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States and GNS representation

I A unital C ∗-algebra.

I φ : A → CI a state.

I There exists a triple (H, π, z), where

I H is a Hilbert space,

I π : A → B(H) is a representation,

I z ∈ H is a unit vector such that

φ(a) = 〈z , π(a)z〉

for all a ∈ A.
I Minimality: H = span{π(a)z : a ∈ A}.
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Two states

I Suppose φ1, φ2 are two states on a unital C ∗-algebra A.

I Question: If φ1, φ2 are close can we make GNS
representations close?

I Idea: Look at common representations: (H, π, z1), (H, π, z2).

I Example: Consider direct sum:

H = H1 ⊕H2, π = π1 ⊕ π2,

z1 ⊕ 0, 0⊕ z2.
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Bures distance

I Suppose φ1, φ2 are states on A:

I Take

β(φ1, φ2) = inf{‖z1 − z2‖ : (H, π, z1), (H, π, z2)}

The infimum is over common representations of φ1, φ2:

φi (a) = 〈zi , π(a)zi 〉, i = 1, 2.

I β is a metric on states and

β(φ1, φ2) ≤
√
‖φ1 − φ2‖.

I The infimum is attained in every common representation.
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Completely positive (CP) maps

I A linear map φ : A → B is said to be completely positive
(CP) if, ∑

i ,j

b∗i φ(a∗i aj)bj ≥ 0

for ai ∈ A, bi ∈ B.

I ∗-homomorphisms, positive linear functionals are (CP).

I Compositions, sums, convex combinations of CP maps are CP.

I CP maps are very important for understanding C ∗-algebras
and from applications point of view.
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Stinespring’s Theorem

I Theorem: Let φ : A → B(G) be a completely positive map,
then there exists a triple (H, π,V ), where

I H is a Hilbert space,

I π : A → B(H) is a representation.

I V : G → H is a bounded linear map such that

φ(a) = V ∗π(a)V

for all a ∈ A.

I Minimality: H = span{π(a)Vg : a ∈ A, g ∈ G}.
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Bures distance for CP maps

I A continuity theorem for Stinespring dilation by D.
Kretschmann, D. Schlingemann, R. F. Werner, JFA (2008).

I Suppose φ1, φ2 are CP maps from A to B(G).

I Take

β(φ1, φ2) = inf{‖V1 − V2‖ : (H, π,V1), (H, π,V2)}
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φi (a) = V ∗i π(a)Vi , i = 1, 2.

I The infimum is attained and one has lower and upper bounds
for β.
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Stinespring’s theorem in Hilbert module language

I Theorem: Let φ : A → B be a completely positive map.

I There exists a pair (E , z), where

I E is a Hilbert A− B module (left action from A and inner
products take value in B),

I z ∈ E is a vector such that

φ(a) = 〈z , a.z〉

for all a ∈ A.
I Minimality: E = span{a.zb : a ∈ A, b ∈ B}.
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Lower and upper bounds

I Here onwards A,B ⊆ B(G) are von Neumann algebras, CP
maps considered are normal and modules are von Neumann
modules.

I β is a metric.

I Theorem (D. Kretschmann, D. Schlingemann, R. F. Werner):
Let φi : A → B be normal CP maps, then

‖φ1 − φ2‖cb√
‖φ1‖cb +

√
‖φ2‖cb

≤ β(φ1, φ2) ≤
√
‖φ1 − φ2‖cb
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Crucial Lemma
I Define:

NE (φ1, φ2) = {〈z1, z2〉 : φi (a) = 〈zi , a.zi 〉, ∀a ∈ A, zi ∈ E , i = 1, 2}

I

N (φ1, φ2) =
⋃
E

NE (φ1, φ2)

I Observe 〈z1− z2, z1− z2〉 = φ1(1) +φ2(1)−〈z1, z2〉− 〈z2, z1〉.
I

M(φ1, φ2) = {〈z1, ψz2〉 : ψ ∈ Ba,bil(E2,E1), ‖ψ‖ ≤ 1}

I Lemma: M(φ1, φ2) does not depend upon E1,E2 and

M(φ1, φ2) = N (φ1, φ2) = NÊ1⊕Ê2
(φ1, φ2)

where Ê1, Ê2 denote minimal dilation spaces.
I Corollary β(φ1, φ2) is attained in Ê1 ⊕ Ê2.
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Counter Examples- I

I β(φ1, φ2) is not attained in all common representations.

I There is an example where√
‖φ1 − φ2‖ < β(φ1, φ2) <

√
‖φ1 − φ2‖cb.

So it is crucial to have the cb-norm.



Counter Example -II

I Let H be an infinite dimensional Hilbert space. Consider the
unital C ∗-subalgebra A of B(H⊕H):

A : = C ∗

{
K(H⊕H) ∪

{[I 0
0 0

]
,

[
0 0
0 I

]}}

=

{[
λ1I + a11 a12

a21 λ2I + a22

]
: λi ∈ C, aij ∈ K(H)

}

I Suppose u ∈ B(H) is a unitary and 1 < r ∈ R. Set

z1 =

[
0 u
0 rI

]
, z2 =

[
0 0
0 rI

]
and z3 =

[
0 I
0 rI

]
in B(H⊕H).

I Define CP-maps ϕi : A → A by ϕi (a) := z∗i azi , i = 1, 2, 3.
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Counter Examples III

I Note that each ϕi has the form, ϕi (·) =

[
0 0
0 ∗

]
.

I

E12 =

{[
x11 λ1u + x12
x21 λ2I + x22

]
: λi ∈ C, xij ∈ K(H)

}
is a Hilbert A-A -module with a natural inner product and

bimodule structure. Note that zi ∈ S(E12, ϕi ), i = 1, 2, and
hence β(ϕ1, ϕ2) ≤ ‖z1 − z2‖ = 1.

I Similarly

E23 =

{[
x11 λ1I + x12
x21 λ2I + x22

]
: λi ∈ C, xij ∈ K(H)

}
is a Hilbert A-A-module with zi ∈ S(E23, ϕi ), i = 2, 3, and
β(ϕ2, ϕ3) ≤ ‖z2 − z3‖ = 1.

I For any common representation module E of ϕ1, ϕ3, we
prove that 〈x1, x3〉 = 0 for all xi ∈ S(E , ϕi ).

I Then β(ϕ1, ϕ3) > 2 ≥ β(ϕ1, ϕ2) + β(ϕ2, ϕ3). Hence β fails
to satisfy triangle inequality.
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Bures distance for homomorphisms

Here we make some explicit computations of Bures distance. Let
ϕ1, ϕ2 : A → B be two unital ∗-homomorphisms. In the following
< denotes real part.

I β(ϕ1, ϕ2) =
√

2 inf
{
‖1−<(b)‖

1
2 : b ∈ B, ‖b‖ ≤ 1, ϕ1(a)b =

bϕ2(a) ∀a ∈ A
}

.

I If A = B and ϕ2(a) = u∗ϕ1(a)u for some unitary u ∈ B,
then

β(ϕ1, ϕ2) =
√

2 inf
{∥∥1−<(b′u)

∥∥ 1
2 : b′ ∈ ϕ1(A)′,

∥∥b′∥∥ ≤ 1
}
.

I If u ∈ Mn(C) is a unitary and ϕ : Mn(C)→ Mn(C) is the
∗-homomorphism ϕ(a) = u∗au, then

β(id , ϕ) =
√

2 inf
{
‖1−<(λu)‖

1
2 : λ ∈ [−1, 1]

}
.
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.



A rigidity theorem

I Theorem: Suppose B is a von Neumann algebra and
φ : B → B is a completely positive map such that
β(φ, id .) < 1, where id . is the identity map. Then any
Stinespring module E of φ has the form

E = B ⊕ E ′

for some module E ′.



References
I D. Bures, An extension of Kakutani’s theorem on infinite

product measures to the tensor product of semifinite
W ∗-algebras, Trans. Amer. Math. Soc. 135 (1969) 199.

I H. Araki, Bures distance function and a distance function and
a generalization of Sakai’s non-commutative Radon-Nikodym
theorem, Publ. Res. Inst. Math. Sci. Kyoto Univ. 8 (1972)
335.

I P.M. Alberti, G. Peltri: On Bures distance over standard form
vN-algebras, math.OA/0008164 v3, September 2000.

I Dennis Kretschmann, Dirk Schlingemann, Reinhard F.
Werner, A continuity theorem for Stinespring’s dilation,
Journal of Functional Analysis 255 (2008) 1889-1904.

I D. Kretschmann, D. Schlingemann, R.F. Werner, The
information-disturbance tradeoff and the continuity of
Stinespring’s representation, quant-ph/0605009, May 2006.

I E. C. Lance,Hilbert C ∗-modules, Cambridge Univ. Press,
Cambridge, 1995.



THANKS


