide a �rst order approximation procedure. Furthermore we give the
necessary estimate to determine " as a function of n. For this approximation, we found it better to
decompose the generator in d+ 4 components.
This paper is organized as follows. In Section 2, we introduce the main example and the goal for

the �rst part of this article in explicit mathematical terms. The general framework is introduced in
Section 3. In Section 4 we give the results of convergence rates of numerical discretization schemes
in the general framework. In Section 5, we give a general result that states how to recombine
the approximations to coordinate processes in order to approximate the semigroup associated to
(1.1). Finally, in Section 6 we approximate each coordinate process and in particular, we de�ne
approximation schemes for Lévy driven SDEs.

2 Weak approximation problem

In order to better understand the abstract formulation in Section 3, we introduce here our main
example. Let (Yt) be a d-dimensional Lévy process characterized by Lévy-Khintchin formula:

E[eih�;Yti] = exp t

 
ih�; bi � h�; c�i

2
+

Z
Rd
0

(eih�;yi � 1� ih�; �(y)i)�(dy)
!

(2.1)
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where b 2 Rd, c 2 Rd 
 Rd (symmetric, semi-positive de�nite) and � is a Borel measure on
Rd
0 := R

d n f0g satisfying that for all p � 2Z
Rd
0

(jyj2 _ jyjp)�(dy) <1: (2.2)

This measure � is called the Lévy measure. It is well known that (2.2) implies that Yt 2
T
p�1 L

p

for all t. We also recall that � is a truncation function (e.g. �(y) = y1fjyj�1g, the constant b and �
depend on each other). The triplet (b; c; �) is called the Lévy triplet.
The Lévy driven stochastic di¤erential equation is given by

Xt(x) = x+

Z t

0

~V0(Xs�(x))ds+

Z t

0

V (Xs�(x))dBs +

Z t

0

h(Xs�(x))dYs (2.3)

with smooth coe¢ cients ~V0 : RN ! RN ; V = (V1; : : : ; Vd); h : R
N ! RN 
Rd whose derivatives

of any order (� 1) are bounded. Here Bt and Yt are independent d-dimensional standard Brownian
motion and Yt is a d-dimensional Lévy process associated with the Lévy triplet (b; 0; �) satisfying
the condition (2.2). Using general semimartingale theory (see [19]) we have that the above equation
has a unique solution. We de�ne V0 := ~V0 � 1

2

Pd
i=1

PN
j=1

@Vi
@xj

V
(j)
i . Then (2.3) can be rewritten in

the following Stratonovich form:

Xt(x) = x+

dX
i=0

Z t

0

Vi(Xs�(x)) � dBis +
Z t

0

h(Xs�(x))dYs

where B0t = t.
Before introducing the general framework of approximation, let us explain in mathematical terms

the goal in this article. Our main example corresponds to the approximation of the semigroup Pt
de�ned as the semigroup associated to the Markov process Xt:

Ptf(x) = E[f(Xt(x))]

where f : RN ! R is a continuous function with polynomial growth at in�nity.
Let Qt � Qnt be an operator such that the semigroup property is satis�ed in fkT=n; k = 0; :::; ng.

Assume that Qt approximates Pt in the sense that it satis�es the local error estimate (Pt�Qt)f(x) =
O(tm+1). Then using the semigroup property of both Pt and (QkT=n), we notice that

PT f(x)� (QT=n)nf(x) =
n�1X
k=0

(QT=n)
k(PT=n �QT=n)PT� k+1

n T f(x):

Therefore if we have good norm estimates of (QT=n)k and PT� k+1
n T in a sense to be de�ned later (in

particular the norm estimates have to be independent of n) then we can expect that (QT=n)n is an
approximation of order m to PT . Finally in order to be able to perform Monte Carlo simulations we
assume that Q has a stochastic representation. That is, there exists a stochastic process M =Mt(x)
starting at x such that Qtf(x) = E[f(Mt(x))]. Then clearly, we have the following representation.

QT f(x) = (QT=n)
nf(x) = E[f(M1

T=n � � � � �Mn
T=n(x))]

where M i
T=n are independent copies of MT=n and � is de�ned as (M i

t �M
j
t )(x) :=M

i
t (M

j
t (x)).

The above ideas are well known and have been already used to achieve proofs of weak convergence
(for historical references, see [10]). Nevertheless, it seems to us that this is the �rst time it appears
in this general framework. For example, if we take Mt(x) := x+ ~V0(x)t+V (x)Bt+h(x)Yt for d = 1,
one obtains the Euler-Maruyama scheme.
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Next to further simplify the procedure to obtain approximations we write the operator Pt as a
composition of d + 2 operators as follows. First de�ne the following stochastic processes Xi;t(x),
i = 0; :::; d+ 1, usually called coordinate processes, which are the unique solutions of

X0;t(x) = x+

Z t

0

V0(X0;s(x))ds

Xi;t(x) = x+

Z t

0

Vi(Xi;s(x)) � dBis 1 � i � d

Xd+1;t(x) = x+

Z t

0

h(Xd+1;s�(x))dYs:

Then we de�ne
Qi;tf(x) := E[f(Xi;t(x))] (2.4)

for continuous function f : RN ! R with polynomial growth at in�nity.
For notational convenience we identify a smooth function V : RN ! RN with a smooth vector

�eld
PN

i=1 V
(i) @

@xi
on RN . Let us de�ne (integro-)di¤erential operators Li acting on C2 by

L0f(x) := (V0f)(x); Lif(x) :=
1

2
(V 2i f)(x); 1 � i � d (2.5)

Ld+1f(x) := rf(x)h(x)b+
Z
(f(x+ h(x)y)� f(x)�rf(x)h(x)�(y))�(dy):

It is well known that L :=
Pd+1

i=0 Li is the generator of X and similarly Li is the generator of
Xi;t. Also etL := Pt and etLi := Qi;t respectively where we consider these expressions as exponential
maps on a noncommutative algebra. One notices that these operators have the form

etL =
mX
k=0

tk

k!
Lk +O(tm+1) (2.6)

etLi =
mX
k=0

tk

k!
Lki +O(tm+1) (2.7)

To approximate etL, we would like to �nd some combination of operators satisfying

etL �
kX
j=1

�je
t1;jA1;j � � � et`j ;jA`j ;j = O(tm+1) (2.8)

with some ti;j > 0, Ai;j 2 fL0; L1; : : : ; Ld+1g and weights f�jg � [0; 1] with
Pk

j=1 �j = 1. This will
correspond to an m-th order discretization scheme.
To �nd such schemes, one can perform formal Taylor expansions for etA in each of the terms

in (2.8). We remark that the result (2.8) will follow directly from (2.6) and (2.7) independent of
the speci�c form of the decomposition L :=

Pd+1
i=0 Li. This algebraic calculation has lead to the

introduction of the following approximation schemes
Ninomiya-Victoir (a):

1

2
e
t
2L0etL1 � � � etLd+1e t2L0 + 1

2
e
t
2L0etLd+1 � � � etL1e t2L0 (2.9)

Ninomiya-Victoir (b):

1

2
etL0etL1 � � � etLd+1 + 1

2
etLd+1 � � � etL1etL0 (2.10)

Splitting method:
e
t
2L0 � � � e t2LdetLd+1e t2Ld � � � e t2L0 (2.11)
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The semigroups generated by these operators have a probabilistic representation. For example,
Ninomiya-Victoir (a) corresponds to

1U< 1
2
X0;t=2 �Xd+1;t � � �X1;t �X0;t=2(x) + 1 1

2�UX0;t=2 �X1;t � � �Xd+1;t �X0;t=2(x)

where U is a uniform random variable taking values in [0; 1], independent of Xi;t. However, since a
closed-form solution Xi;t is not always available, one has to replace Xi;t with other approximations
of order m+1 so that the �nal approximation result remains unchanged. Nevertheless the fact that
there is only one driving process simpli�es this task. This problem will be discussed in Section 5.

3 Preliminaries

3.1 Notation and assumptions

In this section, we consider a general framework for weak approximations following the arguments
in Section 2, without using the speci�c form of the operator. We �rst de�ne the following functional
spaces.

� Cmp � Cmp (RN ): the set of Cm functions f : RN ! R such that for each multi-index � with
0 � j�j � m, j@�x f(x)j � C(�)(1 + jxjp) for some positive constant C(�).

We also let Cp � C0p . Let us de�ne a norm on Cmp by

kfkCm
p
:= inffC � 0 : j@�x f(x)j � C(1 + jxjp); 0 � j�j � m;x 2 RNg

where we denote j�j := �1 + � � �+ �N for � = (�1; : : : ; �N ) 2 ZN+ .

� C1;mp ([0; T ]�RN ): the set of functions f : [0; T ]�RN ! R such that s 7! f(s; x) is continuous
di¤erentiable for all x 2 RN and satis�es that f(s; �), @sf(s; �) 2 Cmp with sups2[0;T ](kf(s; �)kCm

p
+

k@sf(s; �)kCm
p
) <1.

From now on, we denote by Qt :
S
p�0 Cp(R

N )!
S
p�0 Cp(R

N ) a linear operator for 0 � t � T
such that Qt1 � 1.

Assumption (M0) . If f 2 Cp with p � 2, then Qtf 2 Cp and

sup
t2[0;T ]

kQtfkCp � KkfkCp

for some constant K > 0 independent of n. Futhermore, we assume 0 � Qtf(x) � Qtg(x) whenever
0 � f � g.

We now introduce two assumptions which are highly related to the convergence rate of approxi-
mation schemes.

Assumption (M) . Qt satis�es (M0), and for each fp(x) := jxj2p (p 2 N),

Qtfp(x) � (1 +Kt)fp(x) +K 0t (3.1)

for some constant K = K(T; p), K 0 = K 0(T; p) > 0.

For m 2 N, �m : [0; T ]! R+ denotes a increasing function which satis�es

lim sup
t!0+

�m(t)

tm�1
= 0:

Usually, we have �m(t) = tm.
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Assumption R(m; �m) . For each p � 2, there exists a constant q = q(m; p) � p and linear
operators ek � eQk : C2kp ! Cp+2k (k = 0; 1; : : : ;m) such that

(A): For every f 2 C2(m
0+1)

p with 0?? � m0 � m, the operator Qt satis�es

Qtf(x) =
m0X
k=0

(ekf)(x)t
k + (Err

(m0)
t f)(x); t 2 [0; T ]; (3.2)

where Err(m
0)

t f 2 Cq, and satis�es the following condition:
(B): If f 2 Cm00

p with m00 � 2k, then ekf 2 Cm
00�2k

p+2k and there exists a constant constant K =
K(T;m) > 0 such that

kekfkCm00�2k
p+2k

� KkfkCm00
p

k = 0; 1; : : : ;m: (3.3)

Furthermore if f 2 Cm00

p with m00 � 2m0 + 2,

kErr(m
0)

t fkCq �
(
Ktm

0+1kfkCm00
p

if m0 < m

Kt�m(t)kfkCm00
p

if m0 = m

for all 0 � t � T .
(C): For every 0 � k � m and j � 2k+2, if f 2 C1;jp ([0; T ]�RN ), then ekf 2 C1;j�2kp+2k ([0; T ]�RN ).

In order to compare the �nite power expansions of di¤erent operators, we introduce the following
notation.

J�m(Qt) :=
mX
k=0

tkek

Jm(Q) := em:

J�m(Qt) is a linear operator, which is related to the series expansion of t 7! etLi (cf. Proposition
7.6). The following Lemma comprises some basic properties related to the above de�nition. The
proof is straightforward.

Lemma 3.1. The following properties are satis�ed:

R(m+ 1; �m+1) ) R(m; tm)

R(m; �m) ) R(m; ~�m)

whenever �m(t) � K~�m(t) and lim supt!0+
~�m(t)=t

m�1 = 0.

(i) Let f�ig1�i�` be deterministic positive constants with
P

i �i = 1, and assume (M) for Q(i)t
(i = 1; : : : ; `). Then

P`
i=1 �iQ

(i)
t also satis�es (M).

(ii) Let f�ig1�i�` � R and assume R(m; �m) for Q(i)t (i = 1; : : : ; `). Then
P`

i=1 �iQ
(i)
t also satis�es

R(m; �m).

4 Weak rate of convergence

In this section, we prove the rate of convergence for the approximating operator Q under the as-
sumptions (M), R(m; �m). Throughout this section, we assume the following assumption

Assumption (MP ) . For all f 2 Cmp then P�f 2 C1;m�2p+2 with Pt1 � 1 and furthermore the
following two properties are satis�ed for some positive constant C
1. supt2[0;T ] kPtfkCm

p
� CkfkCm

p
.

2. k(Pt � Ps) fkCm
p
� Cjt� sjkfkCm

p
.
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Theorem 4.1. Assume (M) and R(m; �m) for Pt and Qt with J�m(Pt � Qt) = 0. Then for any
f 2 C2(m+1)p , there exists a constant K = K(T; x) > 0 such that���PT f(x)� (QT=n)nf(x)��� � K�m�T

n

�
kfk

C
2(m+1)
p

: (4.1)

For the proof, we need the following lemma.

Lemma 4.2. Under assumption (M), the operators Pt and Qt satisfy

sup
n

max
0�k�n

��
PT=n

�k
+ (QT=n)

k
�
f(x) <1

for any positive function f 2 Cp with p � 0.

Proof. Without loss of generality we do the proof for Q. Let fp(x) = jxj2p for p 2 N. By the
assumption (M), we have

(QT=n)
kfp(x) = (QT=n)

k�1(QT=nfp)(x)

� (1 + C
n
)(QT=n)

k�1fp(x) +
C 0

n

with some constant C;C 0 independent of t; x; k; n. Since (1 + C
n )

k � eC , one proves by induction
that

sup
n

max
0�k�n

(QT=n)
kfp(x) � eCC 0(1 + jxj2p):

This completes the proof.

Proof. Proof of Theorem 4.1: Let f 2 C
2(m+1)
p . Using the semigroup property and assumption

R(m; �m), we have

PT f(x)� (QT=n)nf(x) =
n�1X
k=0

(QT=n)
k(PT=n �QT=n)PT� k+1

n T f(x)

=
n�1X
k=0

(QT=n)
k(Err

(m)
T=nPT� k+1

n T f)(x)

where Err(m)t is the error term of (P �Q) de�ned in (3.2). We obtain from assumptions R(m; �m)
and (MP )

j(Err(m)T=nPT� k+1
n T f)(x)j � K1

T

n
�m

�T
n

�
(1 + jxjq)kPT� k+1

n T fkC2(m+1)
p

� K2T

n
�m

�T
n

�
(1 + jxjq)kfk

C
2(m+1)
p

and hence Lemma 4.2 leads to

j(QT=n)k(Err(m)T=nPT� k+1
n T f)(x)j �

K2T

n
�m

�T
n

�
kfk

C
2(m+1)
p

(QT=n)
k((1 + jxjq))

� K

n
�m

�T
n

�
kfk

C
2(m+1)
p

for some constant K = K(T; x). This completes the proof.

The following theorem is an extension of Theorem 4.1, and is analogous to Talay-Tubaro [22,
Theorem 1].
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Theorem 4.3. Assume (M) and R(m + 1; �m+1) for Qt with J�m(Pt � Qt) = 0. Then for each
f 2 C2(m+3)p , we have

PT f(x)� (QT=n)nf(x) =
K

nm
+O

��T
n

�m+1
_ �m+1

�T
n

��
(4.2)

where K = Tm
R T
0
PsJm+1(P �Q)PT�sf(x)ds.

Proof. We start by noting that as in the proof of Theorem 4.1,

(PT=n �QT=n)PT�sf(x) =
�T
n

�m+1
Jm+1(P �Q)PT�sf(x) + (Err(m+1)T=n PT�sf)(x)

and therefore,

PT f(x)� (QT=n)nf(x) =
�T
n

�m+1 n�1X
k=0

(QT=n)
kJm+1(P �Q)PT� k+1

n T f(x)

+O
�
�m+1

�T
n

��
:

Now applying the proof of Theorem 4.1 (for m = 1) to Jm+1(P � Q)PT� k+1
n T f 2 C4p+2(m+1), we

obtain

j((QT=n)k � PkT=n)Jm+1(P �Q)PT� k+1
n T f(x)j

� C1(T; x)

n
kJm+1(P �Q)PT� k+1

n T fkC4
p+2(m+1)

� C2(T; x)

n
kfk

C
2(m+3)
p

:

Next, we have by hypothesis (MP ),

jPkT=nJm+1(P �Q)PT� k+1
n T f(x)� P k+1

n TJm+1(P �Q)PT� k+1
n T f(x)j

= j(I � PT=n)PkT=nJm+1(P �Q)PT� k+1
n T f(x)j

� C3(T; x)

n
kPkT=nJm+1(P �Q)PT� k+1

n T fkC4
p+2(m+1)

� C4(T; x)

n
kfk

C
2(m+3)
p

:

Using Lemmas 7.1, 7.2 in the Appendix and Jm+1(P �Q)PT�sf(x) 2 C1;2p+2(m+2), we have

���T
n

n�1X
k=0

P k+1
n TJm+1(P �Q)PT� k+1

n T f(x)�
Z T

0

PsJm+1(P �Q)PT�sf(x)ds
���

� C(T; f; x)

n
:

As a result, taking K = Tm
R T
0
PsJm+1(P �Q)PT�sf(x)ds, we conclude that

PT f(x)� (QT=n)nf(x) =
K

nm
+O

��T
n

�m+1
_ �m+1

�T
n

��
:

This concludes the proof.
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5 Algebraic approximations of semigroup operators using co-
ordinate operators

Throughout this section, we assume that Pt, t 2 [0; T ] is a semigroup that satis�es (M); (MP )and
R(m; �m). Furthermore we suppose that

J�m(Pt) = I +
mX
j=1

tj

j!
ej

with ej =
�Pd+1

i=0 Li

�j
satisfying the properties stated in R(m; �m). Similarly, we assume that

Qi;t:
S
p�0 Cp(R

N )!
S
p�0 Cp(R

N ), i = 0; :::; d+1 be a sequence of operators such that they satisfy
(M); (MP )and R(m; �m) with

J�m(Qi;t) = I +
mX
j=1

tj

j!
Lji :

Q`
i=1 ai := a1a2 � � � a` denotes a noncommutative product.

Theorem 5.1. Assume m = 2: That is, (M) and R(2; �2) are satis�ed for Qi;t (i = 0; 1; : : : ; d+1).
Then all the following operators satisfy (M) and R(2; �2):

N-V(a) Q(a)t = 1
2Q0;t=2

Qd+1
i=1 Qi;tQ0;t=2 +

1
2Q0;t=2

Qd+1
i=1 Qd+2�i;tQ0;t=2

N-V(b) Q(b)t = 1
2

Qd+1
i=0 Qi;t +

1
2

Qd+1
i=0 Qd+1�i;t

Splitting Q(sp)t = Q0;t=2 � � �Qd;t=2Qd+1;tQd;t=2 � � �Q0;t=2

Moreover, we have J�2(Q
(a)
t ) = J�2(Q

(b)
t ) = J�2(Q

(sp)
t ) =

P2
k=0

tk

k!L
k. In particular, the above

schemes de�ne a second order approximation scheme.

The proof of Theorem 5.1 is an application of Theorem 4.1. The conditions follow from the next
lemma, together with an algebraic calculation as pointed out at the end of Section 2.
This theorem can also be stated for third order approximation schemes.

Lemma 5.2. Let Q1t and Q
2
t :
S
p�0 Cp(R

N )!
S
p�0 Cp(R

N ) be two linear operators and let Q1tQ
2
t

be the composite operator. Then
(i) If (M) holds for Q1t , Q

2
t , then it also holds for Q

1
tQ

2
t .

(ii) If R(m; �m) holds for Q1t , Q2t , then it also holds for Q1tQ2t .

Proof. (i) is obvious. We now prove (ii). Let m0 � m. We have by hypothesis that

Q1tf(x) =
m0X
k=0

(JkQ
1
tf)(x)t

k + (Err
(m0;1)
t f)(x)

Q2tf(x) =
m0X
k=0

(JkQ
2
tf)(x)t

k + (Err
(m0;2)
t f)(x)

for f 2 C2(m
0+1)

p , p � 2. Furthermore there exists q = q(m; p) > 0 such that Err(m
0;1)

t f , Err(m
0;2)

t f 2
Cq. Now we prove (A)-(C) in the de�nition of R(m; �m).
(A): Note that for f 2 C2(m

0+1)
p (RN ),

Q1tQ
2
tf(x) = Q

1
t

0@ m0X
k=0

(JkQ
2
tf)(x)t

k + (Err
(m0;2)
t f)(x)

1A :
9



Since JkQ2tf 2 C
2(m0+1)�2k
p+2k , Q1t (JkQ

2
tf) can be written as

(Q1t (JkQ
2
tf))(x) =

m0�kX
`=0

(J`Q
1
t (JkQ

2
tf))(x)t

` + (Err
(m0�k;1)
t JkQ

2
tf)(x):

As a result, we have

Q1tQ
2
tf(x) =

m0X
k=0

m0�kX
`=0

(J`Q
1
t (JkQ

2
tf))(x)t

k+` + (Err
(m0;1;2)
t f)(x)

where

(Err
(m0;1;2)
t f)(x) = (Q1tErr

(m0;2)
t f)(x) +

m0X
k=0

(Err
(m0�k;1)
t JkQ

2
tf)(x)t

k: (5.1)

We obtain from the properties of the error terms that Err(m
0;1;2)

t f 2 Cq0 for some q0 = q0(m; p) > q.
(B): For f 2 Cm00

p with m00 � 2(m0 + 1), we can derive for k + ` � m0,

kJ`Q1t (JkQ2tf)kCm00�2(k+`)
p+2(k+`)

� K1kJkQ2tfkCm00�2k
p+2k

� K2kfkCm00
p

and by (5.1),

kErr(m
0;1;2)

t fkCq0 � K3kErr(m
0;2)

t fkCq +K4kErr(m
0;1)

t J0Q
2
tfkCq0

+ K5

m0X
k=1

kJkQ2tfkCm00�2k
p+2k

tm
0+1

�
(
Ktm

0+1kfkCm00
p

if m0 < m

Kt�m(t)kfkCm00
p

if m0 = m:

Finally, the proof of (C) is straightforward.

Proof. Proof of Theorem 5.1: Using this lemma, we end the proof, calculating J�m for each numerical
discretization scheme. For instance, in the case of N-V(b) (i.e. (2.10)), we obtain

J�2

�1
2

d+1Y
i=0

Qi;t +
1

2

d+1Y
i=0

Qd+1�i;t

�
=
1

2
J�2

� d+1Y
i=0

J�2

�
Qit

��
+
1

2
J�2

� d+1Y
i=0

J�2

�
Qd+1�i;t

��
=
1

2
J�2

� d+1Y
i=0

� 2X
k=0

tk

k!
Lki

��
+
1

2
J�2

� d+1Y
i=0

� 2X
k=0

tk

k!
Lkd+1�i

��
=
1

2

�
I + t

d+1X
i=1

Li +
t2

2

d+1X
i=1

L2i + t2
X
i<j

LiLj

�

+
1

2

�
I + t

d+1X
i=1

Li +
t2

2

d+1X
i=1

L2i + t2
X
i>j

LiLj

�
= J�2(Pt):

Another idea to construct construct higher order schemes is to use local Romberg extrapolation.
In order to do this we need to weaken the assumption f�ig � [0; 1]. This is done in the next theorem.
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Theorem 5.3. Let m = 1 or 2. Assume (M) and R(2m; t2m) for Pt and Q[i]t (i = 1; : : : ; `) and
(MP ) for Pt. Furthermore, we assume

(1) J�2m
�
Pt �

P`
i=1 �iQ

[i]
t

�
= 0 for some real numbers f�igi=1;:::;` with

Pl
i=1 �i = 1

(2) There exists a constant q = q(m; p) > 0 such that for every f 2 Cm0

p with m0 � 2(m + 1),

(Pt �Q[i]t )f 2 C
m0�2(m+1)
q and

sup
t2[0;T ]

k(Pt �Q[i]t )fkCm0�2(m+1)
p

� CT kfkCm0
q
Tm+1:

Then we have for any f 2 C4(m+1)p ,

���PT f(x)� X̀
i=1

�i(Q
[i]
T=n)

nf(x)
��� � C(T; f; x)

n2m
:

Proof. We �rst remark that the operator
P`

i=1 �iQ
[i]
t no longer satis�es the semigroup property, i.e.P`

i=1 �i(Q
[i]
T=n)

n 6= (
P`

i=1 �iQ
[i]
T=n)

n. Thus the proof is nontrivial. Note that for f 2 C4(m+1)p ,

E := PT f(x)�
X̀
i=1

�i

�
Q
[i]
T=n

�n
f(x) =

X̀
i=1

�i

�
PT �

�
Q
[i]
T=n

�n�
f(x):

Using the semigroup property of Pt and Q
[i]
k
nT
, we have

E =
X̀
i=1

�i

n�1X
k=0

(Q
[i]
T=n)

k
�
PT=n �Q[i]T=n

�
PT� k+1

n T f(x)

=
X̀
i=1

�i

n�1X
k=0

PkT=n

�
PT=n �Q[i]T=n

�
PT� k+1

n T f(x)

+
X̀
i=1

�i

n�1X
k=0

�
(Q

[i]
T=n)

k � PkT=n
��
PT=n �Q[i]T=n

�
PT� k+1

n T f(x)

We expand (Q[i]T=n)
k � PkT=n again, to obtain

E =
n�1X
k=0

(PT=n)
k
�
PT=n �

X̀
i=1

�iQ
[i]
T=n

�
PT� k+1

n T f(x)

+
X̀
i=1

�i

n�1X
k=0

k�1X
l=0

�
Q
[i]
T=n

�l�
Q
[i]
T=n � PT=n

�
PT� l+1

n T

�
PT=n �Q[i]T=n

�
PT� k+1

n T f(x):

By the assumption (1), we have

��� n�1X
k=0

(PT=n)
k
�
PT=n �

X̀
i=1

�iQ
[i]
T=n

�
PT� k+1

n T f(x)
��� � C1(T; f; x)

n2m
:

Thus we end the proof by showing that��� X̀
i=1

�i

n�1X
k=0

k�1X
l=0

�
Q
[i]
T=n

�l�
Q
[i]
T=n � PT=n

�
PT� l+1

n T

�
PT=n �Q[i]T=n

�
PT� k+1

n T f(x)
���

� C2(T; f; x)

n2m
:

11



Using here the assumption (2), we obtain�Q[i]T=n � PT=n�PT� l+1
n T

�
PT=n �Q[i]T=n

�
PT� k+1

n T f

Cq0

� C(T )

nm+1

�PT=n �Q[i]T=n�PT� k+1
n T f


C
2(m+1)
q

� C 0(T )

n2(m+1)
kfk

C
4(m+1)
p

and therefore��� X̀
i=1

�i

n�1X
k=0

k�1X
l=0

�
Q
[i]
T=n

�l�
Q
[i]
T=n � PT=n

�
PT� l+1

n T

�
PT=n �Q[i]T=n

�
PT� k+1

n T f(x)
���

�
n�1X
k=0

k�1X
l=0

C2(T; f; x)

n2(m+1)
� C2(T; f; x)

n2m
:

This completes the proof.

Example 5.4. It is known that the Ninomiya-Victoir scheme

�1
2
e
T
2nL0

d+1Y
i=1

e
T
nLie

T
2nL0 +

1

2
e
T
2nL0

d+1Y
i=1

e
T
nLd+2�ie

T
2nL0

�n
is of order 2 (m = 2; �2(t) = t

2 in Theorem 4.1). By Theorem 5.3, the following modi�ed Ninomiya-
Victoir scheme

1

2

�
e
T
2nL0

d+1Y
i=1

e
T
nLie

T
2nL0

�n
+
1

2

�
e
T
2nL0

d+1Y
i=1

e
T
nLd+2�ie

T
2nL0

�n
is also of order 2.

Example 5.5. Fujiwara [6] gives a proof of a similar version of the above theorem and some examples
of 4th and 6th order. We introduce the examples of 4th order:

4

3

 
1

2

� d+1Y
i=0

e
t
2Li
�2
+
1

2

� d+1Y
i=0

e
t
2Ld+1�i

�2!
� 1
3

 
1

2

d+1Y
i=0

etLi +
1

2

d+1Y
i=0

etLd+1�i

!

In order to complete the approximation procedure through (quasi) Monte Carlo methods we need
to �nd a stochastic characterization of the operators Qi;t.

De�nition 5.6. Given a stochastic process Yt(x) 2 \p�1Lp, we say that Y is the stochastic char-
acterization of the linear operator Qt if Qtf(x) = E [f(Yt(x))] for f 2

S
p�0 Cp. In such as case we

use the notation Qt � QYt :

Remark 5.7. Given the operators QZ
i

t (i = 1; : : : ; `) and the deterministic positive weights f�ig1�i�`
with

Pl
i=1 �i = 1. Let U be a uniform random variable on [0; 1] independent of (Zi)i and de�ne

Z :=
P`

i=1 1(
Pi�1

j=1 �j � U <
Pi

j=1 �j)Z
i. Then

QZt f(x) � E[f(Zt(x))] =
X̀
i=1

�iQ
Zi

t f(x):

Therefore by Lemma 3.1 if QZ
i

t satisfy (M) and R(m; �m) so does QZt . This property will be used
repeatedly in what follows.
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6 Applications

From this section on, we discuss the application of the previous approximation results to the case
of solutions of the sde (1.1). From the results in the Appendix (see Corollary 7.7), it is clear
that the semigroup Ptf(x) := E[f(Xt(x))] satis�es the hypotheses (M) and R(m; �m). We de�ne
various approximations generated via a stochastic process �Xi with corresponding operator Q

�Xi
t

(i = 0; 1; : : : ; d+ 1).
Due to the previous results and in particular, Theorem 5.1, we see that is enough to verify

local conditions on the approximation operators to conclude global properties of approximation. In
particular, we only need to verify that the operator associated with �Xi (the approximation to the
coordinate process) satis�es (M) and R(m; �m) and J�m(Q

�Xi
t ) = I +

Pm
j=1

tj

j!L
j
i for some m � 2

for Li given by (2.5). This is the goal in most of the applications in this section.
Recall that the stochastic di¤erential equation to be approximated is

Xt(x) = x+
dX
i=0

Z t

0

Vi(Xs�(x)) � dBis +
Z t

0

h(Xs�(x))dYs:

In each of the following sections we consider di¤erent approximation processes for the coordinate
processes Xi;t. In each section, the notation for the approximating process is always �Xi;t. We hope
that this does not raise confusion as the framework in each section is clear.

6.1 Continuous di¤usion component

a) Explicit solution: Let V : RN ! RN be a smooth function satisfying the linear growth
condition jV (x)j � C(1 + jxj). The exponential map is de�ned as exp(V )x = z1(x) where z denotes
the solution of the ordinary di¤erential equation

dzt(x)

dt
= V (zt(x)); z0(x) = x: (6.1)

The solution of the coordinate sde is obtained in the following Proposition. The proof follows
from Ito�s formula.

Proposition 6.1. For i = 0; 1; :::; d, the stochastic di¤erential equation

Xi;t(x) = x+

Z t

0

Vi(Xi;s(x)) � dBis (6.2)

has a unique solution given by
Xi;t(x) = exp(B

i
tVi)x:

Xi;t(x) is called the i-th coordinate process and its semigroup is denoted by Qit. This is a
trivial example of the approximation of etLi , i = 0; 1; : : : ; d satisfying (M) and R(m; tm). However,
sometimes it is not easy to obtain the closed-form solution to the ODE (6.1). In those cases, we
shall approximate exp(tV )x. Here we will do this with the Taylor expansion �rst and then the
Runge-Kutta methods denoted by bm and cm respectively.

b) Taylor expansion: We �rst prove the following lemmas which help us to �nd the rate of
convergence of the scheme to be de�ned later. The following Lemma follows easily from Gronwall�s
lemma.

Lemma 6.2. Let V be a smooth function which satis�es the linear growth condition. Then j exp(tV )xj �
C eKjtj(1 + jxj) for t 2 R, x 2 RN .

From now on we denote by ej : RN ! R, the coordinate function ej(x) = xj for j = 1; :::; N .
Furthermore, we also denote by V the vector �eld operator de�ned from V .

13



Lemma 6.3. Let f 2 Cm+1p . Then we have for i = 0; 1; : : : ; d,

f (exp(tVi)x) =
mX
k=0

tk

k!
V ki f(x) +

Z t

0

(t� u)m
m!

V m+1i f(exp(uVi)x)du (6.3)

and ��� Z t

0

(t� u)m
m!

V m+1i f(exp(uVi)x)du
��� � CmkfkCm+1

p
eKjtj(1 + jxjp+m+1)jtjm+1:

for all t 2 R.

Proof. Assertion (6.3) follows application of Taylor expansion to the function f(exp(tV )x) around
t = 0. Next, as jV m+1i f(x)j � C(1 + jxjp+m+1), we obtain from Lemma 6.2,��� Z t

0

(t� u)m
m!

V m+1i f(exp(uV )x)du
���

� CmkfkCm+1
p

Z jtj

0

jtjmCeKjuj(1 + jxjp+m+1))du

� C 0mkfkCm+1
p

eKjtj(1 + jxjp+m+1)jtjm+1:

Based on this Lemma, we de�ne the approximation to the solution of the coordinate equation
(6.2) as follows

bjm(t; V )x =

mX
k=0

tk

k!
(V kej)(x); j = 1; :::; N:

De�ne
�Xi;t(x) = b2m+1(B

i
t; Vi)x for i = 0; :::; d:

Then we have the following approximation result.

Proposition 6.4. (i) For every p � 1,

kXi;t(x)� �Xi;t(x)kLp � C(p;m; T )(1 + jxj2(m+1))tm+1:

(ii) Let f 2 C1p . Then we have

E[jf(Xi;t(x))� f( �Xi;t(x))j] � C(m;T )kfkC1
p
(1 + jxjp+2(m+1))tm+1:

Proof. (i): Apply Proposition 6.1 and Lemma 6.3 with f = ei. Then we have

kXi;t(x)� �Xi;t(x)kLp � E
h
jCmeKjBtj(1 + jxj2(m+1))jBtj2(m+1)jp

i1=p
� C(1 + jxj2(m+1))tm+1

for some constant C = C(p;m; T ).
(ii): We �rst apply the mean value theorem to obtain

E[jf(Xi;t(x))� f( �Xi;t(x))j]
� kfkC1

p
k1 + j�Xi;t(x) + (1� �) �Xi;t(x)jpkL2kXi;t(x)� �Xi;t(x)kL2

� CkfkC1
p
k1 + jXi;t(x)jp + j �Xi;t(x)jpkL2(1 + jxj2(m+1))tm+1:

We see by Lemma 6.2 that

sup
t2[0;T ]

k1 + jXi;t(x)jp + j �Xi;t(x)jpkL2 � C 0(1 + jxjp)

from which the proof follows.
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As a result of this proposition we can see that R(m; tm) holds for the operators associated with
bm(t; V0)x and b2m+1(Bit; Vi)x, 1 � i � d. Indeed, we have for m0 � m,

E[f( �Xi;t(x))] = E [f(Xi;t(x))] + E[f( �Xi;t(x))� f(Xi;t(x))]

=
m0X
k=0

tk

k!
Lki f(x) + (E

m0

t f)(x)

where
(Em

0

t f)(x) := (Err
(m0)
t f)(x) + E[f( �Xi;t(x))� f(Xi;t(x))]

and (Err(m
0)

t f)(x) is de�ned through the residue appearing in Proposition 7.6, using Li and Qi
instead of L and P . Furthermore, using Proposition 6.4 (ii), we have that the error term Em

0

t

satis�es (B) in assumption R(m; tm).
It remains to prove that (M) holds for �Xi;t(x). For the proof, we need an additional growth

condition for the vector �eld Vi.

Proposition 6.5. Assume that (V ki ej) (2 � k � m, 0 � i � d, 1 � j � N) satis�es the linear
growth condition then (M) holds for �Xi;t(x), i = 0; : : : ; d.

Proof. The assumption (M0) follows from the smoothness and the linear growth property of V ki ej .
We only prove the moment condition (3.1) for �Xi;t(x) i = 1; : : : ; d. Consider the multiplication
(p 2 N) ��� mX

k=0

(Bit)
k

k!
(V ki ej)(x)

���2p = ���x+BitVi(x) + mX
k=2

(Bit)
k

k!
(V ki ej)(x)

���2p:
Taking into account that E[

�
Bit
�2k+1

] = 0, k 2N . Then by the assumption, we obtain the result.

Therefore we obtain the main result.

Theorem 6.6. Assume that (V ki ej) (2 � k � m, 0 � i � d, 1 � j � N) satis�es the linear growth
condition. Let �Xi;t(x) be de�ned by

�Xi;t(x) = b2m+1(B
i
t; Vi)x =

2m+1X
k=0

1

k!
(V ki I)(x)

Z
0<t1<���<tk<t

1 � dBit1 � � � � dB
i
tk
:

Denote by Q
�Xi
t the semigroup associated with �Xi;t(x). Then Q

�Xi
t satis�es (M) and R(m; tm).

Furthermore J�m(Q
�Xi
t ) = I +

Pm
j=1

tj

j!L
j
i .

c) Runge-Kutta methods: We say here that cm is an s-stage explicit Runge-Kutta method of
order m for the ODE (6.1) if it can be written in the form

cm(t; V )x = x+ t
sX
i=1

�iki(t; V )x (6.4)

where ki(t; V )x de�ned inductively by

k1(t; V )x = V (x);

ki(t; V )x = V
�
x+ t

i�1X
j=1

�i;jkj(t; V )x
�
; 2 � i � s;

and satis�es
j exp(tV )x� cm(t; V )xj � CmeKjtj(1 + jxjm+1)jtjm+1

for some constants ((�i; �i;j)1�j<i�s). Runge-Kutta formulas of order less than or equal to 7 are
well known. For details, see e.g. Butcher [4].
The following proposition can be shown by the same argument as in the proof of Proposition 6.4.
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Proposition 6.7 (stochastic Runge-Kutta). (i) For every p � 1,

kXi;t(x)� c2m+1(Bit; Vi)xkLp � C(p;m; T )(1 + jxj2(m+1))tm+1 (6.5)

(ii) Let f 2 C1p . Then we have

E[jf(Xi;t(x))� f(c2m+1(Bit; Vi)x)j] � C(m;T )kfkC1
p
(1 + jxj2(m+1))tm+1 (6.6)

Next we show that (M) still holds for the Runge-Kutta schemes.

Proposition 6.8. (M) holds for cm(Bit; Vi)x, i = 0; : : : ; d.

Proof. We �rst note that for every 1 � j � s, there exists a function of the form pj =
Pj�1

k=0 ajkjtjk
such that

jkj(t; V )xj � pj(t)(1 + jxj):

The assumption (M0) follows from the smoothness and the linear growth property of Vi: We now
prove (3.1). In the case i = 0, this is obvious by de�nition and the inequality (6.1). In the case
1 � i � d, observe that

cm(t; V )x = x+ t
sX
l=1

�lV (x) + t
sX
l=2

�l

Z 1

0

d

d�
V
�
x+ �t

l�1X
j=1

�l;jkj(t; V )x
�
d�

=: x+ t
sX
l=1

�lV (x) +Dm(t; V )x:

Expanding multiplications and taking expectations, as in Proposition 6.5, we can show that the
terms containing odd powers of Bit have expectation 0. Finally, we obtain from the boundedness of
@Vi that

jDm(Bit; Vi)xj � p(Bit)(1 + jxj)

where p = p(t) is of the form
Ps

k=2 akjtjk. Using this, we conclude the proof.

Consequently, as in the Taylor scheme, R(m; tm) and (M) hold for the operators associated with
cm(t; V0)x and c2m+1(Bit; Vi)x, 1 � i � d. For more on this method, we refer the reader to [14].

d) Minor extension: In the previous approximation, the assumption that Bt � N(0; Id) can be
weakened. In fact, we can use

p
tZ instead of Bt where (Zi)di=1 are independent and

P (Zi = �
p
3) =

1

6
; P (Zi = 0) =

2

3

for each i = 1; : : : ; d.

Proposition 6.9. Let Bt be a 1-dimensional Brownian motion and Z be a R-valued random variable
such that for all 0 � k � m,

E[(Z)k] = E[(B1)
k]

and
E[exp(cjZj)] <1

for any c > 0. Then, for every f 2 Cm+1p ,

jE[f(exp(BtV )x)]� E[f(cm(
p
tZ; V )x)]j � C(m;T )(1 + jxjp+m+1)t(m+1)=2:
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6.2 Compound Poisson case

Suppose that Yt is a compound Poisson process. That is,

Yt =

NtX
i=1

Ji

where (Nt) is a Poisson process with intensity � and (Ji) are i.i.d. Rd-valued random variables
independent of (Nt) with Ji 2

T
p�1 L

p.
In this case Yt is a Lévy process with generator of the formZ

Rd
0

(f(x+ y)� f(x))�(dy)

where � � 0, b = 0, �(Rd
0) = � <1 and �(dy) = �P (J1 2 dy).

Then in this case

Xd+1
t (x) = x+

Z t

0

h(Xd+1
s� (x))dYs; t 2 [0; T ] (6.7)

which can be solved explicitly. Indeed, let (Gi(x)) be de�ned by recursively

G0 = x

Gi = Gi�1 + h(Gi�1)Ji:

Then the solution can be written as Xd+1
t (x) = GNt

(x). De�ne for �xedM 2 N, the approximation
process �Xd+1;t = GNt^M (x). This approximation requires the simulation of at most M jumps. In
fact, the rate of convergence is fast as the following result shows.

Theorem 6.10. Let M 2 N. Then the process GNt^M (x) satis�es (M) and R(M; tM��) for

arbitrary small � > 0. Furthermore J�M (Q
�Xd+1

t ) = I +
Pm

j=1
tj

j!L
j
d+1.

Proof. Note that for f 2 Cp

Q
�Xd+1

t f(x)�Qd+1t f(x) = E[f(GNt^M (x))]� E[f(GNt(x))]

= E[(f(GNt^M (x))� f(GNt(x))) 1fTM+1�tg]

where TM := infft > 0 : Nt =Mg. By the Hölder inequality,

jQ
�Xd+1

t f(x)�Qd+1t f(x)j

� 2E[ sup
0�t�T

jf(GNt(x))j


�1 ]
�1
 P (TM+1 � t)

1


= 2E[ sup
0�t�T

jf(GNt
(x))j


�1 ]

�1


�Z t

0

(�s)M

M !
�e��sds

� 1


� C(; T )kfkCp(1 + jxjp) (t�)
(M+1)=

Take su¢ ciently small  > 1, then R(M; tM��) holds for Q
�Xd+1

t where � := (1� 1=)(M + 1) > 0.
Finally, we show (M). Let fp(x) = jxj2p (p 2 N) and  < M . Then using the above calculation
and Corollary 7.7, we have

Q
�Xd+1

t fp(x) = Q
d+1
t fp(x) + (Q

�Xd+1

t fp(x)�Qd+1t fp(x))

� (1 +K1t)fp(x) +K2t+ jQ
�Xd+1

t fp(x)�Qd+1t fp(x)j
� (1 +K3t)fp(x) +K4t:
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6.3 In�nite activity case

In this subsection, we consider the SDE (2.3) under the conditions �(Rd
0) = 1. Without loss of

generality, we assume that c � 0.

a) Ignoring small jumps: De�ne for " > 0 the �nite activity (i.e. drift + compound Poisson)
Lévy process (Y "t ) with Lévy triplet (b; 0; �

") where the Lévy measure is de�ned by

�"(E) := �(E \ fy : jyj > "g); E 2 B(Rd
0): (6.8)

Consider the approximate coordinate SDE

�Xd+1;t(x) = x+

Z t

0

h( �Xd+1;s�(x))dY
"
s ;

whose generator is

L1;"d+1f(x) = rf(x)h(x)b+
Z
(f(x+ h(x)y)� f(x)�rf(x)h(x)�(y))�"(dy):

Now we derive the error estimate for �Xd+1;t.

Theorem 6.11. Assume that 0 < " � "(t) � 1 is chosen as to satisfy that �2(") :=
R
jyj�" jyj

2�(dy) �
tM . Then we have that Q

�Xd+1

t satis�es (M) and R(M; tM ). Furthermore J�M (Q
�Xd+1

t ) = I +PM
j=1

tj

j!L
j
d+1.

Proof. First, we remark that condition (M0) follows from Proposition 5.2 in [8]. We start by noting
that from Proposition 7.6, we have

Qd+1t f(x)�Q
�Xd+1

t f(x) (6.9)

=

MX
k=1

tk

k!

�
(Ld+1)

k �
�
L1;"d+1

�k�
f(x)

+

Z t

0

(t� u)M

M !

�
Qd+1u (Ld+1)

M+1 �Q �Xd+1
u

�
L1;"d+1

�M+1
�
f(x)du:

Therefore the proof is achieved if we prove that

j(Ld+1 � L1;"d+1)f(x)j � CkfkC2
p
(1 + jxjp+2)tM+1:

For the proof, we change here the representation of the Lévy triplets of Yt and Y "t as follows:

(b; 0; �); � ) (b"; 0; �); �"

(b; 0; �"); � ) (b"; 0; �
"); �"

where �"(y) = y1fjyj�"g. Then

j(Ld+1 � L1;"d+1)f(x)j �
��� Z rf(x)h(x)(y � �"(y))(�(dy)� �"(dy))

��� (6.10)

+
��� Z Z 1

0

(1� �) d
2

d�2
f(x+ �h(x)y)d�(�(dy)� �"(dy))

���:
We �rst obtain that for " > 0, Z

(y � �"(y))(�(dy)� �"(dy)) = 0
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since the support of the measure (� � �") is fjyj � "g. Now we consider the second term of (6.10).
We can immediately show that due to the polynomial growth property for f ,��� Z Z 1

0

d2

d�2
f(x+ �h(x)y)d�(�(dy)� �"(dy))

��� � CkfkC2
p
(1 + jxjp+2)�2(")

and hence as �2(") � tM+1; one obtains that J�M (Q
�Xd+1

t ) = I +
Pm

j=1
tj

j!L
j
d+1 and that Q

�Xd+1

t

satis�es (M) and R(M; tM ) follows as in the proof of Proposition 6.10.

Using Theorem 5.1, we can incorporate the above approximating process �Xd+1;t to the whole
approximation method. This will require to �rst simulate the jump times of the approximating
Lévy process Y " and then solving ode�s between these times. If the task is time consuming one can
also separate the jump component from the drift component as indicated by Theorem 5.1 (see also
Section 6.4). The right size of " is determined by the condition �2(") � tM+1.

b) Approximation of small jumps: We apply here the Asmussen-Rosiński�s approximation for
small jumps of Lévy processes. The idea is that the small jumps ignored in (6.8) are close to a
Brownian motion with small variance �2(") (see details in [2]).
Consider the new approximate SDE

�Xd+1;t(x) = x+

Z t

0

h( �Xd+1;s(x))�
1=2
" dWs +

Z t

0

h( �Xd+1;s�(x))dY
"
s (6.11)

where Wt is a new d-dimensional Brownian motion independent of Bt and Y "t , and �" is the sym-
metric and semi-positive de�nite d� d matrix de�ned as

�" =

Z
jyj�"

yy��(dy): (6.12)

We remark that �" is of the form A�A�, where A is an orthogonal matrix and � is the diagonal
matrix with entries �1; : : : ; �d � 0 (eigenvalues). Thus we use the notation �1=2" = A�1=2. Since
the above SDE is also driven by a jump-di¤usion process, we can also simulate it using the second
order discretization schemes in Theorem 5.1.
Now we prove that rate of convergence in this case is faster than in the case that we ignore

completely the small jumps (see Theorem 6.11).

Theorem 6.12. Assume that 0 < " � "(t) � 1 is chosen as to satisfy that
R
jyj�" jyj

3�(dy) �
tM .Then we have that Q

�Xd+1

t satis�es (M) and R(M; tM ). Furthermore J�M (Q
�Xd+1

t ) = I +PM
j=1

tj

j!L
j
d+1.

Proof. As before, condition (M0) follows from Proposition 5.2 in [8]. The SDE �Xd+1;t corresponds
to the generator

L2;"d+1f(x) :=rf(x)h(x)b+
1

2

X
k;l

@k;lf(x)(h(x)�"h
�(x))k;l

+

Z
(f(x+ h(x)y)� f(x)�rf(x)h(x)�(y))�"(dy):

Using this representation, we have for f 2 C3p ,

(Ld+1 � L2;"d+1)f(x) =
Z Z 1

0

(1� �) d
2

d�2
f(x+ �h(x)y)d�(�(dy)� �"(dy))

� 1
2

X
k;l

@k;lf(x)(h(x)�"h
�(x))k;l

=

Z Z 1

0

(1� �)2
2

d3

d�3
f(x+ �h(x)y)d�(�(dy)� �"(dy)):

Hence we �nish the proof as in the proof of Theorems 6.10 and 6.11.
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If we put all the pieces together, we have the following �nal result. Here Bijt denote i = 1; :::; d,
j = 1; :::; 2n denote 2nd independent standard Brownian motions and B0jt � t.

Theorem 6.13. Assume that V0, V and h are in�nitely di¤erentiable functions with bounded deriv-
atives with

R
Rd
0
(1^jyjp)�(dy) <1 for all p 2 N. De�ne " � "(T; n) so that

R
jyj�" jyj

3�(dy) �
�
T
n

�3
.

Let �Xj
i;t(x) = c5(B

ij
t ; Vi)x, i = 0; :::; d, j = 1; :::; 2n, 2n copies of the Runge-Kutta method of order

2 as de�ned in (6.4) and �Xj
d+1;t(x) j = 1; :::; 2n independent copies of the approximation de�ned in

(6.11). Then the following schemes, X(n)
T = Y nn � Y n�1n � ::: � Y 1n (x), are second order discretization

schemes:

N-V(a) Y jn (x) = Uj �X
j
0;T=(2n) � �X

j
1;T=n � :::� �X

j
d+1;T=n � �X

j
0;T=(2n)(x)+(1�Uj) �X

j
0;T=(2n) � �X

j
d+1;T=n �

::: � �Xj
1;T=n � �X

j
0;T=(2n)(x) where Uj is a Bernoulli r.v. with P (Uj = 1) = 1=2, independent of

everything else.

N-V(b) Y jn (x) = Uj �X
j
d+1;T=n � ::: � �X

j
0;T=n(x) + (1 � Uj) �X

j
0;T=n � ::: � �X

j
d+1;T=n(x) where Uj is a

Bernoulli r.v. with P (Uj = 1) = 1=2, independent of everything else.

Splitting Y jn (x) = �Xj
0;T=(2n) � ::: � �X

j
d;T=(2n) � �X

j
d+1;T=n � �X

n+j
d;T=(2n) � ::: � �X

n+j
0;T=(2n)(x):

One can also write a similar result for higher order schemes using Theorem 5.3.

6.4 Limiting the number of jumps per interval for approximations of
in�nite activity Lévy driven SDE�s

In the previous two approximations although " 2 (0; 1) may be relatively large compared with
the interval size T=n, one still faces the possibility of having many jumps in the interval [0; T ].
Therefore we introduce the idea used in Section 6.2. That is, we propose another approximation
that restricts the numbers of possible jumps to at most n. Throughout this section we assume thatR
jyj<1 jyj�(dy) <1 and without loss of generality, we assume that �(y) = y1jyj<1.
Then we decompose the operator

Ld+1 = L
1
d+1 + L

2
d+1 + L

3
d+1

L1d+1f(x) := rf(x)h(x)
 
b�

Z
"<jyj�1

�(y)�(dy)

!

L2d+1f(x) :=

Z
jyj�"

(f(x+ h(x)y)� f(x)�rf(x)h(x)�(y))�(dy)

L3d+1f(x) :=

Z
"<jyj

f(x+ h(x)y)� f(x)�(dy):

The operator L1d+1 can be easily approximated using any Runge-Kutta method for the ordinary
di¤erential equation

X1
d+1;t = x+

 
b�

Z
"<jyj�1

�(y)�(dy)

!Z t

0

h
�
X1
d+1;s

�
ds:

We denote by �X1
d+1;t, the Euler scheme associated with this ordinary di¤erential equation. Therefore

we only need to approximate L2d+1 and L
3
d+1.

Let l : Rd ! R+ be a localization function that may be used for importance sampling of the
Lévy measure. Let F l"(dy) = �

�1
" l(y)1jyj�"�(dy) with �" =

R
jyj�" l(y)�(dy). Let Y

" � F" . De�ne
�X2;"
d+1;t(x) � �X2;"

t (x) = x+h(x)Wt

p
�", where W is a d-dimensional Wiener process with covariance

matrix given by �ij = l(Y ")�1Y "i Y
"
j which is independent of everything else.

First we prove that �X2;"
t (x) satis�es assumption (M).
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Lemma 6.14. Assume that for p � 2, sup"2(0;1]
R
jyj�" jyj

pl(y)�
p�2
2 �(dy) < 1; then assumption

(M) is satis�ed with

E
h��� �X2;"

t (x)
���pi � (1 +Kt)jxjp +K 0t:

Proof. Let f(x) = jxjp, p � 2. Using Ito�s formula for p 6= 3 and an approximative argument in the
case p = 3 (as in the proof of the Meyer-Ito formula) one obtains that

E
h
f
�
�X2;"
t (x)

�i
� f(x) (6.13)

=
p

2
�"E

�
l(Y ")�1

Z t

0

�p
2
� 1
� �� �X2;"

s (x)
��p�4 
h(x)Y "; �X2;"

s (x)
�2

(6.14)

+
�� �X2;"

s (x)
��p�2 jh(x)Y "j2 dsi

We use the Lipschitz property of h to obtain that�� �X2;"
s (x)

�� = ���x+ h(x)Ws

p
�"

���
�
�
1 + C jWsj

p
�"

�
(1 + jxj):

Then, we have ���E hf � �X2;"
t (x)

�i
� f(x)

���
� Cpt (1 + jxjp)

Z
jyj<"

jyj2
�
1 +

�
jyj2 l(y)�1�"t

� p�2
2

�
�(dy):

Lemma 6.15. Assume that for p � 2,

Mp = sup
"2(0;1]

Z
jyj�"

jyj4l(y)�1
�
1 +

�
jyj2 l(y)�1�"t

� p�2
2

�
�(dy) <1

and
R
jyj�" jyj

3�(dy) � Ct then���E hf( �X2;"
t )
i
� f(x)� tL2d+1f(x)

��� � C(p) kfkC4
p
(1 + jxjp+4)t2:

That is, �X2;"
t (x) satis�es assumption R(2; t2):

Proof. Let f 2 C4p then applying Ito�s formula, one gets

E
h
f( �X2;"

t )
i
= f(x) +

�"
2
E

24Z t

0

X
i;j;k;l

@ijf( �X
2;"
s )hikhil(x)l(Y

")�1Y "k Y
"
l ds

35
= f(x) +

t

2

Z
jyj�"

X
i;j;k;l

@ijf(x)hikhil(x)ykyl�(dy) +R"(x)

where by Lemma 6.14, we have

jR"(x)j � C kfkC4
p
(1 + jxjp+4)t2

Z
jyj�"

jyj4l(y)�1
�
1 +

�
jyj2 l(y)�1�"t

� p�2
2

�
�(dy):
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Furthermore

L2;"d+1f(x)�
1

2

Z
jyj�"

X
i;j;k;l

@ijf(x)hikhil(x)ykyl�(dy)

=
X
i;j;k;l

Z
jyj�"

Z 1

0

(@ijf(x+ �h(x)y)� @ijf(x)) (1� �)d�hikhil(x)ykyl�(dy):

Therefore ������L2;"d+1f(x)� 12
Z
jyj�"

X
i;j;k;l

@ijf(x)hikhil(x)ykyl�(dy)

������
� C kfkC4

p
(1 + jxjp+3)

Z
jyj�"

jyj3�(dy):

This �nishes the proof

In the particular case that l(y) = yr, r = 2; the above scheme corresponds to a Asmussen-Rosiński
type approach.
The approximation for L3d+1 is de�ned as follows. Let

G";l(dy) = C
�1
";l l(y)1jyj>"�(dy);

C";l =

Z
jyj>"

l(y)�(dy)

and let Z";l � G";l and let S";l be a Bernoulli random variable independent of Z";l. Then consider
the following two cases. If S";l = 0 de�ne �X3;"

d+1;t � �X3;"
t (x) = x, otherwise �X3;"

d+1;t � �X3;"
t (x) =

x+ h(x)l(Z";l)�1Z";l. Then we have the following results.

Lemma 6.16. Assume that for p � 2, sup"2(0;1]
R
jyj>" l(y)

�p jyjp+1 �(dy) <1 and C�1";l P [S
" = 1] �

Ct then assumption (M) is satis�ed with

E
h��� �X3;"

t (x)
���pi � (1 +Kt)jxjp +K 0t:

Proof. The result follows clearly from (f(x) = jxjp)

P [S" = 1]
��E �f �x+ h(x)l(Z";l)�1Z";l�� f(x)���

= C�1";l P [S
" = 1]

Z
jyj>"

�
f(x+ h(x)l(y)�1y)� f(x)

�
l(y)�(dy)

� Ct(1 + jxjp)
 
1 +

Z
jyj>"

l(y)�p jyjp+1 �(dy)
!
:

Lemma 6.17. Assume that for f 2 C2p , we have that
R
jyj>" jyj

2(l(y)�1 � 1) + jyjp+2jl(y)�1 �

1jp+1�(dy) � C and
���C�1";l P �S";l = 1�� t��� � Ct2 then���E hf( �X3;"

t )
i
� f(x)� tL3d+1f(x)

��� � Ct2 kfkC2
p
(1 + jxjp+2):
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Proof. As before let f 2 C2p then

E
h
f( �X3;"

t )
i
= f(x) + E

�
f
�
x+ h(x)l(Z";l)�1Z";l

�
� f(x);S";l = 1

�
= f(x) +

Z
jyj>"

�
f(x+ h(x)l(y)�1y)� f(x)

�
l(y)�(dy)

� C�1";l P
�
S";l = 1

�
:

Then we clearly have that���E hf( �X3;"
t )
i
� f(x)� tL3d+1f(x)

���
� t
�����
Z
jyj>"

Z 1

0

X
i

�
@if(x+ �h(x)l(y)

�1y)� @if(x+ �h(x)y)
�
d�h(x)y�(dy)

�����
� C�1";l P

�
S";l = 1

�
+

�����
Z
jyj>"

f(x+ h(x)y)� f(x)�(dy)
�����

�
���C�1";l P �S";l = 1�� t���

� C kfkC2
p
(1 + jxjp+2)t2

This �nishes the proof.

Using the previous results we can propose various schemes of approximation of order 1 as in
Theorem 6.13. We state the simplest type of approximation.

Theorem 6.18. Assume that V0, V and h are in�nitely di¤erentiable functions with bounded deriva-
tives with

R
Rd
0
(1^jyjp)�(dy) <1 for all p 2 N. De�ne " � "(T; n) so that the conditions on Lemmas

6.14, 6.15, 6.16 and 6.17 are satis�ed for t = T=n and for appropriate localization functions. Let
�Xj
i;t(x); i = 0; :::; d, j = 1; :::; n, n copies of the Euler-Maruyama method for Xi;t(x):

Also, let �Xi;";j
d+1;T=n, i = 1; 2; 3, j = 1; :::; n be n independent copies of the schemes de�ned above.

Then the following scheme, X(n)
T = Y nn �Y n�1n � :::�Y 1n (x), Y jn (x) = �Xj

0;T=n � :::� �X
j
d;T=n � �X

1;";j
d+1;T=n �

�X2;";j
d+1;T=n � �X

3;";j
d+1;T=n(x):is a �rst order discretization scheme.

Achieving higher order schemes for the approximation of L2d+1 can be easily obtained from the
proof of Lemma 6.15. In fact, the required conditions are as follows. Assume that for p � 2,Z

jyj�"
jyj4l(y)�1

�
1 +

�
jyj2 l(y)�1�"t

� p�2
2

�
�(dy) � Ct (6.15)Z

jyj�"
jyj3�(dy) � Ct2: (6.16)

For L3d+1, the idea used in the previous scheme is that the probability of having more than one
jump in an interval of size T=n is of order (T=n)2 and therefore they can be neglected if the goal
is to achieve a scheme of order 1. Obviously, in order to obtain a higher order scheme, one has to
consider the possibility of more jumps per interval. As an example, we consider the case of at most
two jumps per interval with localization l � 1.
For L3d+1 one can do the following: Let G"(dy) = C�1" 1jyj>"�(dy), C" =

R
jyj>" �(dy) and let

Z"1 ; Z
"
2 � G" independent between themselves and let S"1 and S

"
2 be two independent Bernoulli

random variable independent of Z"1 , Z
"
2 . Then consider the following cases. If S"1 = 0 de�ne

�X3;"
t (x) = x, if S"1 = 1 and S

"
2 = 0 then �X3;"

t (x) = x+ h(x)Z"1 and �nally if S
"
1 = 1 and S

"
2 = 1 then

X̂3;"
t (x) = x+ h(x)Z"1 + h(x+ h(x)Z

"
1)Z

"
2 .

23



De�ne

p" = P [S
"
1 = 1] (1 + P [S

"
2 = 1]) ;

q" = P [S
"
1 = 1]P [S

"
2 = 1] :

In this case we have

Lemma 6.19. If C�1" P [S"1 = 1; S
"
2 = 0] � Ct and C�2" P [S"1 = 1; S

"
2 = 1] � Ct then assumption

(M) is satis�ed with

E
h���X̂3;"

d+1(x)
���pi � (1 +Kt)jxjp +K 0t

for all p � 2.
Proof. The result follows clearly from (f(x) = jxjp)

P [S"1 = 1; S
"
2 = 0] jE [f (x+ h(x)Z")� f(x)]j

� Ct(1 + jxjp)
 
1 +

Z
jyj>"

jyjp �(dy)
!
;

P [S"1 = 1; S
"
2 = 1] jE [f (x+ h(x)Z"1 + h(x+ h(x)Z"1)Z"2)� f(x)]j

� Ct(1 + jxjp)

0@1 + Z
jyj>"

jyjp �(dy)
!21A :

Lemma 6.20. Assume that
��C�1" p" � t

�� � Ct3 and ��2C�2" q" � t2
�� � Ct3 then����E hf(X̂3;"

t )
i
� f(x)� tL3d+1f(x)�

t2

2

�
L3d+1

�2
f(x)

����
� Ct3 kfkC2

p
(1 + jxjp+2)

0@1 + Z
jyj>"

jyj�(dy)
!21A

Proof. As before let f 2 C2p then

E
h
f(X̂3;"

t )
i

= f(x) +

Z
jyj>"

(f(x+ h(x)y)� f(x)) �(dy)C�1" P [S"1 = 1; S
"
2 = 0]

+ E

"Z
jyj>"

f(x+ h(x)y + h(x+ h(x)y)Z"2)� f(x)�(dy)
#
C�1" P [S"1 = 1; S

"
2 = 1]

= f(x) + L3d+1f(x)C
�1
" P [S"1 = 1; S

"
2 = 0]

+

Z
jyj>"

Z
jyj>"

f(x+ h(x)y + h(x+ h(x)y)y1)� f(x)�(dy)�(dy1)

� C�2" P [S"1 = 1; S
"
2 = 1]

= f(x) + L3d+1f(x)C
�1
" (P [S"1 = 1] + P [S

"
1 = 1; S

"
2 = 1])

+
�
L3d+1

�2
f(x)C�2" P [S"1 = 1; S

"
2 = 1] :

Therefore ����E hf(X̂3;"
t )
i
� f(x)� tL3d+1f(x)�

t2

2

�
L3d+1

�2
f(x)

����
�
��L3d+1f(x)�� ��C�1" p" � t

��+ ����L3d+1�2 f(x)��� ����C�2" q" �
t2

2

���� :
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Finally note that�
L3d+1

�2
f(x)

=

Z
"<jyj

L3d+1f(x+ h(x)y)� L3d+1f(x)�(dy)

=

Z
"<jyj

Z
"<jy1j

(f(x+ h(x)y + h(x+ h(x)y)y1)� 2f(x+ h(x)y) + f(x)) �(dy1)�(dy)

=

Z
"<jyj

Z
"<jy1j

Z 1

0

rf(x+ h(x)y + �h(x+ h(x)y)y1)h(x+ h(x)y)y1

�rf(x+ �h(x)y)h(x)yd��(dy1)�(dy)

=

Z
"<jyj

Z
"<jy1j

Z 1

0

rf(x+ h(x)y1 + �h(x+ h(x)y1)y)

�
Z 1

0

rh(x+ �h(x)y1)h(x)y1d�yd��(dy1)�(dy)

+

Z
"<jyj

Z
"<jy1j

Z 1

0

Z 1

0

D2f(x+ �h(x)y + �(h(x)y1 + � (h(x+ h(x)y1)� h(x)) y))�
h(x)y1 + �

�Z 1

0

rh(x+ h(x)y1)dh(x)y1
�
y; h(x)y

�
d�d��(dy1)�(dy):

This �nishes the proof.

A similar statement can be achieved if we limit the number of jumps in any interval. The parallel
of Theorem 6.18 can also be stated in this case.

6.5 Example: Tempered stable Lévy measure

Now we consider the previous approximation in the case that the Lévy measure � de�ned on R0 is
given by

�(dy) =
1

jyj1+�
�
c+e

��+jyj1y>0 + c�e
���jyj1y<0

�
dy

The Lévy process associated with no Brownian term and the above Lévy measure � is called by

� Gamma: �+; c+ > 0, c� = 0, � = 0.

� Variance gamma: �+; ��; c+; c� > 0, � = 0.

� Tempered stable: �+; ��; c+; c� > 0, 0 < � < 2.

Then, we have that for � 2 [0; 1)Z
jyj�"

jyjk�(dy) � "k��; k � 1:

Then sup"2(0;1]
R
jyj�" jyj�(dy) <1. For L

2
d+1, we consider as localization function l(y) = jyj

r, then

the conditions of Lemma 6.15 are satis�ed if � < r � 2 and " = t 1
3�� .

For L3d+1, we consider as localization l(y) � 1, then Lemma 6.17 is satis�ed for example in the
following case. Let P [S" = 1] = e�C"a(";t) where C" � "��, a("; t) = �"� log

��
t2 + t

�
"��

�
as

" = t
1

3�� then we have that
a = �t �

3�� log
�
(t+ 1)t

3�2�
3��

�
:
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In the case of Lemma 6.20, one choice of parameters is

P [S"1 = 1] = t
6�3�
3�� (t+ 1)(1 + t

�
3�� )

P [S"2 = 1] =
1

2(1 + t
�

3�� )
:

The choice of r in the above scheme is related with variance/importance sampling issues.
Final Comment: In this article we have presented a general set-up to handle what maybe

called operator decomposition methods. In particular, the method is useful when considering ap-
proximations of expectations of functionals of di¤usions. The approximation problem is divided in
components, each one driven by a single process. This single process, called the coordinate process
can be approximated to a high order using an appropriate (stochastic) Runge-Kutta scheme if the
driving process is the Brownian motion. In the case that the driving process is a Lévy process one
can decompose the Lévy measure in various pieces to facilitate the analysis. Note that sometimes is
not needed to know how to simulate Y but only the functional form of the Lévy measure. In com-
parison with the proposal presented in [10], where high order multiple integrals driven by di¤erent
Wiener processes have to be simulated at each step, we believe that the present methodology is a
better scheme.
The issue that local approximations of high order are interesting to study in comparison with

Romberg extrapolations as introduced in [22] is similar to the discussion of using Runge-Kutta
approximations in comparison with Romberg extrapolations to approximate solutions of ordinary
di¤erential equations. We believe that this article helps to open the path in this direction. In fact,
it is somewhat clear from Theorem 4.3 that the leading constants in a Euler+Romberg method and
a Runge Kutta method do not coincide.
Finally, we used the structure of this construction to easily introduce and analyze the asymptotic

error of an approximating scheme for solutions of stochastic di¤erential equations driven by Lévy
processes with possibly in�nite activity.
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7 Appendix

In this section we assume condition (MP ).

Lemma 7.1. Let f = fs(x) 2 C1;2p ([0; T ]�RN ). Then a map s 7! Psfs(x) is Lipschitz continuous
for all x 2 RN .

Proof. Note that

jPtft(x)� Psfs(x)j � jPtft(x)� Ptfs(x)j+ jPtfs(x)� Psfs(x)j

Using the Lipschitz properties of t 7! ft(x) and t 7! Ptfs(x), the proof follows.

Lemma 7.2. Let g : [0; T ]! R be a Lipschitz continuous function. Then we have���T
n

nX
k=1

g(kT=n)�
Z T

0

g(s)ds
��� � C(T; g)

n
: (7.1)
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Proof. From the assumption we immediately obtain���T
n
g(kT=n)�

Z kT=n

(k�1)T=n
g(s)ds

��� � C

n2

where C depends on T and the Lipschitz coe¢ cient of g. This implies (7.1).

7.1 Appendix: Some properties of Lévy driven SDEs

We start with the di¤erentiability properties of Xt(x) in x. The following material can be found in
[9], [8], [12], [19] and [20]. We quote them here for completeness.

Lemma 7.3. There exists a version of Xt(x) such that a map x 7! Xt(x) is in�nite times continuous
di¤erentiable almost surely and in the Lp-sense. Moreover, we have for p � 2,

E[ sup
0�t�T

jXt(x)jp] � C(p; T )(1 + jxjp) (7.2)

and
sup
x2RN

E[ sup
0�t�T

j@�xXt(x)jp] <1 (7.3)

for any multi-index � with j�j � 1.

Proposition 7.4. Let f 2 Cmp with p � 2.
(i)Then Ptf 2 Cmp for all t � 0 and

sup
t2[0;T ]

kPtfkCm
p
� CkfkCm

p
(7.4)

(ii) If m � 2, then Lf 2 Cm�2p+2 and

kLfkCm�2
p+2

� CkfkCm
p
:

(iii) If f 2 C1;mp ([0; T ]�RN ), then (@tLf)(t; x) = (L@tf)(t; x)

Proof. The proof of (i) follows by interchange of derivation and expectation together with the mo-
ment estimates in Lemma 7.3. Recall that L =

Pd+1
i=0 Li as de�ned in (2.5). (ii) We only do the

proof for Ld+1. We have��� Z (f(x+ h(x)y)� f(x)�rf(x)h(x)�(y))�(dy)���
�
��� Z rf(x)h(x)(y � �(y))�(dy)

���+ ��� Z Z 1

0

d2

d�2
f(x+ �h(x)y)d��(dy)

���
� CkfkCm

p
(1 + jxjp+2):

Proposition 7.5. Let f 2 C2p . Then Pt and L are commutative and uf (t; x) := Ptf(x) is the
solution of the integro-di¤erential equation:�

d
dtuf (t; x) = Luf (t; x)
uf (0; x) = f(x):

Let f 2 C2m+2p . Then the commutativity of Pt and L implies that Lmuf (= uLmf ) is di¤erentiable
in t and the solution to similar integro-di¤erential equations. That is,�

d
dt (L

muf )(t; x) = L(L
muf )(t; x)

(Lmuf )(0; x) = (L
mf)(x):

for each m � 0. Consequently, applying Taylor�s expansion to uf , we have
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Proposition 7.6. For f 2 C2m+2p ,

Ptf(x) =
mX
k=0

tk

k!
Lkf(x) +

Z t

0

(t� s)m
m!

Ps(L
m+1f)(x)ds

Furthermore, if f 2 Cmp with m � 2. Then Ptf 2 C1;m�2p+2 .

Summarizing this section, we have

Corollary 7.7. Ptf(x) = E[f(Xt(x))] and Qitf(x) = E[f(Xi
t(x))] (i = 0; 1; : : : ; d + 1) satisfy the

conditions (M) and R(m; tm). That is, for p 2 N,

E[jXt(x)j2p] � (1 +Kt)jxj2p +K 0t

for some constant K = K(T; p), K 0 = K 0(T; p) > 0 and

J�m(Pt) =
mX
k=0

tk

k!
Lk

J�m(Q
i
t) =

mX
k=0

tk

k!
Lki

for any m 2 N.
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