All 2-positive linear maps from $M_{3}(\mathbb{C})$ to $M_{3}(\mathbb{C})$ are decomposable*

Wai Shing Tang
* Joint work with Y. Yang and D.H. Leung

National University of Singapore
Quantum Information Theory and Related Topics 2016 Ritsumeikan University, 9 September, 2016
(1) A Conjecture for 2-positive/2-copostive maps in $B\left(M_{3}(\mathbb{C}), M_{3}(\mathbb{C})\right)$

- Origins of the Conjecture
- The Connections
(2) A Decomposition Theorem for k-positive maps on Matrix Algebras
- Block Matrix Approach
- Some Immediate Consequences
(3) Questions
- An Algorithm?
- An Example?

4 References

A Corollary for Generalized Choi Maps in Three Dimensional Matrix Algebra

Let $M_{n}(\mathbb{C})$ be the C^{*}-algebra of all $n \times n$ matrices over the complex field.

A Corollary for Generalized Choi Maps in Three Dimensional Matrix Algebra

Let $M_{n}(\mathbb{C})$ be the C^{*}-algebra of all $n \times n$ matrices over the complex field.

In their 1992 LAA paper Generalized Choi Maps in Three Dimensional Matrix Algebra, Cho, Kye and Lee constructed a class of positive linear maps in $B\left(M_{3}(\mathbb{C}), M_{3}(\mathbb{C})\right)$:

A Corollary for Generalized Choi Maps in Three Dimensional Matrix Algebra

Let $M_{n}(\mathbb{C})$ be the C^{*}-algebra of all $n \times n$ matrices over the complex field.

In their 1992 LAA paper Generalized Choi Maps in Three Dimensional Matrix Algebra, Cho, Kye and Lee constructed a class of positive linear maps in $B\left(M_{3}(\mathbb{C}), M_{3}(\mathbb{C})\right)$:

For nonnegative real numbers a, b and c, the generalized Choi map $\Phi[a, b, c]$ is defined by

$$
\Phi[a, b, c](X)=\left(\begin{array}{ccc}
a x_{11}+b x_{22}+c x_{33} & -x_{12} & -x_{13} \\
-x_{21} & c x_{11}+a x_{22}+b x_{33} & -x_{23} \\
-x_{31} & -x_{32} & b x_{11}+c x_{22}+a x_{33}
\end{array}\right)
$$

$$
\text { for } X=\left[x_{i j}\right] \in M_{3}(\mathbb{C})
$$

A Corollary for Generalized Choi Maps in Three Dimensional Matrix Algebra

In that paper, conditions on a, b, c were determined for the generalized Choi map $\Phi[a, b, c]$ to be positive, 2-positive, 2-copositive, completely positive, completely copositive and decomposable, respectively.

A Corollary for Generalized Choi Maps in Three Dimensional Matrix Algebra

In that paper, conditions on a, b, c were determined for the generalized Choi map $\Phi[a, b, c]$ to be positive, 2-positive, 2-copositive, completely positive, completely copositive and decomposable, respectively.

Moreover, it was shown that

A Corollary for Generalized Choi Maps in Three Dimensional Matrix Algebra

In that paper, conditions on a, b, c were determined for the generalized Choi map $\Phi[a, b, c]$ to be positive, 2-positive, 2-copositive, completely positive, completely copositive and decomposable, respectively.

Moreover, it was shown that

A Corollary

If the linear map $\Phi[a, b, c]$ is 2-positive or 2-copositive, then it is decomposable.

A Conjecture

A Conjecture

Conjecture 1

Every 2-positive (respectively 2-copositive) map in $B\left(M_{3}(\mathbb{C}), M_{3}(\mathbb{C})\right)$ is decomposable.

Strong Evidence that All PPTES in $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$ (Two Qutrits) have Schmidt Number 2.

Let ρ be the density matrix for a quantum state in a bipartite system $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$. The Schmidt number of the density matrix (or the state) ρ is defined by

$$
S N(\rho)=\min \left\{\max _{k} S R\left(z_{k}\right)\right\}
$$

where the minimum is taken over all possible decompositions

$$
\rho=\sum_{k} p_{k} \cdot z_{k} z_{k}^{*}
$$

with z_{k} being vectors in $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ and $p_{k}>0, \sum_{k} p_{k}=1$.

Strong Evidence that All PPTES in $\mathbf{C}^{3} \otimes \mathbf{C}^{3}$ (Two Qutrits) have Schmidt Number 2.

In the 2001 Phy Rev A paper Schmidt number witnesses and bound entanglement, Sanpera, Bruß and Lewenstein showed:

Strong Evidence that All PPTES in $\mathbf{C}^{3} \otimes \mathbf{C}^{3}$ (Two Qutrits) have Schmidt Number 2.

In the 2001 Phy Rev A paper Schmidt number witnesses and bound entanglement, Sanpera, Bruß and Lewenstein showed:

Validity for some special cases

All positive partial transpose (PPT) entangled states of rank 4 have Schmidt number 2.

Strong Evidence that All PPTES in $\mathbf{C}^{3} \otimes \mathbf{C}^{3}$ (Two Qutrits) have Schmidt Number 2.

In the 2001 Phy Rev A paper Schmidt number witnesses and bound entanglement, Sanpera, Bruß and Lewenstein showed:

Validity for some special cases

All positive partial transpose (PPT) entangled states of rank 4 have Schmidt number 2.

They also formulated the following conjecture and presented strong evidence of its validity heuristically.

Strong Evidence that All PPTES in $\mathbf{C}^{3} \otimes \mathbf{C}^{3}$ (Two Qutrits)

 have Schmidt Number 2.In the 2001 Phy Rev A paper Schmidt number witnesses and bound entanglement, Sanpera, Bruß and Lewenstein showed:

Validity for some special cases

All positive partial transpose (PPT) entangled states of rank 4 have Schmidt number 2.

They also formulated the following conjecture and presented strong evidence of its validity heuristically.

Conjecture 2

$\ln \mathbf{C}^{3} \otimes \mathbf{C}^{3}$, all PPT entangled states have Schmidt number 2.

Dual Cone Relations

There is a classical result on the dual cone relations between quantum states and positive maps pointed out and developed by Størmer, Itoh, Eom and Kye in a series of papers.

Dual Cone Relations

There is a classical result on the dual cone relations between quantum states and positive maps pointed out and developed by Størmer, Itoh, Eom and Kye in a series of papers.

Let us consider the duality between the space $M_{m}(\mathbb{C}) \otimes M_{n}(\mathbb{C})$ and the space $B\left(M_{m}(\mathbb{C}), M_{n}(\mathbb{C})\right)$. Let $E_{i j}$ be the canonical matrix units in $M_{m}(\mathbb{C})$. For $A=\sum_{i, j=1}^{m} E_{i j} \otimes A_{i j} \in M_{m}(\mathbb{C}) \otimes M_{n}(\mathbb{C})$ and a linear map $\phi \in B\left(M_{m}(\mathbb{C}), M_{n}(\mathbb{C})\right)$, define a bilinear form:

$$
\langle A, \phi\rangle=\sum_{i, j=1}^{m} \operatorname{Tr}\left(\phi\left(E_{i j}\right) A_{i j}^{t}\right)=\operatorname{Tr}\left(A\left[\phi\left(E_{i j}\right)\right]^{t}\right)
$$

Dual Cone Relations

Denote by $\mathbb{P}_{k}[m, n]$ and $\mathbb{P}^{k}[m, n]$ the set of all k-positive maps and the set of all k-copositive maps in $B\left(M_{m}(\mathbb{C}), M_{n}(\mathbb{C})\right)$, respectively.

Dual Cone Relations

Denote by $\mathbb{P}_{k}[m, n]$ and $\mathbb{P}^{k}[m, n]$ the set of all k-positive maps and the set of all k-copositive maps in $B\left(M_{m}(\mathbb{C}), M_{n}(\mathbb{C})\right)$, respectively.

Define convex cones $\mathbb{V}_{k}[m, n]$ and $\mathbb{V}^{k}[m, n]$ in $M_{m}(\mathbb{C}) \otimes M_{n}(\mathbb{C})$ as

$$
\begin{aligned}
\mathbb{V}_{k}[m, n] & =\left\{z z^{*}: S R(z) \leq k, z \text { in } \mathbb{C}^{m} \otimes \mathbb{C}^{n}\right\}^{\circ \circ} \\
\mathbb{V}^{k}[m, n] & =\left\{\left(z z^{*}\right)^{\tau}: S R(z) \leq k, z \text { in } \mathbb{C}^{m} \otimes \mathbb{C}^{n}\right\}^{\circ \circ}
\end{aligned}
$$

Here τ is partial transposition that acts as transposition only on the first part of a tensor product.

Dual Cone Relations

With the aforementioned notations, by the dual correspondence between maps and states, the following diagram holds:

Dual Cone Relations

With the aforementioned notations, by the dual correspondence between maps and states, the following diagram holds:

Dual Cone Relations

$$
\begin{array}{cccccc}
\mathbb{V}_{1} & \varsubsetneqq & \cdots & \mathbb{V}_{k} & \varsubsetneqq & \mathbb{V}_{m \wedge n}=\left(M_{m}(\mathbb{C}) \otimes M_{n}(\mathbb{C})\right)^{+} \\
\imath & & \imath & & \uparrow \\
\mathbb{P}_{1} & \supsetneqq & \cdots & \mathbb{P}_{k} & \supsetneqq & \mathbb{P}_{m \wedge n} \cong\left(M_{m}(\mathbb{C}) \otimes M_{n}(\mathbb{C})\right)^{+}
\end{array}
$$

Dual Cone Relations

With the aforementioned notations, by the dual correspondence between maps and states, the following diagram holds:

Dual Cone Relations

$$
\begin{array}{cccccc}
\mathbb{V}_{1} & \varsubsetneqq & \cdots & \mathbb{V}_{k} & \varsubsetneqq & \mathbb{V}_{m \wedge n}=\left(M_{m}(\mathbb{C}) \otimes M_{n}(\mathbb{C})\right)^{+} \\
\mathfrak{\imath} & & \uparrow & & \uparrow \\
\mathbb{P}_{1} & \supsetneqq & \cdots & \mathbb{P}_{k} & \supsetneqq & \mathbb{P}_{m \wedge n} \cong\left(M_{m}(\mathbb{C}) \otimes M_{n}(\mathbb{C})\right)^{+}
\end{array}
$$

where $m \wedge n=\min \{m, n\}$, and a similar diagram holds in case of copositivity.

Dual Cone Relations when $m=n=3$

Denote by \mathbb{D} the cone of all decomposable maps and \mathbb{T} the cone of all positive partial transpose states.

Dual Cone Relations when $m=n=3$

Denote by \mathbb{D} the cone of all decomposable maps and \mathbb{T} the cone of all positive partial transpose states.

In Kye's paper Facial structures for various notions of positivity and applications to the theory of entanglement, the two conjectures are unified in the dual cone scheme.

Dual Cone Relations when $m=n=3$

Denote by \mathbb{D} the cone of all decomposable maps and \mathbb{T} the cone of all positive partial transpose states.

In Kye's paper Facial structures for various notions of positivity and applications to the theory of entanglement, the two conjectures are unified in the dual cone scheme.

Dual Cone Relations when $m=n=3$

Conj2:	\mathbb{V}_{1}	\varsubsetneqq	$\mathbb{T}(?)$	\varsubsetneqq	\mathbb{V}_{2}	\varsubsetneqq	$\mathbb{V}_{3}=\left(M_{3}(\mathbb{C}) \otimes M_{3}(\mathbb{C})\right)^{+}$
	$\mathfrak{\imath}$		\downarrow		\downarrow		\downarrow
Conj1:	\mathbb{P}_{1}	\supsetneqq	$\mathbb{D}(?)$	\supsetneqq	\mathbb{P}_{2}	\supsetneqq	$\mathbb{P}_{3} \cong\left(M_{3}(\mathbb{C}) \otimes M_{3}(\mathbb{C})\right)^{+}$

A Peel-off Theorem

An astonishing result first appeared in Marciniak's paper On extremal positive maps acting between type I factors.

A Peel-off Theorem

An astonishing result first appeared in Marciniak's paper On extremal positive maps acting between type I factors.

Peel-off Theorem (Marciniak)

If ϕ is a non-zero 2-positive map, then there exists a non-zero completely positive map ψ such that $\phi \geq \psi$.

Trivial Lifting

We will present a slightly stronger version (Choi Decomposition) of the peel-off result by block-matrix approach, which was shown by Choi for the case of 2-positive maps.

Trivial Lifting

We will present a slightly stronger version (Choi Decomposition) of the peel-off result by block-matrix approach, which was shown by Choi for the case of 2-positive maps.

Definition of Trivial Lifting

Given a linear map $\chi \in B\left(M_{s}(\mathbb{C}), M_{n}(\mathbb{C})\right)$, fix the canonical matrix unit basis $E_{i j}, i, j=1, \ldots, s$, in $M_{s}(\mathbb{C})$, under which the Choi matrix is $C_{\chi}=\left[\chi\left(E_{i j}\right)\right]_{i, j=1}^{s} \in M_{s}\left(M_{n}(\mathbb{C})\right)$. Given $L=\left\{n_{1}, \ldots, n_{p}\right\} \subset\{1, \ldots, s+p\}$, where $n_{1}<\cdots<n_{p}$, extend the matrix C_{χ} to a $(s+p) \times(s+p)$ block matrix $C_{L}^{\text {lift }} \in M_{s+p}\left(M_{n}(\mathbb{C})\right)$ by adding one row and one column of $n \times n$ zero matrices at the $n_{k}^{t h}$ level for each $k=1, \ldots, p$ as follows:

Trivial Lifting

Definition of Trivial Lifting

$$
\begin{gathered}
1^{s t} \\
\vdots \\
C_{L}^{l i f t} \triangleq \\
n_{k}^{t h} \\
\vdots \\
(s+p)^{t h}
\end{gathered}\left(\begin{array}{ccccc}
1^{s t} & \cdots & n_{k}^{t h} & \cdots & (s+p)^{t h} \\
\chi\left(E_{11}\right) & \cdots & 0 & \cdots & \chi\left(E_{1, s}\right) \\
\vdots & \ddots & 0 & \ddots & \vdots \\
0 & 0 & 0 & 0 & 0 \\
\vdots & \ddots & 0 & \ddots & \vdots \\
\chi\left(E_{s, 1}\right) & \cdots & 0 & \cdots & \chi\left(E_{s, s}\right)
\end{array}\right) .
$$

Denote by $\tilde{\chi}_{L}$ the map in $B\left(M_{s+p}(\mathbb{C}), M_{n}(\mathbb{C})\right)$ associated with the Choi matrix $C_{\tilde{\chi}_{L}}=\left[\tilde{\chi}_{L}\left(E_{i j}\right)\right]_{i, j=1}^{s+p}=C_{L}^{\text {lift }}$. Then the map $\tilde{\chi}_{L}$ is called a L-trivial lifting of the original map χ. If $L=\{q\}$ is a singleton, simply denote by $\tilde{\chi}_{q}$ the q-trivial lifting of χ.

Trivial Lifting

Remarks for the trivial lifting:

Trivial Lifting

Remarks for the trivial lifting:

Remark 1 for trivial lifting

A map χ is k-positive (respectively k-copositive) if and only if its trivial lifting $\tilde{\chi}_{L}$ is k-positive (respectively k-copositive).

Trivial Lifting

Remarks for the trivial lifting:

Remark 1 for trivial lifting

A map χ is k-positive (respectively k-copositive) if and only if its trivial lifting $\tilde{\chi}_{L}$ is k-positive (respectively k-copositive).

Remark 2 for trivial lifting

A map χ is decomposable if and only if its trivial lifting $\tilde{\chi}_{L}$ is decomposable.

Main Result

Motivated by Choi's block matrix approach regarding the peel-off theorem, we obtain the following result:

Main Result

Motivated by Choi's block matrix approach regarding the peel-off theorem, we obtain the following result:

Theorem 1 (Choi Decomposition Theorem)

Let ϕ be a non-zero k-positive $(2 \leq k<\min \{m, n\})$ map in $B\left(M_{m}(\mathbb{C}), M_{n}(\mathbb{C})\right)$. Then there exists a decomposition $\phi=\psi+\gamma$, where ψ is a non-zero completely positive map and γ is a p-trivial lifting of a $(k-1)$-positive map in $B\left(M_{m-1}(\mathbb{C}), M_{n}(\mathbb{C})\right)$, for some $p \in\{1, \ldots, m\}$.

Main Result

Motivated by Choi's block matrix approach regarding the peel-off theorem, we obtain the following result:

Theorem 1 (Choi Decomposition Theorem)

Let ϕ be a non-zero k-positive $(2 \leq k<\min \{m, n\})$ map in $B\left(M_{m}(\mathbb{C}), M_{n}(\mathbb{C})\right)$. Then there exists a decomposition $\phi=\psi+\gamma$, where ψ is a non-zero completely positive map and γ is a p-trivial lifting of a $(k-1)$-positive map in $B\left(M_{m-1}(\mathbb{C}), M_{n}(\mathbb{C})\right)$, for some $p \in\{1, \ldots, m\}$.

Notice that the dimension of the space where the remaining map γ resides is reduced.

Sketch of the Proof: Useful Lemmas

Lemma 1: Positivity in terms of Block Matrix

Suppose a hermitian matrix M is partitioned as

$$
M=\left(\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right),
$$

where A and C are square matrices. TFAE:
(1) $M \geq 0$,
(2) $A \geq 0, M / A=C-B^{*} A^{\dagger} B \geq 0$, $\operatorname{range}(B) \subset \operatorname{range}(A)$,
(3) $C \geq 0, M / C=A-B C^{\dagger} B^{*} \geq 0$, $\operatorname{range}\left(B^{*}\right) \subset \operatorname{range}(C)$.

Here A^{\dagger} and C^{\dagger} refer to the Moore-Penrose pseudo inverses of A and C , respectively.

Sketch of the Proof: Useful Lemmas

Lemma 2: Properties of the Moore-Penrose Pseudo Inverse

(1) $A A^{\dagger} A=A, A^{\dagger} A A^{\dagger}=A^{\dagger}$.
(2) $\left(A A^{\dagger}\right)^{*}=A A^{\dagger},\left(A^{\dagger} A\right)^{*}=A^{\dagger} A$.
(3) $A A^{\dagger}$ is the orthogonal projector onto the range of $A, A^{\dagger} A$ is the orthogonal projector onto the range of A^{*}.
(9) If A is invertible, then $A^{\dagger}=A^{-1}$.
(5) If $A \geq 0$, then $A^{\dagger} \geq 0$.

Sketch of the Proof: Block Matrix Approach

Let us look at the Choi matrix C_{ϕ} for ϕ, with
$A_{i j}=\phi\left(E_{i j}\right), i, j=1, \ldots, m$.

Sketch of the Proof: Block Matrix Approach

Let us look at the Choi matrix C_{ϕ} for ϕ, with
$A_{i j}=\phi\left(E_{i j}\right), i, j=1, \ldots, m$.

Choi Decomposition: Original Part

$$
C_{\phi}=\left(\begin{array}{ccccc}
A_{11} & \cdots & A_{1 j} & \cdots & A_{1 m} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
A_{i 1} & \cdots & A_{i j} & \cdots & A_{i m} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
A_{m 1} & \cdots & A_{m j} & \cdots & A_{m m}
\end{array}\right)
$$

Sketch of the Proof: Block Matrix Approach

Let us look at the Choi matrix C_{ϕ} for ϕ, with
$A_{i j}=\phi\left(E_{i j}\right), i, j=1, \ldots, m$.

Choi Decomposition: Original Part

$$
C_{\phi}=\left(\begin{array}{ccccc}
A_{11} & \cdots & A_{1 j} & \cdots & A_{1 m} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
A_{i 1} & \cdots & A_{i j} & \cdots & A_{i m} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
A_{m 1} & \cdots & A_{m j} & \cdots & A_{m m}
\end{array}\right)
$$

Observation 1: WOLOG, assume that $\phi\left(E_{m m}\right) \neq 0$.

Sketch of the Proof: Block Matrix Approach

The peel-off part is a matrix with $A_{i m} A_{m m}^{\dagger} A_{m j}$ in its (i, j)-entry.

Sketch of the Proof: Block Matrix Approach

The peel-off part is a matrix with $A_{i m} A_{m m}^{\dagger} A_{m j}$ in its (i, j)-entry.

Choi Decomposition: Peel-off Part

$$
U=\left(\begin{array}{ccccc}
A_{1 m} A_{m m}^{\dagger} A_{m 1} & \cdots & A_{1 m} A_{m m}^{\dagger} A_{m j} & \cdots & A_{1 m} A_{m m}^{\dagger} A_{m m} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
A_{i m} A_{m m}^{\dagger} A_{m 1} & \cdots & A_{i m} A_{m m}^{\dagger} A_{m j} & \cdots & A_{i m} A_{m m}^{\dagger} A_{m m} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
A_{m m} A_{m m}^{\dagger} A_{m 1} & \ddots & A_{m m} A_{m m}^{\dagger} A_{m j} & \cdots & A_{m m} A_{m m}^{\dagger} A_{m m}
\end{array}\right)
$$

Sketch of the Proof: Block Matrix Approach

The peel-off part is a matrix with $A_{i m} A_{m m}^{\dagger} A_{m j}$ in its (i, j)-entry.

Choi Decomposition: Peel-off Part

$$
U=\left(\begin{array}{ccccc}
A_{1 m} A_{m m}^{\dagger} A_{m 1} & \cdots & A_{1 m} A_{m m}^{\dagger} A_{m j} & \cdots & A_{1 m} A_{m m}^{\dagger} A_{m m} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
A_{i m} A_{m m}^{\dagger} A_{m 1} & \cdots & A_{i m} A_{m m}^{\dagger} A_{m j} & \cdots & A_{i m} A_{m m}^{\dagger} A_{m m} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
A_{m m} A_{m m}^{\dagger} A_{m 1} & \ddots & A_{m m} A_{m m}^{\dagger} A_{m j} & \cdots & A_{m m} A_{m m}^{\dagger} A_{m m}
\end{array}\right)
$$

Observation 2: $U \geq 0$, and U is non-zero.

Sketch of the Proof: Block Matrix Approach

The remaining part is a matrix with $R_{i j}=A_{i j}-A_{i m} A_{m m}^{\dagger} A_{m j}$ in its (i, j)-entry.

Sketch of the Proof: Block Matrix Approach

The remaining part is a matrix with $R_{i j}=A_{i j}-A_{i m} A_{m m}^{\dagger} A_{m j}$ in its (i, j)-entry.

Choi Decomposition: Remaining Part

$$
R=\left(\begin{array}{ccccc}
A_{11}-A_{1 m} A_{m m}^{\dagger} A_{m 1} & \cdots & A_{1 j}-A_{1 m} A_{m m}^{\dagger} A_{m j} & \cdots & A_{1 m}-A_{1 m} A_{m m}^{\dagger} A_{m m} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
A_{i 1}-A_{i m} A_{m m}^{\dagger} A_{m 1} & \cdots & A_{i j}-A_{i m} A_{m m}^{\dagger} A_{m j} & \cdots & A_{i m}-A_{i m} A_{m m}^{\dagger} A_{m m} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
A_{m 1}-A_{m m} A_{m m}^{\dagger} A_{m 1} & \ddots & A_{m j}-A_{m m} A_{m m}^{\dagger} A_{m j} & \cdots & A_{m m}-A_{m m} A_{m m}^{\dagger} A_{m m}
\end{array}\right)
$$

Sketch of the Proof: Block Matrix Approach

The remaining part is a matrix with $R_{i j}=A_{i j}-A_{i m} A_{m m}^{\dagger} A_{m j}$ in its (i,j)-entry.

Choi Decomposition: Remaining Part

$$
R=\left(\begin{array}{ccccc}
A_{11}-A_{1 m} A_{m m}^{\dagger} A_{m 1} & \cdots & A_{1 j}-A_{1 m} A_{m m}^{\dagger} A_{m j} & \cdots & A_{1 m}-A_{1 m} A_{m m}^{\dagger} A_{m m} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
A_{i 1}-A_{i m} A_{m m}^{\dagger} A_{m 1} & \cdots & A_{i j}-A_{i m} A_{m m}^{\dagger} A_{m j} & \cdots & A_{i m}-A_{i m} A_{m m}^{\dagger} A_{m m} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
A_{m 1}-A_{m m} A_{m m}^{\dagger} A_{m 1} & \ddots & A_{m j}-A_{m m} A_{m m}^{\dagger} A_{m j} & \cdots & A_{m m}-A_{m m} A_{m m}^{\dagger} A_{m m}
\end{array}\right)
$$

Observation 3: Entries in last row and last column of R are zero matrices

Sketch of the Proof: Block Matrix Approach

Now $C_{\phi}=U+R=C_{\psi}+C_{\gamma}$, with ψ completely positive.

Sketch of the Proof: Block Matrix Approach

Now $C_{\phi}=U+R=C_{\psi}+C_{\gamma}$, with ψ completely positive.
Question: What will γ be?

Sketch of the Proof: Block Matrix Approach

Now $C_{\phi}=U+R=C_{\psi}+C_{\gamma}$, with ψ completely positive.
Question: What will γ be?
Good News: k-positivity of ϕ guarantees $(k-1)$-positivity of γ.

Sketch of the Proof: Block Matrix Approach

Now $C_{\phi}=U+R=C_{\psi}+C_{\gamma}$, with ψ completely positive.
Question: What will γ be?
Good News: k-positivity of ϕ guarantees $(k-1)$-positivity of γ.
Choi Decomposition: Employ k-positivity of ϕ for $\xi \xi^{*}$
$\xi \xi^{*}=\left(\begin{array}{ccccc}w^{1}\left(w^{1}\right)^{*} & \cdots & w^{1}\left(w^{j}\right)^{*} & \cdots & w^{1} e_{m}^{*} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ w^{i}\left(w^{1}\right)^{*} & \cdots & w^{i}\left(w^{j}\right)^{*} & \cdots & w^{w} e_{m}^{*} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ e_{m}\left(w^{1}\right)^{*} & \cdots & e_{m}\left(w^{j}\right)^{*} & \cdots & e_{m} e_{m}^{*}\end{array}\right) \geq 0$
Here $\xi=\left[w^{1} ; \ldots ; w^{k-1} ; e_{m}\right]$, where $w^{1}, w^{2}, \ldots, w^{k-1} \in \mathbb{C}^{m}$ are arbitrary column vectors, and $e_{m}=(0, \ldots, 0,1)^{T} \in \mathbb{C}^{m}$.

Sketch of the Proof: Block Matrix Approach

Choi Decomposition: Employ k-positivity of ϕ for $\xi \xi^{*}$

$$
\left(i d_{k} \otimes \phi\right)\left(\xi \xi^{*}\right)=\left(\begin{array}{ccccc}
\phi\left(w^{1}\left(w^{1}\right)^{*}\right) & \cdots & \phi\left(w^{1}\left(w^{j}\right)^{*}\right) & \cdots & \phi\left(w^{1} e_{m}^{*}\right) \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
\phi\left(w^{i}\left(w^{1}\right)^{*}\right) & \cdots & \phi\left(w^{i}\left(w^{j}\right)^{*}\right) & \cdots & \phi\left(w^{i} e_{m}^{*}\right) \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
\phi\left(e_{m}\left(w^{1}\right)^{*}\right) & \cdots & \phi\left(e_{m}\left(w^{j}\right)^{*}\right) & \cdots & \phi\left(e_{m} e_{m}^{*}\right)
\end{array}\right) \geq 0
$$

Sketch of the Proof: Block Matrix Approach

Choi Decomposition: Employ k-positivity of ϕ for $\xi \xi^{*}$

$$
\left(i d_{k} \otimes \phi\right)\left(\xi \xi^{*}\right)=\left(\begin{array}{ccccc}
\phi\left(w^{1}\left(w^{1}\right)^{*}\right) & \cdots & \phi\left(w^{1}\left(w^{j}\right)^{*}\right) & \cdots & \phi\left(w^{1} e_{m}^{*}\right) \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
\phi\left(w^{i}\left(w^{1}\right)^{*}\right) & \cdots & \phi\left(w^{i}\left(w^{j}\right)^{*}\right) & \cdots & \phi\left(w^{i} e_{m}^{*}\right) \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
\phi\left(e_{m}\left(w^{1}\right)^{*}\right) & \cdots & \phi\left(e_{m}\left(w^{j}\right)^{*}\right) & \cdots & \phi\left(e_{m} e_{m}^{*}\right)
\end{array}\right) \geq 0 .
$$

Observation 4: Recall Lemma 1.

Sketch of the Proof: Block Matrix Approach

By equivalence of Condition 1 and Condition 3 in Lemma 1, the condition $\left(i d_{k} \otimes \phi\right)\left(\xi \xi^{*}\right) \geq 0$ expands to:

Sketch of the Proof: Block Matrix Approach

By equivalence of Condition 1 and Condition 3 in Lemma 1, the condition $\left(i d_{k} \otimes \phi\right)\left(\xi \xi^{*}\right) \geq 0$ expands to:

Choi Decomposition: Employ k-positivity of ϕ for $\xi \xi^{*}$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\phi\left(w^{1}\left(w^{1}\right)^{*}\right) & \cdots & \phi\left(w^{1}\left(w^{k-1}\right)^{*}\right) \\
\vdots & \ddots & \vdots \\
\phi\left(w^{k-1}\left(w^{1}\right)^{*}\right) & \cdots & \phi\left(w^{k-1}\left(w^{k-1}\right)^{*}\right)
\end{array}\right) \geq \\
& \left(\begin{array}{c}
\phi\left(w^{1} e_{m}^{*}\right) \\
\vdots \\
\phi\left(w^{k-1} e_{m}^{*}\right)
\end{array}\right) \phi\left(e_{m} e_{m}^{*}\right)^{\dagger}\left(\begin{array}{lll}
\phi\left(e_{m}\left(w^{1}\right)^{*}\right) & \cdots & \left.\phi\left(e_{m}\left(w^{k-1}\right)^{*}\right)\right) .
\end{array}\right.
\end{aligned}
$$

Sketch of the Proof: Block Matrix Approach

By equivalence of Condition 1 and Condition 3 in Lemma 1, the condition $\left(i d_{k} \otimes \phi\right)\left(\xi \xi^{*}\right) \geq 0$ expands to:

Choi Decomposition: Employ k-positivity of ϕ for $\xi \xi^{*}$

$$
\left.\left.\begin{array}{l}
\left(\begin{array}{ccc}
\phi\left(w^{1}\left(w^{1}\right)^{*}\right) & \cdots & \phi\left(w^{1}\left(w^{k-1}\right)^{*}\right) \\
\vdots & \ddots & \vdots \\
\phi\left(w^{k-1}\left(w^{1}\right)^{*}\right) & \cdots & \phi\left(w^{k-1}\left(w^{k-1}\right)^{*}\right)
\end{array}\right) \geq \\
\left(\begin{array}{c}
\phi\left(w^{1} e_{m}^{*}\right) \\
\vdots \\
\phi\left(w^{k-1} e_{m}^{*}\right)
\end{array}\right) \phi\left(e_{m} e_{m}^{*}\right)^{\dagger}\left(\phi\left(e_{m}\left(w^{1}\right)^{*}\right)\right. \\
\cdots
\end{array}\right\rangle \phi\left(e_{m}\left(w^{k-1}\right)^{*}\right)\right) . . ~\left(\begin{array}{l}
\text {. }
\end{array}\right.
$$

Observation 5: The (s, t)-entry of above RHS is $\psi\left(w^{s}\left(w^{t}\right)^{*}\right)$:

Sketch of the Proof: Block Matrix Approach

Choi Decomposition: Employ k-positivity of ϕ for $\xi \xi^{*}$

$$
\begin{aligned}
& \phi\left(w^{s} e_{m}^{*}\right) \phi\left(e_{m} e_{m}^{*}\right)^{\dagger} \phi\left(e_{m}\left(w^{t}\right)^{*}\right) \\
= & \left(\sum_{i=1}^{m} w_{i}^{s} \phi\left(E_{i m}\right)\right) \phi\left(E_{m m}\right)^{\dagger}\left(\sum_{j=1}^{m} \overline{w_{j}^{t}} \phi\left(E_{m j}\right)\right) \\
= & \sum_{i=1}^{m} \sum_{j=1}^{m} w_{i}^{s} \overline{w_{j}^{t}}\left(\phi\left(E_{i m}\right) \phi\left(E_{m m}\right)^{\dagger} \phi\left(E_{m j}\right)\right) \\
= & \sum_{i=1}^{m} \sum_{j=1}^{m} w_{i}^{s} \overline{w_{j}^{t}}\left(A_{i m} A_{m m}^{\dagger} A_{m j}\right) \\
= & \sum_{i=1}^{m} \sum_{j=1}^{m} w_{i}^{s} \overline{w_{j}^{t}} \psi\left(e_{i} e_{j}^{*}\right) \\
= & \psi\left(w^{s}\left(w^{t}\right)^{*}\right)
\end{aligned}
$$

Sketch of the Proof: Block Matrix Approach

This proves that $\gamma=\phi-\psi$ is $(k-1)$-positive.

Sketch of the Proof: Block Matrix Approach

This proves that $\gamma=\phi-\psi$ is $(k-1)$-positive.
Choi Decomposition: Employ k-positivity of ϕ for $\xi \xi^{*}$

$$
\left(\begin{array}{ccc}
\gamma\left(w^{1}\left(w^{1}\right)^{*}\right) & \cdots & \gamma\left(w^{1}\left(w^{k-1}\right)^{*}\right) \\
\vdots & \ddots & \vdots \\
\gamma\left(w^{k-1}\left(w^{1}\right)^{*}\right) & \cdots & \gamma\left(w^{k-1}\left(w^{k-1}\right)^{*}\right)
\end{array}\right) \geq 0, \forall w^{1}, \ldots, w^{k-1} \in \mathbb{C}^{m} .
$$

Sketch of the Proof: Block Matrix Approach

This proves that $\gamma=\phi-\psi$ is $(k-1)$-positive.
Choi Decomposition: Employ k-positivity of ϕ for $\xi \xi^{*}$

$$
\left(\begin{array}{ccc}
\gamma\left(w^{1}\left(w^{1}\right)^{*}\right) & \cdots & \gamma\left(w^{1}\left(w^{k-1}\right)^{*}\right) \\
\vdots & \ddots & \vdots \\
\gamma\left(w^{k-1}\left(w^{1}\right)^{*}\right) & \cdots & \gamma\left(w^{k-1}\left(w^{k-1}\right)^{*}\right)
\end{array}\right) \geq 0, \forall w^{1}, \ldots, w^{k-1} \in \mathbb{C}^{m} .
$$

Combining Observation 3 and the above fact, we know the form of the remaining map γ.

Sketch of the Proof: Block Matrix Approach

Denote the matrix $R=C_{\gamma}$ by:

$$
R=\left(\begin{array}{ccc}
K & 0 \\
0 & \cdots & 0
\end{array}\right)=\left(\begin{array}{ccc}
C_{K} & 0 \\
0 & \cdots & 0
\end{array}\right) .
$$

Sketch of the Proof: Block Matrix Approach

Denote the matrix $R=C_{\gamma}$ by:

$$
R=\left(\begin{array}{ccc}
K & 0 \\
0 & \cdots & 0
\end{array}\right)=\left(\begin{array}{cc}
C & 0 \\
C & \vdots \\
0 & \cdots
\end{array}\right)
$$

Choi Decomposition: γ is a trivial-lifting of κ
The map $\kappa \in B\left(M_{m-1}(\mathbb{C}), M_{n}(\mathbb{C})\right)$ is defined by its Choi matrix $C_{\kappa}=K \in M_{m-1}\left(M_{n}(\mathbb{C})\right)$ through $\kappa\left(E_{s t}\right)=K_{s t}, s, t=1, . ., m-1$. It is obvious that $\gamma \in B\left(M_{m}(\mathbb{C}), M_{n}(\mathbb{C})\right)$ is the m-trivial lifting of $\kappa \in B\left(M_{m-1}(\mathbb{C}), M_{n}(\mathbb{C})\right)$.

Sketch of the Proof: Block Matrix Approach

Denote the matrix $R=C_{\gamma}$ by:

$$
R=\left(\begin{array}{ccc}
K & 0 \\
0 & \cdots & 0
\end{array}\right)=\left(\begin{array}{cc}
C & 0 \\
C & \vdots \\
0 & \cdots
\end{array}\right)
$$

Choi Decomposition: γ is a trivial-lifting of κ
The map $\kappa \in B\left(M_{m-1}(\mathbb{C}), M_{n}(\mathbb{C})\right)$ is defined by its Choi matrix $C_{\kappa}=K \in M_{m-1}\left(M_{n}(\mathbb{C})\right)$ through $\kappa\left(E_{s t}\right)=K_{s t}, s, t=1, . ., m-1$. It is obvious that $\gamma \in B\left(M_{m}(\mathbb{C}), M_{n}(\mathbb{C})\right)$ is the m-trivial lifting of $\kappa \in B\left(M_{m-1}(\mathbb{C}), M_{n}(\mathbb{C})\right)$.

A similar result holds for k-copositive maps.

Choi Decomposition

Applying Theorem 1 repeatedly,

Theorem 2

Let $2 \leq k<\min \{m, n\}$. Any non-zero k-positive (respectively k-copositive) map in $B\left(M_{m}(\mathbb{C}), M_{n}(\mathbb{C})\right)$ is the sum of at most ($k-1$) many non-zero completely positive (respectively completely copositive) maps and a positive map which is the trivial lifting of a positive map in $B\left(M_{m-k+1}(\mathbb{C}), M_{n}(\mathbb{C})\right)$.

Choi Decomposition

Applying Theorem 1 repeatedly,

Theorem 2

Let $2 \leq k<\min \{m, n\}$. Any non-zero k-positive (respectively k-copositive) map in $B\left(M_{m}(\mathbb{C}), M_{n}(\mathbb{C})\right)$ is the sum of at most ($k-1$) many non-zero completely positive (respectively completely copositive) maps and a positive map which is the trivial lifting of a positive map in $B\left(M_{m-k+1}(\mathbb{C}), M_{n}(\mathbb{C})\right)$.

Remark: The Choi decomposition may no longer be valid for a general positive map ϕ, even when ϕ is in $B\left(M_{2}(\mathbb{C}), M_{2}(\mathbb{C})\right)$.

An Affirmative Answer to the Conjecture

Theorem 3

Every 2-positive or 2-copositive map ϕ in $B\left(M_{3}(\mathbb{C}), M_{3}(\mathbb{C})\right)$ is decomposable.

An Affirmative Answer to the Conjecture

Theorem 3

Every 2-positive or 2-copositive map ϕ in $B\left(M_{3}(\mathbb{C}), M_{3}(\mathbb{C})\right)$ is decomposable.

Proof: WOLOG, we assume the 2-positive(respectively 2-copositive) map ϕ is not zero. In this concrete case of $B\left(M_{3}(\mathbb{C}), M_{3}(\mathbb{C})\right)$, the peel-off process yields that:

$$
\phi=\psi+\tilde{\kappa}_{p} \text { for some } p \in\{1, \ldots, m\},
$$

where ψ is completely positive (respectively completely copositive) and $\tilde{\kappa}_{p}$ is a p-trivial lifting of a positive map $\kappa \in B\left(M_{2}(\mathbb{C}), M_{3}(\mathbb{C})\right)$.

An Affirmative Answer to the Conjecture

We will use an important result of Størmer and Woronowicz:

An Affirmative Answer to the Conjecture

We will use an important result of Størmer and Woronowicz:
Positive=Decomposable in $2 \otimes 2,2 \otimes 3$ and $3 \otimes 2$.
$\mathbb{P}_{1}[m, n]=\mathbb{D}[m, n]$ holds when $m n \leq 6$.

An Affirmative Answer to the Conjecture

We will use an important result of Størmer and Woronowicz:
Positive=Decomposable in $2 \otimes 2,2 \otimes 3$ and $3 \otimes 2$.
$\mathbb{P}_{1}[m, n]=\mathbb{D}[m, n]$ holds when $m n \leq 6$.
Since every positive map in $B\left(M_{2}(\mathbb{C}), M_{3}(\mathbb{C})\right)$ is decomposable in $B\left(M_{2}(\mathbb{C}), M_{3}(\mathbb{C})\right)$, by properties of trivial lifting, the lifted map $\tilde{\kappa}_{p}$ is decomposable in $B\left(M_{3}(\mathbb{C}), M_{3}(\mathbb{C})\right)$.

An Affirmative Answer to the Conjecture

We will use an important result of Størmer and Woronowicz:
Positive=Decomposable in $2 \otimes 2,2 \otimes 3$ and $3 \otimes 2$.
$\mathbb{P}_{1}[m, n]=\mathbb{D}[m, n]$ holds when $m n \leq 6$.
Since every positive map in $B\left(M_{2}(\mathbb{C}), M_{3}(\mathbb{C})\right)$ is decomposable in $B\left(M_{2}(\mathbb{C}), M_{3}(\mathbb{C})\right)$, by properties of trivial lifting, the lifted map $\tilde{\kappa}_{p}$ is decomposable in $B\left(M_{3}(\mathbb{C}), M_{3}(\mathbb{C})\right)$.
Hence, $\phi=\psi+\tilde{\kappa}_{p}$ is also decomposable.

A Corollary \& An Example

Corollary 4

Every indecomposable map in $B\left(M_{3}(\mathbb{C}), M_{3}(\mathbb{C})\right)$ is atomic (i.e., not the sum of a 2-positive map and a 2-copositive map).

A Corollary \& An Example

Corollary 4

Every indecomposable map in $B\left(M_{3}(\mathbb{C}), M_{3}(\mathbb{C})\right)$ is atomic (i.e., not the sum of a 2-positive map and a 2-copositive map).

Remark: There exist different methods to decompose the 2-positive generalized Choi map $\Phi[a, b, c]$ into a sum of a completely positive map and a completely copositive map.

A Corollary \& An Example

Corollary 4

Every indecomposable map in $B\left(M_{3}(\mathbb{C}), M_{3}(\mathbb{C})\right)$ is atomic (i.e., not the sum of a 2 -positive map and a 2 -copositive map).

Remark: There exist different methods to decompose the 2-positive generalized Choi map $\Phi[a, b, c]$ into a sum of a completely positive map and a completely copositive map.

An Example

$$
\Phi[a, b, c](X)=\left(\begin{array}{ccc}
a x_{11}+b x_{22}+c x_{33} & -x_{12} & -x_{13} \\
-x_{21} & c x_{11}+a x_{22}+b x_{33} & -x_{23} \\
-x_{31} & -x_{32} & b x_{11}+c x_{22}+a x_{33}
\end{array}\right)
$$

$$
\text { for } X=\left[x_{i j}\right] \in M_{3}(\mathbb{C}) \text {. Here } a \in[1,2) \text { and } b c \geq(2-a)(b+c) \text {. }
$$

A Corollary \& An Example

An Example: Decomposition 1

$\Phi[a, b, c]=\Phi_{1}+\Phi_{2}$, where
$\Phi_{1}\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right]=\left[\begin{array}{ccc}a x_{11}+b x_{22}+c x_{33} & -x_{12} & -x_{13} \\ -x_{21} & c x_{11}+a x_{22} & \left(\frac{2}{a}-a\right) x_{23} \\ -x_{31} & (C P),(2)+x_{32} & b x_{11}+a x_{33}\end{array}\right],\left[\begin{array}{cc} \\ \hline\end{array}\right.$
$\Phi_{2}\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & b x_{33} & \left(a-1-\frac{2}{a}\right) x_{23} \\ 0 & \left(a-1-\frac{2}{a}\right) x_{32} & c x_{22}\end{array}\right](\operatorname{CcoP})$.

A Corollary \& An Example

An Example: Decomposition 1

$\Phi[a, b, c]=\Phi_{1}+\Phi_{2}$, where
$\Phi_{1}\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right]=\left[\begin{array}{ccc}a x_{11}+b x_{22}+c x_{33} & -x_{12} & -x_{13} \\ -x_{21} & c x_{11}+a x_{22} & \left(\frac{2}{a}-a\right) x_{23} \\ -x_{31} & \left(\frac{2}{a}-a\right) x_{32} & b x_{11}+a x_{33}\end{array}\right]$
$\Phi_{2}\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & b x_{33} & \left(a-1-\frac{2}{a}\right) x_{23} \\ 0 & \left(a-1-\frac{2}{a}\right) x_{32} & c x_{22}\end{array}\right](C c o P)$.
Another decomposition given by Cho, Kye and Lee is:

A Corollary \& An Example

An Example: Decomposition 1

$\Phi[a, b, c]=\Phi_{1}+\Phi_{2}$, where
$\Phi_{1}\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right]=\left[\begin{array}{ccc}a x_{11}+b x_{22}+c x_{33} & -x_{12} & -x_{13} \\ -x_{21} & c x_{11}+a x_{22} & \left(\frac{2}{a}-a\right) x_{23} \\ -x_{31} & \left(\frac{2}{a}-a\right) x_{32} & b x_{11}+a x_{33}\end{array}\right]$
$\Phi_{2}\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & b x_{33} & \left(a-1-\frac{2}{a}\right) x_{23} \\ 0 & \left(a-1-\frac{2}{a}\right) x_{32} & c x_{22}\end{array}\right](C c o P)$.
Another decomposition given by Cho, Kye and Lee is:
An Example: Decomposition 2

$$
\Phi[a, b, c]=(1-\sqrt{b c}) \Phi\left[\frac{a-\sqrt{b c}}{1-\sqrt{b c}}, 0,0\right](C P)+\sqrt{b c} \Phi\left[1, \sqrt{\frac{b}{c}}, \sqrt{\frac{c}{b}}\right](C c o P) .
$$

Question 1: An Algorithm for Decomposition

Given an arbitrary decomposable map, is there a canonical algorithm to decompose it?

Question 1: An Algorithm for Decomposition

Given an arbitrary decomposable map, is there a canonical algorithm to decompose it?
 Is such an algorithm possible, even in $B\left(M_{2}(\mathbb{C}), M_{2}(\mathbb{C})\right)$?

Question 2: An Example in Higher Dimensions

Does there exist a 2-positive but indecomposable map in $B\left(M_{3}(\mathbb{C}), M_{4}(\mathbb{C})\right)$?

References

R S．J．Cho，S．－H．Kye and S．G．Lee，Generalized Choi maps in three－dimensional matrix algebra，Linear Alg．Appl． 171 （1992），213－224．

埥 M．－D．Choi，Seminar talk at National University of Singapore， 30 July 2015.

䡒 M．－H．Eom and S．－H．Kye，Duality for positive linear maps in matrix algebras，Math．Scan． 86 （2000），130－142
围 T．Itoh，Positive maps and cones in C^{*}－algebras，Math． Japonica， 31 （1986），607－616．

References

目 S．－H．Kye，Facial structures for various notions of positivity and applications to the theory of entanglement，Rev．Math． Phys． 25 （2013）， 1330002.

图 M．Marciniak，On extremal positive maps acting between type I factors，Noncommutative Harmonic Analysis with Applications to probability II，Banach Center Publications， 89 （2010），201－221．
睩 H．Osaka，Indecomposable positive maps in low dimensional matrix algebra，Linear Alg．Appl． 153 （1991），73－83．
（ A．Sanpera，D．Bruß and M．Lewenstein，Schmidt number witnesses and bound entanglement，Phys Rev．A 63 （2001）， 050301.

References

E．Etørmer，Positive linear maps of operator algebras，Acta Mathematica 110 （1963），233－278．

嗇 B．M．Terhal and P．Horodecki，A Schmidt number for density matrices，Phys Rev．A 61 （2000）， 040301.

囯 S．L．Woronowicz，Positive maps of low dimensional matrix algebras，Rep．Math．Phys． 10 （1976），165－183．

目 Y．Yang，D．H．Leung and W．S．Tang，All 2－positive linear maps from $M_{3}(\mathbb{C})$ to $M_{3}(\mathbb{C})$ are decomposable，Linear Alg． Appl． 503 （2016），233－247．

Thank you for your attention!

