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Positive Operator

B(H) : The set of all bounded linear operators on a Hilbert space H.

For A ∈ B(H),

A ≥ 0
def⇐⇒ ⟨Ax, x⟩ ≥ 0 (∀x ∈ H)

A > 0
def⇐⇒ A ≥ 0 and A is invertible.

For self-adjoint operators A,B ∈ B(H),

A ≥ B
def⇐⇒ A−B ≥ 0.

B(H)+ = {A ∈ B(H) : A ≥ 0}.
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Operator Monotone Function

Let J be an interval of R and f : J → R be a continuous function. A function

f(x) is called an operator monotone function on J , provided

A ≤ B ⇒ f(A) ≤ f(B)

for self-adjoint A,B ∈ B(H) whose spectra σ(A) and σ(B) lie in J .

Example

(Löwner-Heinz inequality) f(x) = xα (0 ≤ α ≤ 1)

f(x) = log x(
∵ Aα − I

α
≤ Bα − I

α
(0 < α ≤ 1) =⇒ logA ≤ logB (α ↓ 0)

)

Yoichi Udagawa Parameterized operator means and operator monotonicity of exp{f(x)}



Introduction
Extension of range of parameter (p, α) such thatSp,α(x) is operator monotone

Operator monotonicity of exp{f(x)}
Definition of operator monotone function and operator mean
Operator monotonicity ofSp,α(x) =

(
p(xα−1)
α(xp−1)

) 1
α−p : Previous work

Introduction

Operator Monotone Function

Let J be an interval of R and f : J → R be a continuous function. A function

f(x) is called an operator monotone function on J , provided

A ≤ B ⇒ f(A) ≤ f(B)

for self-adjoint A,B ∈ B(H) whose spectra σ(A) and σ(B) lie in J .

Example
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Operator Mean (Kubo-Ando 1980)

The map M : (A,B) ∈ B(H)2+ 7→ M(A,B) ∈ B(H)+ is called an operator

mean if the operator M(A,B) satisfies the following four conditions:

for A,B,C,D ∈ B(H)+ and self-adjoint X

(1) A ≤ C,B ≤ D =⇒ M(A,B) ≤ M(C,D) (Joint monotonicity),

(2) X(M(A,B))X ≤ M(XAX,XBX) (Transformer inequality),

(3) An, Bn ∈ B(H)+, An ↓ A,Bn ↓ B =⇒ M(An, Bn) ↓ M(A,B)

(Upper semi-continuity),

(4) M(I, I) = I.

Yoichi Udagawa Parameterized operator means and operator monotonicity of exp{f(x)}



Introduction
Extension of range of parameter (p, α) such thatSp,α(x) is operator monotone

Operator monotonicity of exp{f(x)}
Definition of operator monotone function and operator mean
Operator monotonicity ofSp,α(x) =

(
p(xα−1)
α(xp−1)

) 1
α−p : Previous work

Introduction

Theorem K-A (Kubo-Ando 1980)

(1) For any operator mean M, there uniquely exists an operator monotone

function f ≥ 0 on [0,∞) with f(1) = 1 such that

f(x)I = M(I, xI), x ≥ 0.

(2) When M 7→ f , N 7→ g, then M(A,B) ≤ N(A,B) ⇐⇒ f(x) ≤ g(x)

for all A,B ∈ B(H)+, x > 0.

(3) When A > 0, M(A,B) = A
1
2 f(A

−1
2 BA

−1
2 )A

1
2 .

f(x) is called the representing function of M.
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Power Mean

Ps(A,B) = A
1
2

(
1

2

{
I +

(
A

−1
2 BA

−1
2

)s}) 1
s

A
1
2

Representing function of Ps : Ps(x) =

(
1 + xs

2

) 1
s

(−1 ≤ s ≤ 1)

s = 1 (Arithmetic Mean): P1(x) =
1 + x

2

s → 0 (Geometric Mean): P0(x) := lim
s→0

Ps(x) = x
1
2

s = −1 (Harmonic mean): P−1(x) =

(
1 + x−1

2

) 1
−1

=
2x

1 + x
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Power Mean

Ps(A,B) = A
1
2

(
1

2

{
I +

(
A

−1
2 BA

−1
2

)s}) 1
s

A
1
2

Representing function of Ps : Ps(x) =

(
1 + xs

2

) 1
s

(−1 ≤ s ≤ 1)

Weighted Power Mean

Ps,α(A,B) = A
1
2

(
(1− α)I + α

(
A

−1
2 BA

−1
2

)s) 1
s
A

1
2

Representing function of Ps,α : Ps,α(x) =
(
(1− α) + αxs) 1

s

(−1 ≤ s ≤ 1, 0 ≤ α ≤ 1)

Ps, 1
2
= Ps
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Previous works

Theorem U-W-Y-Y (U.-Wada-Yamazaki-Yanagida 2015)

For each r ∈ [−1, 1] and s ∈ [−1, 1], let Fr,s(x) be a non-negative function of

x ∈ [0,∞) defined by

Fr,s(x) =

(∫ 1

0

(
(1− α) + αxr) s

r dα

) 1
s

if r ̸= 0 and s ̸= 0

and its limit if r = 0 or s = 0. Then Fr,s(x) is operator monotone.

Remark

Fr,s(x) =

(
r(xr+s − 1)

(r + s)(xr − 1)

) 1
s

−1 ≤ r1 ≤ r2 ≤ 1, −1 ≤ s1 ≤ s2 ≤ 1 =⇒ Fr1,s1(x) ≤ Fr2,s2(x)
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Fr,s(x) =

(
r(xr+s − 1)

(r + s)(xr − 1)

) 1
s

−1 ≤ r1 ≤ r2 ≤ 1, −1 ≤ s1 ≤ s2 ≤ 1 =⇒ Fr1,s1(x) ≤ Fr2,s2(x)

Order among means from Fr,s(x)

2x

x+ 1
≤ x

1
2 ≤ x− 1

log x
≤ exp

{
x log x

x− 1
− 1

}
≤ x+ 1

2

Arithmetic mean:
x+ 1

2
, Identric mean: exp

{
x log x

x− 1
− 1

}
Logarithmic mean:

x− 1

log x
, Geometric mean: x

1
2 , Harmonic mean:

2x

x+ 1
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Power, Power Difference and Stolarsky Means

Power Difference Mean

s = −1 and s = 1 =⇒ Power Difference Mean

PDr(x) =
(r − 1)(xr − 1)

r(xr−1 − 1)
(−1 ≤ r ≤ 2)

Power Mean

r = s =⇒ Power Mean

Fs,s(x) =

(
xs + 1

2

) 1
s

= Ps(x) (−1 ≤ s ≤ 1)

Stolarsky Mean

r = 1 and s = p− 1 =⇒ Stolarsky Mean

F1,p−1(x) =

(
p(x− 1)

xp − 1

) 1
1−p

= Sp(x) (0 ≤ p ≤ 2)
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Stolarsky Mean

Stolarsky Mean (Nakamura 1989)

The following function

Sp(x) =

(
p(x− 1)

xp − 1

) 1
1−p

(x > 0)

is an operator monotone function if and only if −2 ≤ p ≤ 2.

The cases p = 0, 1 are defined as the limits:

S0(x) := lim
p→0

(
p(x− 1)

xp − 1

) 1
1−p

=
x− 1

log x
,

S1(x) := lim
p→1

(
p(x− 1)

xp − 1

) 1
1−p

= exp

{
x log x

x− 1
− 1

}
.
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xp − 1
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Example 2

p = 2 (Arithmetic Mean): S2(x) =
x+ 1

2

p → 1 (Identric Mean): S1(x) := lim
p→1

Sp(x) = exp

{
x log x

x− 1
− 1

}
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(
p(x− 1)

xp − 1

) 1
1−p

is

operator monotone.(
p(x− 1)

xp − 1

) 1
1−p

is operator monotone function if and only if −2 ≤ p ≤ 2.

A range of parameter of Fr,s(x) is not optimal.

We may extend a range of parameter of Fr,s(x).

In the following, we treat Fr,s(x) as Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

.

Fr,s(x) =

(
r(xr+s − 1)

(r + s)(xr − 1)

) 1
s r→p, s→α−p−−−−−−−−−→ Sp,α(x) =
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p(xα − 1)

α(xp − 1)

) 1
α−p
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such that Sp,α(x) is operator monotone

Yoichi Udagawa Parameterized operator means and operator monotonicity of exp{f(x)}



Introduction
Extension of range of parameter (p, α) such thatSp,α(x) is operator monotone

Operator monotonicity of exp{f(x)}
Extended range of parameter (p, α)

Fr,s(x) −→ Sp,α(x)

Fr,s(x) =

(
r(xr+s − 1)

(r + s)(xr − 1)

) 1
s r→p, s→α−p−−−−−−−−−→ Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

Fr,s(x) is operator monotone if −1 ≤ r ≤ 1 and −1 ≤ s ≤ 1

Sp,α(x) is operator monotone if −1 ≤ p ≤ 1 and −1 ≤ α− p ≤ 1

A range of parameter from Fr,s(x)

If p ∈ [−1, 1] and p− 1 ≤ α ≤ p+ 1, then

Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

(x > 0)

is an operator monotone function.

Remark

The range of parameter in which the above function is operator monotone is

characterized in Nagisa-Wada (2015), but the range of parameter has not been

determined explicitly yet.
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Fr,s(x) −→ Sp,α(x)

A range of parameter from Fr,s(x)

𝛼 

𝑝 
0 −2 2 

2 

−2 

𝛼 = −𝑝 Figure. 2 

Extended  parameter  range 

𝑝 

𝛼 

0 

1 

1 −1 

−1 

Figure. 1 

Parameter range 
proved in 4 , 6  of  𝑆𝑝,𝛼(𝑥) 
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Nagisa-Wada (2015)

Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

Nagisa-Wada (2015)

For real number a, b with |a|, |b| ≤ 2 and a ̸= b, we define the function h :

(0,∞) −→ R as follows:

h(x) =
b(xa − 1)

a(xb − 1)
.

Then h is operator monotone on (0,∞) if and only if

(a, b) ∈
{
(a, b) ∈ R2

∣∣ 0 < a− b ≤ 1, a ≥ −1, and b ≤ 1
}

∪([0, 1]× [−1, 0]) \ {(0, 0)}.

Yoichi Udagawa Parameterized operator means and operator monotonicity of exp{f(x)}



Introduction
Extension of range of parameter (p, α) such thatSp,α(x) is operator monotone

Operator monotonicity of exp{f(x)}
Extended range of parameter (p, α)

Nagisa-Wada (2015)

Sp,α(x) =

(
p(xα − 1)

α(xp − 1)
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A range of parameter from Nagisa-Wada (2015)

α(xp − 1)

p(xα − 1)
is operator monotone if (p, α) ∈ [0, 1]× [−1, 0].

(p, α) ∈ {(p, α) ∈ R2|0 ≤ p ≤ 1,−1 ≤ α ≤ 0 and α ≤ p− 1}

=⇒ −1

α− p
∈
[
1

2
, 1

]
(
α(xp − 1)

p(xα − 1)

) −1
α−p

=

(
p(xα − 1)

α(xp − 1)

) 1
α−p

is operator monotone if

(p, α) ∈ {(p, α) ∈ R2|0 ≤ p ≤ 1,−1 ≤ α ≤ 0 and α ≤ p− 1}
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Result
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Trivial part

Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

α = −p

Sp,−p(x) =

(
p(x−p − 1)

(−p)(xp − 1)

) 1
−2p

=

(
p(1− xp)

(−p)xp(xp − 1)

) 1
−2p

=

(
1

xp

) 1
−2p

= x
1
2 .

=⇒ Sp,α(x) is operator monotone if

α = −p.
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Extended range of parameter (p, α)

Extension from operator monotonicity of {Sp(x)}p∈[−2,2]

Löwner’s theorem

Let f be a real-valued function. Then the following are equivalent :

(1) f is operator monotone,

(2) f has an analytic continuation to upper half plane C+ = {z ∈ C | ℑz > 0},
and z ∈ C+ implies f(z) ∈ C+. ( ℑz means the imaginary part of z. )

Example (xα (0 < α ≤ 1)).

Let f(x) := xα (0 < α ≤ 1). If z ∈ C+, namely 0 < arg z < π, then

0 < arg zα = α arg z < απ ≤ π.

Therefore, f(x) := xα (0 < α ≤ 1) is operator monotone.
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Extension from operator monotonicity of {Sp(x)}p∈[−2,2]

Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

(−2 ≤ p < 1, 1 < α ≤ 2)

−2 ≤ p < 1, 1 < α ≤ 2

z ∈ C+ =⇒ 0 < arg

(
p(z − 1)

zp − 1

) 1
1−p

< π

(∵ Sp(x) is operator monotone)

∴ 0 < arg

(
p(z − 1)

zp − 1

)
< (1− p)π (−2 ≤ p < 1)

0 < arg

(
zp − 1

p(z − 1)

)
< (p− 1)π (1 < p ≤ 2)
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Operator monotonicity of exp{f(x)}
Extended range of parameter (p, α)

Extension from operator monotonicity of {Sp(x)}p∈[−2,2]

Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

(−2 ≤ p < 1, 1 < α ≤ 2)

−2 ≤ p < 1, 1 < α ≤ 2

z ∈ C+ =⇒ 0 < arg

(
p(z − 1)

zp − 1

) 1
1−p

< π

(∵ Sp(x) is operator monotone)

∴ 0 < arg

(
p(z − 1)

zp − 1

)
< (1− p)π (−2 ≤ p < 1)

0 < arg

(
zp − 1

p(z − 1)

)
< (p− 1)π (1 < p ≤ 2)
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Operator monotonicity of exp{f(x)}
Extended range of parameter (p, α)

Extension from operator monotonicity of {Sp(x)}p∈[−2,2]

Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

(−2 ≤ p < 1, 1 < α ≤ 2)

−2 ≤ p < 1, 1 < α ≤ 2

z ∈ C+ =⇒ 0 < arg

(
p(z − 1)

zp − 1

) 1
1−p

< π

(∵ Sp(x) is operator monotone)

∴ 0 < arg

(
p(z − 1)

zp − 1

)
< (1− p)π (−2 ≤ p < 1)

0 < arg

(
zα − 1

α(z − 1)

)
< (α− 1)π (1 < α ≤ 2)
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Extension of range of parameter (p, α) such thatSp,α(x) is operator monotone

Operator monotonicity of exp{f(x)}
Extended range of parameter (p, α)

Extension from operator monotonicity of {Sp(x)}p∈[−2,2]

Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

(−2 ≤ p < 1, 1 < α ≤ 2)

−2 ≤ p < 1, 1 < α ≤ 2

0 < arg

(
p(zα − 1)

α(zp − 1)

) 1
α−p

=
1

α− p

{
arg

(
p(z − 1)

zp − 1

)
+ arg

(
zα − 1

α(z − 1)

)}
<

1

α− p

{
(α− 1)π + (1− p)π

}
= π

=⇒ Sp,α(x) is operator monotone if

−2 ≤ p < 1, 1 < α ≤ 2.
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Extension of range of parameter (p, α) such thatSp,α(x) is operator monotone

Operator monotonicity of exp{f(x)}
Extended range of parameter (p, α)

Extension from operator monotonicity of {Sp(x)}p∈[−2,2]

−2 ≤ p < 1, 1 < α ≤ 2

𝛼 

𝑝 
−2 2 

2 

−2 

0 
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Extension of range of parameter (p, α) such thatSp,α(x) is operator monotone

Operator monotonicity of exp{f(x)}
Extended range of parameter (p, α)

Extension from operator monotonicity of {Sp(x)}p∈[−2,2]

Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

(−1 < p ≤ 2,−2 ≤ α < −1)

−1 < p ≤ 2, −2 ≤ α < −1

S−p(x
−1)−1 =

(
x(xp − 1)

p(x− 1)

) 1
1+p

(−2 ≤ p ≤ 2) is operator monotone.

0 < arg

(
z(zp − 1)

p(z − 1)

)
< (1 + p)π (−1 < p ≤ 2)

arg

(
p(zα − 1)

α(zp − 1)

) 1
α−p

=
1

p− α

{
arg

(
z(zp − 1)

p(z − 1)

)
+ arg

(
α(z − 1)

z(zα − 1)

)}
=⇒ Sp,α(x) is operator monotone if

−1 < p ≤ 2, −2 ≤ α < −1.
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Extension of range of parameter (p, α) such thatSp,α(x) is operator monotone

Operator monotonicity of exp{f(x)}
Extended range of parameter (p, α)

Extension from operator monotonicity of {Sp(x)}p∈[−2,2]

−2 ≤ p < 1, 1 < α ≤ 2 and −1 < p ≤ 2, −2 ≤ α < −1

𝛼 

𝑝 
−2 2 

2 

−2 

0 
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Extension of range of parameter (p, α) such thatSp,α(x) is operator monotone

Operator monotonicity of exp{f(x)}
Extended range of parameter (p, α)

Extension from operator monotonicity of {Sp(x)}p∈[−2,2]

Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

Löwner’s theorem

Sp,α(x) is symmetric for p, α:

Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

⇐⇒ Sα,p(x) =

(
α(xp − 1)

p(xα − 1)

) 1
p−α

∴ We can extend a range of parameter simmetrically ;

(−2 ≤ p < 1, 1 < α ≤ 2) −→ (−2 ≤ α < 1, 1 < p ≤ 2),

(−1 < p ≤ 2, −2 ≤ α < −1) −→ (−1 < α ≤ 2, −2 ≤ p < −1)
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Extended range of parameter (p, α)

Extension from operator monotonicity of {Sp(x)}p∈[−2,2]
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(
p(xα − 1)

α(xp − 1)

) 1
α−p

Löwner’s theorem
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α−p

⇐⇒ Sα,p(x) =

(
α(xp − 1)

p(xα − 1)

) 1
p−α

∴ We can extend a range of parameter simmetrically ;

(−2 ≤ p < 1, 1 < α ≤ 2) −→ (−2 ≤ α < 1, 1 < p ≤ 2),
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Extension of range of parameter (p, α) such thatSp,α(x) is operator monotone

Operator monotonicity of exp{f(x)}
Extended range of parameter (p, α)

Extension from operator monotonicity of {Sp(x)}p∈[−2,2]

Extended range from operator monotonicity of {Sp(x)}p∈[−2,2]
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𝑝 
−2 2 

2 

−2 

0 
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Extension of range of parameter (p, α) such thatSp,α(x) is operator monotone

Operator monotonicity of exp{f(x)}
Extended range of parameter (p, α)

Extension from operator monotonicity of {Sp(x)}p∈[−2,2]

Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

Theorem 1 (2-parameter Stolarsky mean)

Let

Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

(x > 0).

Then Sp,α(x) is operator monotone if (p, α) ∈ A ⊂ R2, where

A =
(
[−2, 1]× [−1, 2]

)
∪
(
[−1, 2]× [−2, 1]

)
∪
{
(p, α) ∈ R2

∣∣ α = −p
}
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Introduction
Extension of range of parameter (p, α) such thatSp,α(x) is operator monotone

Operator monotonicity of exp{f(x)}
Extended range of parameter (p, α)

Extension from operator monotonicity of {Sp(x)}p∈[−2,2]

Figure of A

𝛼 

𝑝 
0 −2 2 

2 

−2 

𝛼 = −𝑝 Figure. 2 

Extended  parameter  range 

𝑝 

𝛼 

0 

1 

1 −1 

−1 

Figure. 1 

Parameter range 
proved in 4 , 6  of  𝑆𝑝,𝛼(𝑥) 
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Extension of range of parameter (p, α) such thatSp,α(x) is operator monotone

Operator monotonicity of exp{f(x)}

Identric mean
Characterization

Operator monotonicity of exp{f(x)}

Operator monotonicity of exp{f (x)}
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Operator monotonicity of exp{f(x)}

Identric mean
Characterization

Operator monotonicity of exp{f(x)}

Identric mean

I(x) = exp

{
x log x

x− 1
− 1

}(
=

1

e
x

x
x−1

)
is an operator monotone function on (0,∞).

Problem

exp(x) is not an operator monotone function.

I(x) = exp

{
x log x

x− 1
− 1

}
is a composite function with exp(x), but it is

an operator monotone function.

We consider a condition of f(x) such that exp{f(x)} is operator

monotone.
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Operator monotonicity of exp{f(x)}

Identric mean

I(x) = exp

{
x log x

x− 1
− 1

}(
=

1

e
x

x
x−1

)
is an operator monotone function on (0,∞).

Problem

exp(x) is not an operator monotone function.

I(x) = exp

{
x log x

x− 1
− 1

}
is a composite function with exp(x), but it is

an operator monotone function.

We consider a condition of f(x) such that exp{f(x)} is operator

monotone.
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Operator monotonicity of exp{f(x)}

Identric mean
Characterization

Operator monotonicity of exp{f(x)}

Theorem 2

Let f(x) be a continuous function on (0,∞). If f(x) is not a constant or

log (αx) (α > 0), then the following are equivalent:

(1) exp{f(x)} is an operator monotone function,

(2) f(x) is an operator monotone function, and there exists an analytic

continuation satisfying

0 < v(r, θ) < θ,

where

f(reiθ) = u(r, θ) + iv(r, θ) (0 < r, 0 < θ < π).
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Operator monotonicity of exp{f(x)}

Identric mean
Characterization

Operator monotonicity of exp{f(x)}

Corollary 3

Let f(x) be a continuous function on (0,∞), and assume f(x) is not a

constant or log (αx) (α > 0). If f(x) is not an operator monotone function or

is an operator monotone function which does not satisfy

v(r, θ) < π,

then exp{f(x)} is not operator monotone, where

f(reiθ) = u(r, θ) + iv(r, θ) (0 < r, 0 < θ < π).
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Operator monotonicity of exp{f(x)}

Identric mean
Characterization

Operator monotonicity of exp{f(x)}

Example (Harmonic mean)

H(x) =
2x

x+ 1

is an operator monotone function on [0,∞), but exp{H(x)} is not operator

monotone.

∵
ℑH(x) = v(r, θ) =

2r sin θ

r2 + 1 + 2r cos θ
.

r = 1, θ =
5π

6

=⇒ v

(
1,

5π

6

)
= 2 +

√
3 >

5π

6
.
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Operator monotonicity of exp{f(x)}

Identric mean
Characterization

Operator monotonicity of exp{f(x)}

Example (Logarithmic mean)

L(x) =
x− 1

log x

is an operator monotone function on [0,∞), but exp{L(x)} is not operator

monotone.

∵
ℑL(x) = v(r, θ) =

(r log r) sin θ − θ(r cos θ − 1)

(log r)2 + θ2

r = exp
{π

2

}
, θ =

π

2

=⇒ v
(
exp

{π

2

}
,
π

2

)
>

π

2
.

Yoichi Udagawa Parameterized operator means and operator monotonicity of exp{f(x)}



Introduction
Extension of range of parameter (p, α) such thatSp,α(x) is operator monotone
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Characterization

Operator monotonicity of exp{f(x)}

Example (dual of Logarithmic mean)

DL(x) =
x log x

x− 1

is an operator monotone function on [0,∞), and exp{DL(x)} is operator

monotone too.

ℑDL(z) := v(r, θ) =
r

r2 + 1− 2r cos θ

{
θ(r − cos θ)− (log r) sin θ

}
.

[1] v(r, θ) < θ ⇐⇒ r
{
θ cos θ − (log r) sin θ

}
< θ.

r
{
θ cos θ − (log r) sin θ

}
≤ r

{
sin θ − (log r) sin θ

}
= r(1− log r) sin θ

≤ sin θ < θ.(
∵ θ cos θ ≤ sin θ < θ (0 < θ < π), r(1− log r) ≤ 1 (0 < r)

)
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Operator monotonicity of exp{f(x)}

Example (dual of Logarithmic mean)

DL(x) =
x log x

x− 1

is an operator monotone function on [0,∞), and exp{DL(x)} is operator

monotone too.

ℑDL(z) := v(r, θ) =
r

r2 + 1− 2r cos θ

{
θ(r − cos θ)− (log r) sin θ

}
.

[2] 0 < v(r, θ) ⇐⇒ (log r) sin θ < θ(r − cos θ).

(1 ≤ r) (log r) sin θ < (r − 1)θ < θ(r − cos θ).

(0 < r < 1)

(log r) sin θ < (r − 1) sin θ

≤ (r − 1)θ cos θ

= θ(r cos θ − cos θ) < θ(r − cos θ).
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Operator monotonicity of exp{f(x)}

Example

−L(x)−1 := IL(x) = − log x

x− 1

is an operator monotone function on (0,∞), and exp{IL(x)} is operator

monotone too.

ℑIL(z) := v(r, θ) =
(r log r) sin θ − θ(r cos θ − 1)

r2 + 1− 2r cos θ
.

[1] v(r, θ) < θ ⇐⇒ (log r) sin θ + θ cos θ < rθ.

(log r) sin θ + θ cos θ ≤ (log r) sin θ + sin θ

= sin θ(log r + 1)

≤ r sin θ < rθ.(
∵ θ cos θ ≤ sin θ < θ (0 < θ < π), log r ≤ r − 1 (0 < r)

)
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Operator monotonicity of exp{f(x)}

Example

−L(x)−1 := IL(x) = − log x

x− 1

is an operator monotone function on (0,∞), and exp{IL(x)} is operator

monotone too.

ℑIL(z) := v(r, θ) =
(r log r) sin θ − θ(r cos θ − 1)

r2 + 1− 2r cos θ
.

[2] 0 < v(r, θ) ⇐⇒ r
{
θ cos θ − (log r) sin θ

}
< θ.

r
{
θ cos θ − (log r) sin θ

}
≤ r

{
sin θ − (log r) sin θ

}
= sin θ

{
r(1− log r)

}
≤ sin θ < θ.(

∵ θ cos θ ≤ sin θ < θ (0 < θ < π), r(1− log r) ≤ 1 (0 < r)
)
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Thank you for your attention!

Yoichi Udagawa Parameterized operator means and operator monotonicity of exp{f(x)}



Introduction
Extension of range of parameter (p, α) such thatSp,α(x) is operator monotone

Operator monotonicity of exp{f(x)}

Identric mean
Characterization

A part to which range of parameter (p, α) cannot be extended

Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

Power mean

Sp,2p(x) =

(
p(x2p − 1)

2p(xp − 1)

) 1
2p−p

=

(
(xp + 1)(xp − 1)

2(xp − 1)

) 1
p

=

(
xp + 1

2

) 1
p

(
xp + 1

2

) 1
p

is operator monotone if and only if −1 ≤ p ≤ 1

We cannot extend a range of parameter such that Sp,α(x) is operator

monotone when α = 2p
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A part to which range of parameter (p, α) cannot be extended

Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

Parameterized Identric mean

Sp,p(x) := lim
α→p

Sp,α(x) = exp

{
1

p

(
xp log xp

xp − 1
− 1

)}

When p =
5

4
, S 5

4
, 5
4
(x) is not operator monotone.

When α → p, we cannot extend a range of parameter more than |p| ≥ 5

4
such that Sp,α(x) is operator monotone.(

∵ f(x)is operator monotone ⇒ f(xp)
1
p (p ∈ [−1, 1])is operator monotone

)
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