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A unital C*-algebra.
¢: A — { a state.

There exists a triple (H,m, z), where
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‘H is a Hilbert space,

v

m: A — B(H) is a representation,

» z € H is a unit vector such that

¢(a) = (z,7(a)z)

for all 2 € A.
Minimality: H = span{m(a)z : a € A}.
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Two states

v

Suppose ¢1, ¢2 are two states on a unital C*-algebra A.

v

Question: If ¢1, ¢, are close can we make GNS
representations close?

v

Idea: Look at common representations: (H, 7, z1), (H, T, z2).

v

Example: Consider direct sum:

H="H1®Ho,m= 71 D72,

21D 0,0 2.
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» Suppose ¢1, ¢ are states on A:
> Take

5(¢17 d)Z) = inf{Hzl - Z2H : (Hvﬂvzl)v (,Hvﬂ—?ZZ)}

The infimum is over common representations of ¢1, ¢»:

oi(a) = (zi,m(a)z;), i=1,2.

» [3 is a metric on states and

B(P1,92) < V/||o1 — d2]|.

» The infimum is attained in every common representation.
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v

A linear map ¢ : A — B is said to be completely positive
(CP) if,

S ot = 0
iJ
for a; € A, b; € B.

» sx-homomorphisms, positive linear functionals are (CP).

v

Compositions, sums, convex combinations of CP maps are CP.

v

CP maps are very important for understanding C*-algebras
and from applications point of view.
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Bures distance for CP maps

» A continuity theorem for Stinespring dilation by D.
Kretschmann, D. Schlingemann, R. F. Werner, JFA (2008).

» Suppose ¢1, ¢» are CP maps from A to B(G).
> Take

6(¢17¢2) — Inf{” Vl - V2H : (H77T7 V1)7 (Hvﬂ_v V2)}
The infimum is over common representations of ¢1, ¢»:

¢i(a) = Vim(a)Vi, i=12.

» The infimum is attained and one has lower and upper bounds
for 3.
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Theorem: Let ¢ : A — I3 be a completely positive map.

v

There exists a pair (E, z), where

E is a Hilbert A — 3 module (left action from A and inner
products take value in ),

v

» z ¢ E is a vector such that

¢(a) = (z,2.2)

for all a € A.
Minimality: E =span{a.zb:a¢c A, b€ 5}.

v
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Lower and upper bounds

» Here onwards A, 5 C 3(G) are von Neumann algebras, CP
maps considered are normal and modules are von Neumann
modules.

> [ is a metric.

» Theorem (D. Kretschmann, D. Schlingemann, R. F. Werner):
Let ¢; : A — B be normal CP maps, then

|61 — @2 ch
Vel + v/ llp2lles

< B(P1,92) < Vo1 — d2||eb
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Crucial Lemma

» Define:

NE(¢17¢2) = {<21,22> : ¢,~(a) = (z,-,a.z,-},Va c A,Z,‘ c E, | = 1./2}

N (61, ¢2) = | JNe(¢1, ¢2)
E

Observe (z1 — 22,21 — z2) = $1(1) + ¢2(1) — (21, 22) — (22, 21)-

vy

M(¢1,02) = {(z1,¥2) : ¢ € B*P!(E,, E1), |[¢]| < 1}

v

Lemma: M(¢1, ¢2) does not depend upon Ej, E; and
M(¢1,¢2) = N(d1,02) = Ng, o, (01, 2)

where E17 E2 denote minimal dilation spaces.
Corollary B(¢1, ¢») is attained in Ei & Es.

v
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» (1, ¢2) is not attained in all common representations.

» There is an example where

VoL — o2l < B(d1, d2) < V/||d1 — d2]|cpb-

So it is crucial to have the cb-norm.
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Counter Example -II

» Let H be an infinite dimensional Hilbert space. Consider the
unital C*-subalgebra A of B(H & H):

ai=c e[ . 9}

) (Ml +an a2 L )
B { { a Aol + 322] A€ G a5 € IC(H)}

» Suppose u € B(H) is a unitary and 1 < r € R. Set

R oo, L o1
A%lo n|’®2 o n| BT o

in B(H @ H).
» Define CP-maps ¢; : A — A by pi(a) == z'az;, i =1,2,3.



Counter Examples Il

> Note that each ¢; has the form, ¢;(:) = [8 ﬂ



Counter Examples Il

> Note that each ¢; has the form, ¢;(:) = [8 ﬂ

) P Awut x| )
Ei2 = { [le Azl +X22:| Ae o€ K(H)}

is a Hilbert A-A4 -module with a natural inner product and
bimodule structure. Note that z; € S(Ei2,¢;), i = 1,2, and
hence 6(@1,(,02) S HZl — ZQH =1.



Counter Examples Il

> Note that each ¢; has the form, ¢;(:) = [8 ﬂ

) P Awut x| )
Ei2 = { [le Azl +X22:| Ae o€ K(H)}

is a Hilbert A-A4 -module with a natural inner product and
bimodule structure. Note that z; € S(Ei2,¢;), i = 1,2, and

hence B(p1,¢2) < ||z1 — z2|| = 1.
> Similarly

) Al x| )
Fas = { L(zl Aol —I-ij A eC o€ ,C(H)}

is a Hilbert A-A-module with z; € S(Es, i), i = 2,3, and
B(p2,p3) < |22 — z3]| = 1.



Counter Examples Il

> Note that each ¢; has the form, ¢;(:) = [8 ﬂ

) P Awut x| )
Ei2 = { [le Azl +X22:| Ae o€ K(H)}

is a Hilbert A-A4 -module with a natural inner product and
bimodule structure. Note that z; € S(Ei2,¢;), i = 1,2, and

hence B(p1,¢2) < ||z1 — z2|| = 1.
> Similarly

) Al x| )
Fas = { L(zl Aol —I-ij A eC o€ ,C(H)}
is a Hilbert A-A-module with z; € S(Es, ¢;), I = 2,3, and

B(p2,¢3) < |22 — z3]| = 1.
» For any common representation module £ of ¢1, ¢3, we
prove that (xi,x3) =0 for all x; € S(E, ¢;).



Counter Examples Il

> Note that each ¢; has the form, ¢;(:) = [8 ﬂ

) P Awut x| )
Ei2 = { [le Azl +X22:| Ae o€ K(H)}

is a Hilbert A-A4 -module with a natural inner product and
bimodule structure. Note that z; € S(Ei2,¢;), i = 1,2, and

hence B(p1,¢2) < ||z1 — z2|| = 1.
> Similarly

) Al x| )
Fas = { L(zl Aol —I-ij A eC o€ ,C(H)}

is a Hilbert A-A-module with z; € S(Es, ¢;), I = 2,3, and
B(w2,3) < ||lz2 — z3|| = 1.

» For any common representation module £ of ¢1, ¢3, we
prove that (xi,x3) =0 for all x; € S(E, ;).

» Then 5(¢1,p3) > 2 > Bp1,v2) + B(p2, ¢3). Hence 3 fails
to satisfy triangle inequality.
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Bures distance for homomorphisms

Here we make some explicit computations of Bures distance. Let
w1, 92 : A — B be two unital x-homomorphisms. In the following
R denotes real part.

> Blp1.p2) = V2inf { [[L = R(b)||> - b € B, |[b]| < 1,¢1(a)b =
bpa(a) Va € Aj}.

» If A= B and ¢,(a) = u*p1(a)u for some unitary u € 13,
then

B(p1,02) = V2inf { |[1 = R(Bu)||? : b € p1(A),

b <1}

> If ue My(C) is a unitary and ¢ : M,(C) — M,(C) is the
«-homomorphism (a) = u*au, then

Bid, ) = V2inf { |1 — R(Aw)||? : A € [-1,1]}.



A rigidity theorem

» Theorem: Suppose B is a von Neumann algebra and
¢ : B — B is a completely positive map such that
B(¢,id.) < 1, where id. is the identity map. Then any
Stinespring module E of ¢ has the form

E=BaFE

for some module E’.
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