Bures distance for completely positive maps

B. V. Rajarama Bhat, Indian Statistical Institute, Bangalore.

September 9, 2016

Workshop on
Quantum information theory and related topics 2016
Ritusmeikan University, Japan

Acknowledgements

- Thanks to the organisers: Prof. Hiroyuki Osaka.

Acknowledgements

- Thanks to the organisers: Prof. Hiroyuki Osaka.
- Thanks to the Indian Statistical Institute.

Bures distance for completely positive maps

- Joint work with K. Sumesh.

Bures distance for completely positive maps

- Joint work with K. Sumesh.
- Thanks to K B Sinha and G. Ramesh for discussions.

Bures distance for completely positive maps

- Joint work with K. Sumesh.
- Thanks to K B Sinha and G. Ramesh for discussions.
- Appeared as: Bures distance for completely positive maps. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16 (2013), no. 4, 1350031, 22 pp. DOI: 10.1142/S0219025713500318.

States and GNS representation

- \mathcal{A} unital C^{*}-algebra.

States and GNS representation

- \mathcal{A} unital C^{*}-algebra.
- $\phi: \mathcal{A} \rightarrow \mathbb{C}$ a state.

States and GNS representation

- \mathcal{A} unital C^{*}-algebra.
- $\phi: \mathcal{A} \rightarrow \mathbb{C}$ a state.
- There exists a triple (\mathcal{H}, π, z), where

States and GNS representation

- \mathcal{A} unital C^{*}-algebra.
- $\phi: \mathcal{A} \rightarrow \mathbb{C}$ a state.
- There exists a triple (\mathcal{H}, π, z), where
- \mathcal{H} is a Hilbert space,

States and GNS representation

- \mathcal{A} unital C^{*}-algebra.
- $\phi: \mathcal{A} \rightarrow \mathbb{C}$ a state.
- There exists a triple (\mathcal{H}, π, z), where
- \mathcal{H} is a Hilbert space,
- $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a representation,

States and GNS representation

- \mathcal{A} unital C^{*}-algebra.
- $\phi: \mathcal{A} \rightarrow \mathbb{C}$ a state.
- There exists a triple (\mathcal{H}, π, z), where
- \mathcal{H} is a Hilbert space,
- $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a representation,
- $z \in \mathcal{H}$ is a unit vector such that

$$
\phi(a)=\langle z, \pi(a) z\rangle
$$

for all $a \in \mathcal{A}$.

States and GNS representation

- \mathcal{A} unital C^{*}-algebra.
- $\phi: \mathcal{A} \rightarrow \mathbb{C}$ a state.
- There exists a triple (\mathcal{H}, π, z), where
- \mathcal{H} is a Hilbert space,
- $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a representation,
- $z \in \mathcal{H}$ is a unit vector such that

$$
\phi(a)=\langle z, \pi(a) z\rangle
$$

for all $a \in \mathcal{A}$.

- Minimality: $\mathcal{H}=\overline{\operatorname{span}}\{\pi(a) z: a \in \mathcal{A}\}$.

Two states

- Suppose ϕ_{1}, ϕ_{2} are two states on a unital C^{*}-algebra \mathcal{A}.

Two states

- Suppose ϕ_{1}, ϕ_{2} are two states on a unital C^{*}-algebra \mathcal{A}.
- Question: If ϕ_{1}, ϕ_{2} are close can we make GNS representations close?

Two states

- Suppose ϕ_{1}, ϕ_{2} are two states on a unital C^{*}-algebra \mathcal{A}.
- Question: If ϕ_{1}, ϕ_{2} are close can we make GNS representations close?
- Idea: Look at common representations: $\left(\mathcal{H}, \pi, z_{1}\right),\left(\mathcal{H}, \pi, z_{2}\right)$.

Two states

- Suppose ϕ_{1}, ϕ_{2} are two states on a unital C^{*}-algebra \mathcal{A}.
- Question: If ϕ_{1}, ϕ_{2} are close can we make GNS representations close?
- Idea: Look at common representations: $\left(\mathcal{H}, \pi, z_{1}\right),\left(\mathcal{H}, \pi, z_{2}\right)$.
- Example: Consider direct sum:

$$
\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}, \pi=\pi_{1} \oplus \pi_{2}
$$

$$
z_{1} \oplus 0,0 \oplus z_{2} .
$$

Bures distance

- Suppose ϕ_{1}, ϕ_{2} are states on \mathcal{A} :

Bures distance

- Suppose ϕ_{1}, ϕ_{2} are states on \mathcal{A} :
- Take

$$
\beta\left(\phi_{1}, \phi_{2}\right)=\inf \left\{\left\|z_{1}-z_{2}\right\|:\left(\mathcal{H}, \pi, z_{1}\right),\left(\mathcal{H}, \pi, z_{2}\right)\right\}
$$

The infimum is over common representations of ϕ_{1}, ϕ_{2} :

$$
\phi_{i}(a)=\left\langle z_{i}, \pi(a) z_{i}\right\rangle, \quad i=1,2 .
$$

Bures distance

- Suppose ϕ_{1}, ϕ_{2} are states on \mathcal{A} :
- Take

$$
\beta\left(\phi_{1}, \phi_{2}\right)=\inf \left\{\left\|z_{1}-z_{2}\right\|:\left(\mathcal{H}, \pi, z_{1}\right),\left(\mathcal{H}, \pi, z_{2}\right)\right\}
$$

The infimum is over common representations of ϕ_{1}, ϕ_{2} :

$$
\phi_{i}(a)=\left\langle z_{i}, \pi(a) z_{i}\right\rangle, \quad i=1,2 .
$$

- β is a metric on states and

$$
\beta\left(\phi_{1}, \phi_{2}\right) \leq \sqrt{\left\|\phi_{1}-\phi_{2}\right\|} .
$$

Bures distance

- Suppose ϕ_{1}, ϕ_{2} are states on \mathcal{A} :
- Take

$$
\beta\left(\phi_{1}, \phi_{2}\right)=\inf \left\{\left\|z_{1}-z_{2}\right\|:\left(\mathcal{H}, \pi, z_{1}\right),\left(\mathcal{H}, \pi, z_{2}\right)\right\}
$$

The infimum is over common representations of ϕ_{1}, ϕ_{2} :

$$
\phi_{i}(a)=\left\langle z_{i}, \pi(a) z_{i}\right\rangle, \quad i=1,2 .
$$

- β is a metric on states and

$$
\beta\left(\phi_{1}, \phi_{2}\right) \leq \sqrt{\left\|\phi_{1}-\phi_{2}\right\|} .
$$

- The infimum is attained in every common representation.

Completely positive (CP) maps

- A linear map $\phi: \mathcal{A} \rightarrow \mathcal{B}$ is said to be completely positive (CP) if,

$$
\sum_{i, j} b_{i}^{*} \phi\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for $a_{i} \in \mathcal{A}, b_{i} \in \mathcal{B}$.

Completely positive (CP) maps

- A linear map $\phi: \mathcal{A} \rightarrow \mathcal{B}$ is said to be completely positive (CP) if,

$$
\sum_{i, j} b_{i}^{*} \phi\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for $a_{i} \in \mathcal{A}, b_{i} \in \mathcal{B}$.

- *-homomorphisms, positive linear functionals are (CP).

Completely positive (CP) maps

- A linear map $\phi: \mathcal{A} \rightarrow \mathcal{B}$ is said to be completely positive (CP) if,

$$
\sum_{i, j} b_{i}^{*} \phi\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for $a_{i} \in \mathcal{A}, b_{i} \in \mathcal{B}$.

- *-homomorphisms, positive linear functionals are (CP).
- Compositions, sums, convex combinations of CP maps are CP.

Completely positive (CP) maps

- A linear map $\phi: \mathcal{A} \rightarrow \mathcal{B}$ is said to be completely positive (CP) if,

$$
\sum_{i, j} b_{i}^{*} \phi\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for $a_{i} \in \mathcal{A}, b_{i} \in \mathcal{B}$.

- *-homomorphisms, positive linear functionals are (CP).
- Compositions, sums, convex combinations of CP maps are CP.
- CP maps are very important for understanding C^{*}-algebras and from applications point of view.

Stinespring's Theorem

- Theorem: Let $\phi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{G})$ be a completely positive map, then there exists a triple (\mathcal{H}, π, V), where

Stinespring's Theorem

- Theorem: Let $\phi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{G})$ be a completely positive map, then there exists a triple (\mathcal{H}, π, V), where
- \mathcal{H} is a Hilbert space,

Stinespring's Theorem

- Theorem: Let $\phi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{G})$ be a completely positive map, then there exists a triple (\mathcal{H}, π, V), where
- \mathcal{H} is a Hilbert space,
- $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a representation.

Stinespring's Theorem

- Theorem: Let $\phi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{G})$ be a completely positive map, then there exists a triple (\mathcal{H}, π, V), where
- \mathcal{H} is a Hilbert space,
- $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a representation.
- $V: \mathcal{G} \rightarrow \mathcal{H}$ is a bounded linear map such that

$$
\phi(a)=V^{*} \pi(a) V
$$

for all $a \in \mathcal{A}$.

Stinespring's Theorem

- Theorem: Let $\phi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{G})$ be a completely positive map, then there exists a triple (\mathcal{H}, π, V), where
- \mathcal{H} is a Hilbert space,
- $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a representation.
- $V: \mathcal{G} \rightarrow \mathcal{H}$ is a bounded linear map such that

$$
\phi(a)=V^{*} \pi(a) V
$$

for all $a \in \mathcal{A}$.

- Minimality: $\mathcal{H}=\operatorname{span}\{\pi(a) \vee g: a \in \mathcal{A}, g \in \mathcal{G}\}$.

Bures distance for CP maps

- A continuity theorem for Stinespring dilation by D. Kretschmann, D. Schlingemann, R. F. Werner, JFA (2008).

Bures distance for CP maps

- A continuity theorem for Stinespring dilation by D. Kretschmann, D. Schlingemann, R. F. Werner, JFA (2008).
- Suppose ϕ_{1}, ϕ_{2} are CP maps from \mathcal{A} to $\mathcal{B}(\mathcal{G})$.

Bures distance for CP maps

- A continuity theorem for Stinespring dilation by D. Kretschmann, D. Schlingemann, R. F. Werner, JFA (2008).
- Suppose ϕ_{1}, ϕ_{2} are CP maps from \mathcal{A} to $\mathcal{B}(\mathcal{G})$.
- Take

$$
\beta\left(\phi_{1}, \phi_{2}\right)=\inf \left\{\left\|V_{1}-V_{2}\right\|:\left(\mathcal{H}, \pi, V_{1}\right),\left(\mathcal{H}, \pi, V_{2}\right)\right\}
$$

The infimum is over common representations of ϕ_{1}, ϕ_{2} :

$$
\phi_{i}(a)=V_{i}^{*} \pi(a) V_{i}, \quad i=1,2
$$

Bures distance for CP maps

- A continuity theorem for Stinespring dilation by D. Kretschmann, D. Schlingemann, R. F. Werner, JFA (2008).
- Suppose ϕ_{1}, ϕ_{2} are CP maps from \mathcal{A} to $\mathcal{B}(\mathcal{G})$.
- Take

$$
\beta\left(\phi_{1}, \phi_{2}\right)=\inf \left\{\left\|V_{1}-V_{2}\right\|:\left(\mathcal{H}, \pi, V_{1}\right),\left(\mathcal{H}, \pi, V_{2}\right)\right\}
$$

The infimum is over common representations of ϕ_{1}, ϕ_{2} :

$$
\phi_{i}(a)=V_{i}^{*} \pi(a) V_{i}, \quad i=1,2
$$

- The infimum is attained and one has lower and upper bounds for β.

Stinespring's theorem in Hilbert module language

- Theorem: Let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a completely positive map.

Stinespring's theorem in Hilbert module language

- Theorem: Let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a completely positive map.
- There exists a pair (E, z), where

Stinespring's theorem in Hilbert module language

- Theorem: Let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a completely positive map.
- There exists a pair (E, z), where
- E is a Hilbert $\mathcal{A}-\mathcal{B}$ module (left action from \mathcal{A} and inner products take value in \mathcal{B}),

Stinespring's theorem in Hilbert module language

- Theorem: Let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a completely positive map.
- There exists a pair (E, z), where
- E is a Hilbert $\mathcal{A}-\mathcal{B}$ module (left action from \mathcal{A} and inner products take value in \mathcal{B}),
- $z \in E$ is a vector such that

$$
\phi(a)=\langle z, a . z\rangle
$$

for all $a \in \mathcal{A}$.

Stinespring's theorem in Hilbert module language

- Theorem: Let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a completely positive map.
- There exists a pair (E, z), where
- E is a Hilbert $\mathcal{A}-\mathcal{B}$ module (left action from \mathcal{A} and inner products take value in \mathcal{B}),
- $z \in E$ is a vector such that

$$
\phi(a)=\langle z, a . z\rangle
$$

for all $a \in \mathcal{A}$.

- Minimality: $E=\overline{\operatorname{span}}\{a . z b: a \in \mathcal{A}, b \in \mathcal{B}\}$.

Lower and upper bounds

- Here onwards $\mathcal{A}, \mathcal{B} \subseteq \mathcal{B}(\mathcal{G})$ are von Neumann algebras, CP maps considered are normal and modules are von Neumann modules.

Lower and upper bounds

- Here onwards $\mathcal{A}, \mathcal{B} \subseteq \mathcal{B}(\mathcal{G})$ are von Neumann algebras, CP maps considered are normal and modules are von Neumann modules.
- β is a metric.

Lower and upper bounds

- Here onwards $\mathcal{A}, \mathcal{B} \subseteq \mathcal{B}(\mathcal{G})$ are von Neumann algebras, CP maps considered are normal and modules are von Neumann modules.
- β is a metric.
- Theorem (D. Kretschmann, D. Schlingemann, R. F. Werner): Let $\phi_{i}: \mathcal{A} \rightarrow \mathcal{B}$ be normal CP maps, then

$$
\frac{\left\|\phi_{1}-\phi_{2}\right\|_{c b}}{\sqrt{\left\|\phi_{1}\right\|_{c b}}+\sqrt{\left\|\phi_{2}\right\|_{c b}}} \leq \beta\left(\phi_{1}, \phi_{2}\right) \leq \sqrt{\left\|\phi_{1}-\phi_{2}\right\|_{c b}}
$$

Crucial Lemma

- Define:

$$
\mathcal{N}_{E}\left(\phi_{1}, \phi_{2}\right)=\left\{\left\langle z_{1}, z_{2}\right\rangle: \phi_{i}(a)=\left\langle z_{i}, a . z_{i}\right\rangle, \forall a \in \mathcal{A}, z_{i} \in E, i=1,2\right\}
$$

Crucial Lemma

- Define:

$$
\mathcal{N}_{E}\left(\phi_{1}, \phi_{2}\right)=\left\{\left\langle z_{1}, z_{2}\right\rangle: \phi_{i}(a)=\left\langle z_{i}, a . z_{i}\right\rangle, \forall a \in \mathcal{A}, z_{i} \in E, i=1,2\right\}
$$

$$
\mathcal{N}\left(\phi_{1}, \phi_{2}\right)=\bigcup_{E} \mathcal{N}_{E}\left(\phi_{1}, \phi_{2}\right)
$$

Crucial Lemma

- Define:

$$
\mathcal{N}_{E}\left(\phi_{1}, \phi_{2}\right)=\left\{\left\langle z_{1}, z_{2}\right\rangle: \phi_{i}(a)=\left\langle z_{i}, a . z_{i}\right\rangle, \forall a \in \mathcal{A}, z_{i} \in E, i=1,2\right\}
$$

$$
\mathcal{N}\left(\phi_{1}, \phi_{2}\right)=\bigcup_{E} \mathcal{N}_{E}\left(\phi_{1}, \phi_{2}\right)
$$

- Observe $\left\langle z_{1}-z_{2}, z_{1}-z_{2}\right\rangle=\phi_{1}(1)+\phi_{2}(1)-\left\langle z_{1}, z_{2}\right\rangle-\left\langle z_{2}, z_{1}\right\rangle$.

Crucial Lemma

- Define:

$$
\mathcal{N}_{E}\left(\phi_{1}, \phi_{2}\right)=\left\{\left\langle z_{1}, z_{2}\right\rangle: \phi_{i}(a)=\left\langle z_{i}, a . z_{i}\right\rangle, \forall a \in \mathcal{A}, z_{i} \in E, i=1,2\right\}
$$

$$
\mathcal{N}\left(\phi_{1}, \phi_{2}\right)=\bigcup_{E} \mathcal{N}_{E}\left(\phi_{1}, \phi_{2}\right)
$$

- Observe $\left\langle z_{1}-z_{2}, z_{1}-z_{2}\right\rangle=\phi_{1}(1)+\phi_{2}(1)-\left\langle z_{1}, z_{2}\right\rangle-\left\langle z_{2}, z_{1}\right\rangle$.

$$
\mathcal{M}\left(\phi_{1}, \phi_{2}\right)=\left\{\left\langle z_{1}, \psi z_{2}\right\rangle: \psi \in \mathcal{B}^{a, b i l}\left(E_{2}, E_{1}\right),\|\psi\| \leq 1\right\}
$$

Crucial Lemma

- Define:

$$
\mathcal{N}_{E}\left(\phi_{1}, \phi_{2}\right)=\left\{\left\langle z_{1}, z_{2}\right\rangle: \phi_{i}(a)=\left\langle z_{i}, a . z_{i}\right\rangle, \forall a \in \mathcal{A}, z_{i} \in E, i=1,2\right\}
$$

$$
\mathcal{N}\left(\phi_{1}, \phi_{2}\right)=\bigcup_{E} \mathcal{N}_{E}\left(\phi_{1}, \phi_{2}\right)
$$

- Observe $\left\langle z_{1}-z_{2}, z_{1}-z_{2}\right\rangle=\phi_{1}(1)+\phi_{2}(1)-\left\langle z_{1}, z_{2}\right\rangle-\left\langle z_{2}, z_{1}\right\rangle$.

$$
\mathcal{M}\left(\phi_{1}, \phi_{2}\right)=\left\{\left\langle z_{1}, \psi z_{2}\right\rangle: \psi \in \mathcal{B}^{a, b i l}\left(E_{2}, E_{1}\right),\|\psi\| \leq 1\right\}
$$

- Lemma: $\mathcal{M}\left(\phi_{1}, \phi_{2}\right)$ does not depend upon E_{1}, E_{2} and

$$
\mathcal{M}\left(\phi_{1}, \phi_{2}\right)=\mathcal{N}\left(\phi_{1}, \phi_{2}\right)=\mathcal{N}_{\hat{E}_{1} \oplus \hat{E}_{2}}\left(\phi_{1}, \phi_{2}\right)
$$

where \hat{E}_{1}, \hat{E}_{2} denote minimal dilation spaces.

Crucial Lemma

- Define:

$$
\mathcal{N}_{E}\left(\phi_{1}, \phi_{2}\right)=\left\{\left\langle z_{1}, z_{2}\right\rangle: \phi_{i}(a)=\left\langle z_{i}, a . z_{i}\right\rangle, \forall a \in \mathcal{A}, z_{i} \in E, i=1,2\right\}
$$

$$
\mathcal{N}\left(\phi_{1}, \phi_{2}\right)=\bigcup_{E} \mathcal{N}_{E}\left(\phi_{1}, \phi_{2}\right)
$$

- Observe $\left\langle z_{1}-z_{2}, z_{1}-z_{2}\right\rangle=\phi_{1}(1)+\phi_{2}(1)-\left\langle z_{1}, z_{2}\right\rangle-\left\langle z_{2}, z_{1}\right\rangle$.

$$
\mathcal{M}\left(\phi_{1}, \phi_{2}\right)=\left\{\left\langle z_{1}, \psi z_{2}\right\rangle: \psi \in \mathcal{B}^{a, b i l}\left(E_{2}, E_{1}\right),\|\psi\| \leq 1\right\}
$$

- Lemma: $\mathcal{M}\left(\phi_{1}, \phi_{2}\right)$ does not depend upon E_{1}, E_{2} and

$$
\mathcal{M}\left(\phi_{1}, \phi_{2}\right)=\mathcal{N}\left(\phi_{1}, \phi_{2}\right)=\mathcal{N}_{\hat{E}_{1} \oplus \hat{E}_{2}}\left(\phi_{1}, \phi_{2}\right)
$$

where \hat{E}_{1}, \hat{E}_{2} denote minimal dilation spaces.

- Corollary $\beta\left(\phi_{1}, \phi_{2}\right)$ is attained in $\hat{E}_{1} \oplus \hat{E}_{2}$.

Counter Examples- I

- $\beta\left(\phi_{1}, \phi_{2}\right)$ is not attained in all common representations.
- There is an example where

$$
\sqrt{\left\|\phi_{1}-\phi_{2}\right\|}<\beta\left(\phi_{1}, \phi_{2}\right)<\sqrt{\left\|\phi_{1}-\phi_{2}\right\|_{c b}} .
$$

So it is crucial to have the cb-norm.

Counter Example -II

- Let \mathcal{H} be an infinite dimensional Hilbert space. Consider the unital C^{*}-subalgebra \mathcal{A} of $\mathcal{B}(\mathcal{H} \oplus \mathcal{H})$:

$$
\begin{aligned}
\mathcal{A}: & =C^{*}\left\{\mathcal{K}(\mathcal{H} \oplus \mathcal{H}) \cup\left\{\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right]\right\}\right\} \\
& =\left\{\left[\begin{array}{cc}
\lambda_{1} I+a_{11} & a_{12} \\
a_{21} & \lambda_{2} I+a_{22}
\end{array}\right]: \lambda_{i} \in \mathbb{C}, a_{i j} \in \mathcal{K}(H)\right\}
\end{aligned}
$$

Counter Example -II

- Let \mathcal{H} be an infinite dimensional Hilbert space. Consider the unital C^{*}-subalgebra \mathcal{A} of $\mathcal{B}(\mathcal{H} \oplus \mathcal{H})$:

$$
\begin{aligned}
\mathcal{A}: & =C^{*}\left\{\mathcal{K}(\mathcal{H} \oplus \mathcal{H}) \cup\left\{\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right]\right\}\right\} \\
& =\left\{\left[\begin{array}{cc}
\lambda_{1} I+a_{11} & a_{12} \\
a_{21} & \lambda_{2} I+a_{22}
\end{array}\right]: \lambda_{i} \in \mathbb{C}, a_{i j} \in \mathcal{K}(H)\right\}
\end{aligned}
$$

- Suppose $u \in \mathcal{B}(\mathcal{H})$ is a unitary and $1<r \in \mathbb{R}$. Set

$$
z_{1}=\left[\begin{array}{cc}
0 & u \\
0 & r l
\end{array}\right], z_{2}=\left[\begin{array}{cc}
0 & 0 \\
0 & r l
\end{array}\right] \text { and } z_{3}=\left[\begin{array}{cc}
0 & l \\
0 & r l
\end{array}\right]
$$

in $\mathcal{B}(\mathcal{H} \oplus \mathcal{H})$.

Counter Example -II

- Let \mathcal{H} be an infinite dimensional Hilbert space. Consider the unital C^{*}-subalgebra \mathcal{A} of $\mathcal{B}(\mathcal{H} \oplus \mathcal{H})$:

$$
\begin{aligned}
\mathcal{A}: & =C^{*}\left\{\mathcal{K}(\mathcal{H} \oplus \mathcal{H}) \cup\left\{\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right]\right\}\right\} \\
& =\left\{\left[\begin{array}{cc}
\lambda_{1} I+a_{11} & a_{12} \\
a_{21} & \lambda_{2} I+a_{22}
\end{array}\right]: \lambda_{i} \in \mathbb{C}, a_{i j} \in \mathcal{K}(H)\right\}
\end{aligned}
$$

- Suppose $u \in \mathcal{B}(\mathcal{H})$ is a unitary and $1<r \in \mathbb{R}$. Set

$$
z_{1}=\left[\begin{array}{cc}
0 & u \\
0 & r l
\end{array}\right], z_{2}=\left[\begin{array}{cc}
0 & 0 \\
0 & r l
\end{array}\right] \text { and } z_{3}=\left[\begin{array}{cc}
0 & l \\
0 & r l
\end{array}\right]
$$

in $\mathcal{B}(\mathcal{H} \oplus \mathcal{H})$.

- Define CP-maps $\varphi_{i}: \mathcal{A} \rightarrow \mathcal{A}$ by $\varphi_{i}(a):=z_{i}^{*} a z_{i}, i=1,2,3$.

Counter Examples III

- Note that each φ_{i} has the form, $\varphi_{i}(\cdot)=\left[\begin{array}{ll}0 & 0 \\ 0 & *\end{array}\right]$.

Counter Examples III

- Note that each φ_{i} has the form, $\varphi_{i}(\cdot)=\left[\begin{array}{ll}0 & 0 \\ 0 & *\end{array}\right]$.

$$
E_{12}=\left\{\left[\begin{array}{ll}
x_{11} & \lambda_{1} u+x_{12} \\
x_{21} & \lambda_{2} I+x_{22}
\end{array}\right]: \lambda_{i} \in \mathbb{C}, x_{i j} \in \mathcal{K}(H)\right\}
$$

is a Hilbert $\mathcal{A}-\mathcal{A}$-module with a natural inner product and bimodule structure. Note that $z_{i} \in S\left(E_{12}, \varphi_{i}\right), i=1,2$, and hence $\beta\left(\varphi_{1}, \varphi_{2}\right) \leq\left\|z_{1}-z_{2}\right\|=1$.

Counter Examples III

- Note that each φ_{i} has the form, $\varphi_{i}(\cdot)=\left[\begin{array}{ll}0 & 0 \\ 0 & *\end{array}\right]$.

$$
E_{12}=\left\{\left[\begin{array}{ll}
x_{11} & \lambda_{1} u+x_{12} \\
x_{21} & \lambda_{2} I+x_{22}
\end{array}\right]: \lambda_{i} \in \mathbb{C}, x_{i j} \in \mathcal{K}(H)\right\}
$$

is a Hilbert $\mathcal{A}-\mathcal{A}$-module with a natural inner product and bimodule structure. Note that $z_{i} \in S\left(E_{12}, \varphi_{i}\right), i=1,2$, and hence $\beta\left(\varphi_{1}, \varphi_{2}\right) \leq\left\|z_{1}-z_{2}\right\|=1$.

- Similarly

$$
E_{23}=\left\{\left[\begin{array}{ll}
x_{11} & \lambda_{1} I+x_{12} \\
x_{21} & \lambda_{2} I+x_{22}
\end{array}\right]: \lambda_{i} \in \mathbb{C}, x_{i j} \in \mathcal{K}(H)\right\}
$$

is a Hilbert \mathcal{A} - \mathcal{A}-module with $z_{i} \in S\left(E_{23}, \varphi_{i}\right), i=2,3$, and $\beta\left(\varphi_{2}, \varphi_{3}\right) \leq\left\|z_{2}-z_{3}\right\|=1$.

Counter Examples III

- Note that each φ_{i} has the form, $\varphi_{i}(\cdot)=\left[\begin{array}{ll}0 & 0 \\ 0 & *\end{array}\right]$.

$$
E_{12}=\left\{\left[\begin{array}{ll}
x_{11} & \lambda_{1} u+x_{12} \\
x_{21} & \lambda_{2} I+x_{22}
\end{array}\right]: \lambda_{i} \in \mathbb{C}, x_{i j} \in \mathcal{K}(H)\right\}
$$

is a Hilbert $\mathcal{A}-\mathcal{A}$-module with a natural inner product and bimodule structure. Note that $z_{i} \in S\left(E_{12}, \varphi_{i}\right), i=1,2$, and hence $\beta\left(\varphi_{1}, \varphi_{2}\right) \leq\left\|z_{1}-z_{2}\right\|=1$.

- Similarly

$$
E_{23}=\left\{\left[\begin{array}{ll}
x_{11} & \lambda_{1} I+x_{12} \\
x_{21} & \lambda_{2} I+x_{22}
\end{array}\right]: \lambda_{i} \in \mathbb{C}, x_{i j} \in \mathcal{K}(H)\right\}
$$

is a Hilbert \mathcal{A} - \mathcal{A}-module with $z_{i} \in S\left(E_{23}, \varphi_{i}\right), i=2,3$, and $\beta\left(\varphi_{2}, \varphi_{3}\right) \leq\left\|z_{2}-z_{3}\right\|=1$.

- For any common representation module E of φ_{1}, φ_{3}, we prove that $\left\langle x_{1}, x_{3}\right\rangle=0$ for all $x_{i} \in S\left(E, \varphi_{i}\right)$.

Counter Examples III

- Note that each φ_{i} has the form, $\varphi_{i}(\cdot)=\left[\begin{array}{ll}0 & 0 \\ 0 & *\end{array}\right]$.

$$
E_{12}=\left\{\left[\begin{array}{ll}
x_{11} & \lambda_{1} u+x_{12} \\
x_{21} & \lambda_{2} I+x_{22}
\end{array}\right]: \lambda_{i} \in \mathbb{C}, x_{i j} \in \mathcal{K}(H)\right\}
$$

is a Hilbert $\mathcal{A}-\mathcal{A}$-module with a natural inner product and bimodule structure. Note that $z_{i} \in S\left(E_{12}, \varphi_{i}\right), i=1,2$, and hence $\beta\left(\varphi_{1}, \varphi_{2}\right) \leq\left\|z_{1}-z_{2}\right\|=1$.

- Similarly

$$
E_{23}=\left\{\left[\begin{array}{ll}
x_{11} & \lambda_{1} I+x_{12} \\
x_{21} & \lambda_{2} I+x_{22}
\end{array}\right]: \lambda_{i} \in \mathbb{C}, x_{i j} \in \mathcal{K}(H)\right\}
$$

is a Hilbert \mathcal{A} - \mathcal{A}-module with $z_{i} \in S\left(E_{23}, \varphi_{i}\right), i=2,3$, and $\beta\left(\varphi_{2}, \varphi_{3}\right) \leq\left\|z_{2}-z_{3}\right\|=1$.

- For any common representation module E of φ_{1}, φ_{3}, we prove that $\left\langle x_{1}, x_{3}\right\rangle=0$ for all $x_{i} \in S\left(E, \varphi_{i}\right)$.
- Then $\beta\left(\varphi_{1}, \varphi_{3}\right)>2 \geq \beta\left(\varphi_{1}, \varphi_{2}\right)+\beta\left(\varphi_{2}, \varphi_{3}\right)$. Hence β fails to satisfy triangle inequality.

Bures distance for homomorphisms

Here we make some explicit computations of Bures distance. Let $\varphi_{1}, \varphi_{2}: \mathcal{A} \rightarrow \mathcal{B}$ be two unital $*$-homomorphisms. In the following \Re denotes real part.

$$
\begin{aligned}
- & \beta\left(\varphi_{1}, \varphi_{2}\right)=\sqrt{2} \inf \left\{\|1-\Re(b)\|^{\frac{1}{2}}: b \in \mathcal{B},\|b\| \leq 1, \varphi_{1}(a) b=\right. \\
& \left.b \varphi_{2}(a) \forall a \in \mathcal{A}\right\} .
\end{aligned}
$$

Bures distance for homomorphisms

Here we make some explicit computations of Bures distance. Let $\varphi_{1}, \varphi_{2}: \mathcal{A} \rightarrow \mathcal{B}$ be two unital $*$-homomorphisms. In the following \Re denotes real part.

- $\beta\left(\varphi_{1}, \varphi_{2}\right)=\sqrt{2} \inf \left\{\|1-\Re(b)\|^{\frac{1}{2}}: b \in \mathcal{B},\|b\| \leq 1, \varphi_{1}(a) b=\right.$ $\left.b \varphi_{2}(a) \forall a \in \mathcal{A}\right\}$.
- If $\mathcal{A}=\mathcal{B}$ and $\varphi_{2}(a)=u^{*} \varphi_{1}(a) u$ for some unitary $u \in \mathcal{B}$, then

$$
\beta\left(\varphi_{1}, \varphi_{2}\right)=\sqrt{2} \inf \left\{\left\|1-\Re\left(b^{\prime} u\right)\right\|^{\frac{1}{2}}: b^{\prime} \in \varphi_{1}(\mathcal{A})^{\prime},\left\|b^{\prime}\right\| \leq 1\right\} .
$$

Bures distance for homomorphisms

Here we make some explicit computations of Bures distance. Let $\varphi_{1}, \varphi_{2}: \mathcal{A} \rightarrow \mathcal{B}$ be two unital $*$-homomorphisms. In the following \Re denotes real part.

- $\beta\left(\varphi_{1}, \varphi_{2}\right)=\sqrt{2} \inf \left\{\|1-\Re(b)\|^{\frac{1}{2}}: b \in \mathcal{B},\|b\| \leq 1, \varphi_{1}(a) b=\right.$ $\left.b \varphi_{2}(a) \forall a \in \mathcal{A}\right\}$.
- If $\mathcal{A}=\mathcal{B}$ and $\varphi_{2}(a)=u^{*} \varphi_{1}(a) u$ for some unitary $u \in \mathcal{B}$, then
$\beta\left(\varphi_{1}, \varphi_{2}\right)=\sqrt{2} \inf \left\{\left\|1-\Re\left(b^{\prime} u\right)\right\|^{\frac{1}{2}}: b^{\prime} \in \varphi_{1}(\mathcal{A})^{\prime},\left\|b^{\prime}\right\| \leq 1\right\}$.
- If $u \in M_{n}(\mathbb{C})$ is a unitary and $\varphi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is the *-homomorphism $\varphi(a)=u^{*} a u$, then

$$
\beta(i d, \varphi)=\sqrt{2} \inf \left\{\|1-\Re(\lambda u)\|^{\frac{1}{2}}: \lambda \in[-1,1]\right\} .
$$

A rigidity theorem

- Theorem: Suppose \mathcal{B} is a von Neumann algebra and $\phi: \mathcal{B} \rightarrow \mathcal{B}$ is a completely positive map such that $\beta(\phi, i d)<$.1 , where id. is the identity map. Then any Stinespring module E of ϕ has the form

$$
E=\mathcal{B} \oplus E^{\prime}
$$

for some module E^{\prime}.

References

- D. Bures, An extension of Kakutani's theorem on infinite product measures to the tensor product of semifinite W*-algebras, Trans. Amer. Math. Soc. 135 (1969) 199.
- H. Araki, Bures distance function and a distance function and a generalization of Sakai's non-commutative Radon-Nikodym theorem, Publ. Res. Inst. Math. Sci. Kyoto Univ. 8 (1972) 335.
- P.M. Alberti, G. Peltri: On Bures distance over standard form vN-algebras, math.OA/0008164 v3, September 2000.
- Dennis Kretschmann, Dirk Schlingemann, Reinhard F. Werner, A continuity theorem for Stinespring's dilation, Journal of Functional Analysis 255 (2008) 1889-1904.
- D. Kretschmann, D. Schlingemann, R.F. Werner, The information-disturbance tradeoff and the continuity of Stinespring's representation, quant-ph/0605009, May 2006.
- E. C. Lance,Hilbert C^{*}-modules, Cambridge Univ. Press, Cambridge, 1995.

THANKS

