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Definition of operator monotone function and operator meanl
Operator monotonicity of Sy o *—P . Previous

Introduction

Positive Operator

B(H) : The set of all bounded linear operators on a Hilbert space H.

For A € B(H),
A20<g>(14m,@20 (Vz € H)

A>0 <d:Cf> A >0 and A is invertible.

For self-adjoint operators A, B € B(H),

A>BE&L 4-B>o.

B(H)y ={A€B(H): A>0}.
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Operator Monotone Function

Let J be an interval of R and f : J — R be a continuous function. A function
f(z) is called an operator monotone function on J, provided

A< B= f(4) < f(B)

for self-adjoint A, B € B(H) whose spectra 0(A) and o(B) lie in J.
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Introduction

Operator Monotone Function
Let J be an interval of R and f : J — R be a continuous function. A function
f(z) is called an operator monotone function on J, provided

A< B= f(4) < f(B)

for self-adjoint A, B € B(H) whose spectra o(A) and o(B) lie in J.

(Léwner-Heinz inequality)  f(z) =2% (0<a<1)
f(z) =logx

( A _ISB =t O<a<l) = logA<logB (aiO))
!
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Operator Mean (Kubo-Ando 1980)

The map M : (A, B) € B(H)2 — M(A, B) € B(H)+ is called an operator
mean if the operator (A, B) satisfies the following four conditions:
for A,B,C,D € B(#)+ and self-adjoint X

(1) A<C,B< D= M(A,B) <M(C, D) (Joint monotonicity),
(2) X(M(A,B))X < M(XAX, XBX) (Transformer inequality),

(Upper semi-continuity),

(4) M, 1) =1.
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Theorem K-A (Kubo-Ando 1980)

(1) For any operator mean 90, there uniquely exists an operator monotone
function f > 0 on [0, 00) with f(1) = 1 such that

f@) I =M1, zI), x> 0.

(2) When 9 — f, M g, then IM(A, B) < N(A, B) < f(z) < g(z)
forall A,B € B(H)+, = > 0.

1

(3) When A >0, 9M(A,B) =A% f(A= BA=Z A3,

f(x) is called the representing function of 9.
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Operator monotonicit

Definition of operator monotone function and operator m: 1
of S ( ( )

p,a(z) = ( P—1) )
Introduction

eanl

Previous wc

P.(A,B) = A? (1

L{rs (4% 5a7)}) 0t

1
Representing function of B, : Ps(z) = (1 _;x ) (-1<s<1)

1
@ s =1 (Arithmetic Mean): Pi(z) = te

2
e s — 0 (Geometric Mean): Py(x) := 1ir% Pi(z) = v’
s—
1+27\7T _ 2
@ s = —1 (Harmonic mean): P_,(z) <+Tx> =1 fm
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. . 1+a2°\°
Representing function of Bs : Ps(z) = ( +2x ) (-1<s<1)

Weighted Power Mean

Poa(A,B) = A? ((1 —a)+a (A%IBA%I)S> Az

1

Representing function of Ps o : Pea(z) = ((1 — @) + az”)*
(-1<s<1,0<a<)
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Operator monotonicity of

Previous works

Theorem Y-Y (U.-Wada-Yamazaki-Yanagida

For each r € [—1,1] and s € [—1,1], let F} s(z) be a non-negative function of
z € [0, 00) defined by

Frs(x) = (/01 (O +o¢xr)$do¢) if r#0and s £0

and its limit if » =0 or s = 0. Then F, ;(z) is operator monotone.
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Previous works

Theorem Y-Y (U.-Wada-Yamazaki-Yanagida 2

For each r € [-1,1] and s € [—1, 1], let F}. s(z) be a non-negative function of
z € [0, 00) defined by

1 S
Fs(z) = (/ (O +o¢xr)7do¢) if r#0and s £0
0
and its limit if » =0 or s = 0. Then F, ;(z) is operator monotone.

Remark

A F(x):(ﬁ%)

|

0 —1<r<ry<1, -1<s<s5<1= F s (x) <Frpys(z)
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Previous works

r(z"™5 — 1) :

0 —1<r; <1 <1, -1<s51<5<1= F, (@) < F, ()

Order among means from F). s(x)

2 Sx%gmfl <eXp{xloga¢_1}§x+1
x

rz—1

Arithmetic mean: CCTH Identric mean: exp {mloiglcc _ 1}
P

. . az . 1 . 2x
Logarithmic mean: ——, Geometric mean: 2, Harmonic mean:
log r+1
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Power, Power Difference and Stolarsky Means

Power Difference Mean

s = —1 and s = 1 = Power Difference Mean
(r= ) - 1)

()= ~— 2 T (< r<?

PD,(z) R (-1<r<2)

Power Mean

r = s = Power Mean

Fys(z) = (3”5“)8 =Piz) (-1<s<1)

Stolarsky Mean

r=1and s = p — 1 = Stolarsky Mean

plz —1)

=) 5,0 0<p<d

Fipa(z) = (
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Operator monotonicity of

Stolarsky Mean

Stolarsky Mean (Nakamura 1989)

The following function

8p(2) = (W‘”) (2> 0)

zP — 1
is an operator monotone function if and only if —2 < p < 2.

The cases p = 0,1 are defined as the limits:

So(x) = lim (”“”‘”)11” L

p—0 \ aP —1 log x
(z -1\ T 1
(PPN zrlogxr
Sl(w)"_%lir%(mp—l) _exp{x_1 1}.
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Operator monotonicity of

Stolarsky Mean

Example 2

p = 2 (Arithmetic Mean): Sa(z) =

2

p — 1 (Identric Mean): Si(z) := lim S,(z) = exp{xloga: B 1}
=1 z—1

e . " a1l
p — 0 (Logarithmic Mean): So(z) := 1171_% So(@) = 710gx

p = —1 (Geometric Mean): S_i(z) = 23
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Problem

— 1D\ 7
@ We showed that if 0 < p < 2 then Fi ,_1(z) = (%) s
operator monotone.

plz—1)\ "7 . L -
w1 is operator monotone function if and only if —2 < p < 2.
P —

@ A range of parameter of F, s(x) is not optimal.

o We may extend a range of parameter of F,. ().
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Operator monotonicity of

Problem

— 1)\ =5
@ We showed that if 0 < p < 2 then Fi ,_1(z) = (%) s
operator monotone.

(M

1-p
o ) is operator monotone function if and only if —2 < p < 2.
P —

@ A range of parameter of F, s(x) is not optimal.

o We may extend a range of parameter of F,. ().
1

p(a® —1)>"T”_

@ In the following, we treat F. s(x) as Spa(z) = (

a(zr —1)
Frale) = ((rrf;;(;r_—l)n); R 28Ry Sea(2) = ({"H)
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Extension of range of parameter (p, o) such that S, o () is operator monot  Extended range of parameter (p. o)

Extension of range of parameter (p, a) such that Sy, ,(x) is operator

monotone

Extension of range of parameter (p, a)

such that S, ,(x) is operator monotone
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Extension of range of parameter (p, o) such that S, o () is operator monot  Extended range of parameter (p, @)

Frs(z) — Spalz)

Ewu>:<off;&7Pn> THESme‘%a@):(ggggg)aq

o F. s(x) is operator monotone if —1 <r <land -1<s<1
@ Sp.o(x) is operator monotone if —1 <p<land -1<a—-p<1

=

A range of parameter from F’. s(z)
Ifpe[-1,1]and p—1 < a<p+1, then

%Am:(mﬁ_n)ﬁp@>m

a(zr — 1)

is an operator monotone function.

Remark

The range of parameter in which the above function is operator monotone is
characterized in Nagisa-Wada (2015), but the range of parameter has not been
determined explicitly yet.
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Nagisa-Wada (2015)

Spalz) = (p(xa_l)>_

a(zr — 1)

Nagisa-Wada (2015)
For real number a,b with |a|, |b] < 2 and a # b, we define the function h :

(0,00) — R as follows:

b(z® — 1)
a(xzb —1)°

Then h is operator monotone on (0, co) if and only if

h(z) =

(a,b) € {(a,b) eR*|0<a—b<1,a>—1,and b< 1}

u([0, 1] x [=1,0]) \ {(0,0)}.
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Extension of range of parameter (p, o) such that S, o () is operator monot  Extended range of parameter (p, @)

Nagisa-Wada (2015)

Spoalx) = (p(xa_l)>&1_p

a(zr — 1)

A range of parameter from Nagisa-Wada (2015)

a(z? —1)
p(z> — 1)
o (pa)€{(p,a) eR?0<p<1,-1<a<Oand o <p—1}
-1 1
— L ¢ [7, 1]

a—p 2
p 1 =1 o 1 _1
_ a—p / _ a—

° M = M ’ is operator monotone if

pla® — 1) a(er — 1)

(p, @) € {(p, ) ERz\OSpgl,flgag()and a<p-—1}

is operator monotone if (p, ) € [0,1] x [-1,0].
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Nagisa-Wada (201
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Extension of range of parameter (p, o) such that Sy, « () is operator monot Extended range of parameter (p, )

A range of parameter from F} ;(z) and Nagisa-Wada (2015)

and Nagisa-Wada (2

Figure. 1
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Extension of range of parameter (p, «) such that Sy, () is operator monot Extended range of parameter (p, o)
ge of p e P, p g (

Extension from operator monotonicity of {S,(7)},e(—2.2]

a=-p

Figure. 1 Figure. 2
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Extension of range of parameter (p, c) such that Sy, o (@) is operator monot  Extended range of parameter (p, o)

Trivial part

Sp () = ((p(w—1>)>

—p)(zP — 1

= Sp,a(®) is operator monotone if

o = —p.

Yoichi Udagawa Parameterized operator means and operator monotonicity of



Extension of range of parameter (p, o) such that S, o () is operator monot  Extended range of parameter (p, @)

Trivial part
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Extension from operator monotonicity of {S,(7)},e(—2.2]

Lowner's theorem

Let f be a real-valued function. Then the following are equivalent :
(1) f is operator monotone,
(2) f has an analytic continuation to upper half plane C* = {z € C | Sz > 0},

and z € C" implies f(z) € C". ( 3z means the imaginary part of z. )

Example (z¢ (0 < a < 1)).

Let f(z) :=2“ (0 < @< 1). If 2 € Ct, namely 0 < argz < T, then
0<argz® =caargz < ar < .

Therefore, f(z) := 2% (0 < a < 1) is operator monotone.
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Extension from operator monotonicity of {S,(7)},e(—2.2]

S,a(x):(%)ﬂ (—2<p<l,1<a<?)

—2<p<l,1<a<?2
1
— 1)\ T-»
p(z )) P

Ct=0
FAS <aurg(zp_1

(. Sp(z) is operator monotone)
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Extension from operator monotonicity of {S,(7)},e(—2.2]

Spal(z) = (M)ﬂ (—2<p<l,1<a<?)

—2<p<l,1<a<?2
1
— 1)\ T-»
p(z )) P

Ct=0
FAS <aurg(zp_1

(. Sp(z) is operator monotone)

oo 0<arg (%) <(l-prw(—2<p<1)

P

O<arg( “

m)«p—mquz)
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Extension from operator monotonicity of {S,(7)},e(—2.2]

Spal(z) = (M)ﬂ (—2<p<l,1<a<?)

—2<p<l,1<a<?2
1
— 1)\ T-»
p(z )) P

Ct=0
FAS <aurg(zp_1

(. Sp(z) is operator monotone)

oo 0<arg (%) <(l-prw(—2<p<1)

2% —1

0 < arg (m

><(a—1)7r(1<u§2)
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Extension of range of parameter (p, o) such that S, o () is operator monot  Extended range of parameter (p, @)

Extension from operator monotonicity of {S,(7)},e(—2.2]

Spoa(z) = (M)” " (c2<p<l, l<a<?)
p(z* = 1)
0<arg(a(zp )>

5 arg( ))+afg(ai%>)}

{(a (1- )7r}:7r

Q

=—> Sp.o(x) is operator monotone if

—2<p<l, l<ac<?.
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Extension of range of parameter (p, o) such that S, o () is operator monot  Extended range of parameter (p, a)

Extension from operator monotonicity of {S,(7)},e(—2.2]
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Extension of range of parameter (p, o) such that S, o () is operator monot  Extended range of parameter (p, @)

Extension from operator monotonicity of {S,(%)}pec[—2,2

1

Spa(@) = (%) T (c1<p<2,—2<a< 1)

—1<p<2 2<a< -1

1
P 1
( ele )) v (-2<p< 2) is operator monotone.

plz —1)

H7t
oO<ar( ) 1l+pm (-1<p<2)

s (05=0) T -t (e (G e ()}

—> Sp,a(x) is operator monotone if

—p(z”

—1<p<2 2<a<-—1.
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Extension of range of parameter (p, o) such that Sy, « () is operator monot Extended range of parameter (p, )

Extension from operator monotonicity of {S,(7)},e(—2.2]
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Extension of range of parameter (p, o) such that S, o () is operator monot  Extended range of parameter (p, @)

Extension from operator monotonicity of {S,(7)},e(—2.2]

Sp.a(r) = (W)

a(zr — 1)

Lowner's theorem

Sp,a(x) is symmetric for p, a:

Sp.a(z) = (M> " s Suple) = <<¥<x”—1>>

afzr —1) p(z> —1)
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Extension of range of parameter (p, o) such that S, o () is operator monot  Extended range of parameter (p, @)

Extension from operator monotonicity of {S,(7)},e(—2.2]

Sp.a(r) = (W)

a(zr — 1)

Lowner's theorem

Sp,a(x) is symmetric for p, a:

Sp.a(z) = (M> " s Suple) = <<¥<x”—1>>

afzr —1) p(z> —1)

.". We can extend a range of parameter simmetrically ;
(—2<p<l,l<a<?2) — (—2<a<l l<p<?2),

(-1<p<2 —2<a<-1) — (-l<a<2 —2<p<-1)
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Extension of range of parameter (p, o) such that S, o () is operator monot  Extended range of parameter (p, a)

Extension from operator monotonicity of {S,(7)},e(—2.2]

Extended ra
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Extension of range of parameter (p, o) such that S, o () is operator monot  Extended range of parameter (p, @)

Extension from operator monotonicity of {S,(7)},e(—2.2]

Spal(@) = (p(xa_1)>_

a(zr — 1)

Theorem 1 (2-parameter Stolarsky mean)

Let L
Spoa (@) = (%) "7 (2> 0).

Then S, o(x) is operator monotone if (p, o) € A C R?, where

A= ([-2,1] x [-1,2)) U ([-1,2] x [-2,1]) U{(p, @) € R* | a = —p}
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Extension of range of parameter (p, «) such that Sy, () is operator monot Extended range of parameter (p, o)
ge of p e P, p g (

Extension from operator monotonicity of {S,(7)},e(—2.2]

a a

Figure. 1 Figure. 2 a=-r
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Operator monotonicity of exp{ f(z)}

Operator monotonicity of exp{ f(z)}
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Identric mean
Characterization

Operator monotonicity of exp{ f(z)}

Operator monotonicity of exp{ f(z)}

zlogx 1 a2
I = 7—1 = —gpm=1
(z) exp{ac_1 }( e:v )

is an operator monotone function on (0, co).
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Identric mean
Characterization

Operator monotonicity of exp{ f(x)}

Operator monotonicity of exp{ f(z)}

Identric mean

I(x) = exp{a;kiglw = 1} (: éxﬁ)

is an operator monotone function on (0, co).

@ exp(zx) is not an operator monotone function.

1
e Z(z) = exp { Z (iglcr — 1} is a composite function with exp(z), but it is

an operator monotone function.

@ We consider a condition of f(x) such that exp{f(z)} is operator

monotone.
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Characterization
Operator monotonicity of exp{ f(x)}

Operator monotonicity of exp{ f(z)}

Theorem 2

Let f(x) be a continuous function on (0,00). If f(x) is not a constant or
log (ax) (e > 0), then the following are equivalent:
(1) exp{f(z)} is an operator monotone function,

(2) f(x) is an operator monotone function, and there exists an analytic
continuation satisfying
0<w(r,0) <0,
where
f(re®) = u(r,8) +iv(r,0) (0<r, 0<6<m).
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Identric mean
Characterization

Operator monotonicity of exp{ f(x)}

Operator monotonicity of exp{ f(z)}

Corollary 3

Let f(x) be a continuous function on (0, 00), and assume f(z) is not a
constant or log (ax) (a > 0). If f(z) is not an operator monotone function or

is an operator monotone function which does not satisfy
o(r,0) <,
then exp{f(z)} is not operator monotone, where

f(re®) = u(r,8) +iv(r,0) (0<r, 0<6 < ).
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Characterization

Operator monotonicity of exp{ f(z)}

Operator monotonicity of exp{ f(z)}

Example (Harmonic mean)

2z
H =
@)= 277
is an operator monotone function on [0, 00), but exp{H (z)} is not operator
monotone.
27 sin 6
SH = )= ——————
SH(z) = v(r,6) r2+ 1+ 2rcosé
5T

r=1, 6= &

= v(l,%>=2+\/§>%ﬂ.
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Identric
Characterization
Operator monotonicity of exp{ f(z)}

Operator monotonicity of exp{ f(z)}

Example (Logarithmic mean)

z—1
L =
@) log x
is an operator monotone function on [0, 00), but exp{L(z)} is not operator
monotone.
(rlogr)sinf — 6(rcosf — 1)
SL(z) = 0) =
SL(z) = v(r,0) (logr)? + 62
T T
= — 0 g
r = exp { 3 } ,

Yoichi Udagawa
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Identric mean
Characterization

Operator monotonicity of exp{ f(z)}

Operator monotonicity of exp{ f(z)}

Example (dual of Logarithmic mean)

zlogx
DL(z) = —=—
(@) = ——3

is an operator monotone function on [0,00), and exp{DL(x)} is operator

monotone too.

r

SDL(z) = v(r0) = 5555

{6(r — cos ) — (logr)sin6}.

[1] v(r,0) < 6 <= r{fcosf — (logr)sinf} < 6.
r{6cosf — (logr)sinf} < r{sinf — (logr)sinf}
=7r(1—logr)sinf
<sinf < 6.

( Ocosh <sinf <0 (0<f<m), r(l-logr)<1(0< 1"))
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Identric mean
Characterization
Operator monotonicity of exp{ f(x)}

Operator monotonicity of exp{ f(z)}

Example (dual of Logarithmic mean)

zlogx
z—1

DL(z) =

is an operator monotone function on [0,00), and exp{DL(x)} is operator
monotone too.

e
r24+1—2rcosf

[2] 0 < v(r,0) <= (logr)sinf < O(r — cosb).
1<) (logr)sinf < (r — 1) < 6(r — cosb).
O<r<1)

SDL(z) :==v(r,0) = 0(r — cos ) — (logr)sin6}.

(logr)sin® < (r —1)siné
< (r—1)0cosb
= 6(rcosf — cosf) < O(r — cos¥).
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Identric mean
Characterization

Operator monotonicity of exp{ f(z)}

Operator monotonicity of exp{ f(z)}

—L(z)™ ' = IL(z) = —%

is an operator monotone function on (0,00), and exp{IL(z)} is operator

monotone too.

(rlogr)sinf — (rcosf — 1)

SIL(2) :=v(r,0) = r24+1—2rcosf

[1] v(r,0) < 0 <= (logr)sinf + O cosb < r.
(logr)sin® + O cos O < (logr) sinf + sin 6
=sinf(logr + 1)

< rsinf < ro.

( fcosf <sinf <6 (0<60<m), logr<r—1(0 <r))
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Identric mean
Characterization

Operator monotonicity of exp{ f(z)}

Operator monotonicity of exp{ f(z)}

—L(z)™ ' = IL(z) = —%

is an operator monotone function on (0,00), and exp{IL(z)} is operator

monotone too.

(rlogr)sinf — (rcosf — 1)

SIL(2) :=v(r,0) = r24+1—2rcosf

[2] 0 < v(r,0) <= r{fcosb — (logr)sinf} < 6.
r{6cosf — (logr)sinf} < r{sinf — (logr)sinf}
= sin@{r(1 —logr)}

<sinf < 6.

( fcosh <sinf < (0<f<m), r(l-logr)<1(0< r))
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Identri

Characterization
1

Operator monotonicity of exp{ f ()}

Thank you for your attention!
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Operator monotonicity of exp{ f(z)}

A part to which range of parameter (p, &) cannot be extended

1

Spoa(x) = (M) =

a(zr — 1)

Power mean

&m@=<wﬁ—nyg,

2p(zr — 1)
_CﬂingJ»é—(ﬂ;ﬁé

1
P11\ 7
° (:c ; ) ! is operator monotone if and only if —1 <p <1

@ We cannot extend a range of parameter such that S, . (z) is operator

monotone when o = 2p
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Operator monotonicity of exp{ f(x)}

A part to which range of parameter (p, &) cannot be extended

Sy (z) = <p(w°‘ - 1))“11’

alzr — 1)

Parameterized Identric mean
1 [ xP log xP
S = lim S, o — - 1
pp(2) = lim Sp,a(x) = exp {p ( )}

P — 1

° Whenng,S

VORI R (z) is not operator monotone.
4’4

= | Ot

o When o — p, we cannot extend a range of parameter more than [p| >
such that S, () is operator monotone.

( f(z)is operator monotone = f(ac”)%(p € [—1,1])is operator monotone)
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