
PROGRAM AND ABSTRACT

Program
September 8, 2016

• 10:00 - 11:30: Registration
• 13:30 - 14:20: Marcin Marciniak ( University of Gdansk): Merging of positive maps:

exposed and optimal maps, and their applications
Break

• 14:30 –15:20: Jun Ichi Fujii ( Osaka Kyoiku Univ.): Introduction to TQC theory and spin
networks

Break
• 15:40 - 16:30: Miklós Pálfia ( Sungkyunkwan Univ. and Hungarian Academy of Sciences,

Hungary): Loewner ’s theorem in several variables
Break

• 16:40– 17:30;Yongdo Lim (Sungkyunkwan Univ. ): Ando-Hiai inequality for probability
measures

• 18:00 Welcoming party

September 9, 2016

• 9:30 –10:20: Rajarama Bhat (ISI, Bangalore): Bures distance for completely positive maps
Break

• 10:30 –11:20: Wai Shing Tang ( National Univ. of Singapore): All 2-positive linear maps
from M3 to M3 are decomposable.

Break
• 11:30 – 12:20: Hoang Phi Dung (Posts and Telecommunications Institute of Technology,

Hanoi, Vietnam): Some Lojasiewicz inequalities and beyond
Lunch

• 13:30 - 14:20: Seung-Hyeok Kye ( Seoul National Univ.): Detecting various kinds of en-
tanglement in multi-qubit systems

Break
• 14:30 –15:20:Benoit Collins (Kyoto Univ.): to be announced.

Break
• 15:30 - 16:00: Shigeru Furuichi ( Nihon Univ.):On some inequalities for symmetric diver-

gence measures
Break

• 16:00 – 16:30: Yoichi Udagawa ( Tokyo University of Science): Parameterized operator
means and operator monotonicity of expf(x)

Break
• 16:40 –17:30: Gen Kimura (Shibaura Institute of Technology): Information gain and stor-

age in General Probabilistic Theories.
• 18:00 :Dinner party
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September 10, 2016
• 9:30-10:20: Fumio Hiai (Tohoku Univ. ): A concise survey of log-majorizations for matrices

with applications to quantum information
Break

• 10:30-11:20: Le Cong Trinh (Quy Nhon Univ. ): On the location of eigenvalues of matrix
polynomials

• Closed ceremony
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Abstract

• Marcin Marciniak ( University of Gdansk)
Title: Merging of positive maps: exposed and optimal maps, and their applications
Abstract:

Let K1, K2, H1, H2 be Hilbert spaces and let ϕi : B(Ki) → B(Hi), i = 1, 2, be positive
linear maps. Consider Hilbert spaces K =

⊕3
i=1Ki and H =

⊕3
i=1Hi, where K3 =

H3 = C. An element X ∈ B(K) can be represented as a matrix X = (Xij)i,j=1,2,3, where
Xij ∈ B(Kj, Ki). In particular Xi3 ∈ B(C, Ki) = Ki, X3j ∈ B(Kj,C) = K∗

j , i, j = 1, 2,
and X33 ∈ C. We consider a map ϕ : B(K) → B(H), which is of the form

ϕ(X) =

 ϕ1(X11) + ω2(X22)E1 0 B1X13 + C1X
t
31

0 ϕ2(X22) + ω1(X11)E2 B2X23 + C2X
t
32

X31B
∗
1 + X t

13C
∗
1 X32B

∗
2 + X t

23C
∗
2 X33

 ,

where ωi is a positive functional on B(Ki), Bi, Ci ∈ B(Ki, Hi), and Ei ∈ B(Hi) is a
projection onto the range of the operator ϕi(1B(Ki)), i = 1, 2. The map ϕ is called a
merging of ϕ1 and ϕ2 by means of the ingredients ωi, Bi, Ci.

We examine properties of the above operation. In particular, we provide conditions
on the ingredients ωi, Bi, Ci which guarantee positivity of the map ϕ. It turns out that
positivity of ϕ implies ϕi + χi ≤ ϕi, i = 1, 2, where ϕi, χi : B(Ki) → B(Hi) are defined by

ϕi(X) = BiXB∗
i , χi(X) = CiX

tC∗
i , X ∈ B(Ki).

Further, using results of [1] we show that for any pair of maps ϕ1, ϕ2 such that ϕ1 is
2-positive and ϕ2 is 2-copositive, there are ingredients such that the merging by means of
them is a nondecomposable map.

Next, we present some examples. The first one is the map ϕ : M3(C) → M3(C)

ϕ

 x11 x12 x13

x21 x22 x23

x31 x32 x33

 =

 1
2
(x11 + x22) 0 1√

2
x13

0 1
2
(x11 + x22)

1√
2
x32

1√
2
x31

1√
2
x23 x33


described by Miller and Olkiewicz [4].

We provide a high dimensional generalization of the above map. Namely, we consider
merging of maps

ϕ1(X) = A1XA∗
1, X ∈ B(K1), ϕ2(X) = A2XA∗

2, X ∈ B(K2),

for some Ai ∈ B(Ki, Hi), i = 1, 2. It was shown in [2] that these maps are exposed. The
suitable ingredients are

B1 = A1, B2 = 0, C1 = 0, C2 = A2, ω1(X) = Tr(A1XA∗
1), ω2(X) = Tr(A2X

tA∗
2).

It turns out that this generalization provides an example of exposed positive map.
We also describe a generalization of the optimal map described in [5] and show that it

is also an optimal map.
Next, we consider a class of maps acting on M3 into itself which are of the form

ϕ

 x11 x12 x13

x21 x22 x23

x31 x32 x33

 =

 f1x11 + w2x22 0 b1x13 + c1x31

0 f2x22 + w1x11 b2x23 + c2x32

b1x31 + c1x13 b2x32 + c2x23 x33
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We characterize all maps among them which are positive. We provide also conditions for
extremality as well as for optimality and nondecomposability.

Finally, we discuss some applications of the maps described above to detection of entan-
glement of states.
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• Jun Ichi Fujii ( Osaka Kyoiku Univ.)
Title: Introduction to TQC theory and spin networks
Abstract:

The TQC theory was known mainly by the issue in the Scientific American 2006 April.
The term ‘TQC’ means the topological quantum computation, which is one of re-
markable theories supported by the Microsoft to realize quantum computers. This theory
is related to various field; theory of quantum groups, Lie algebras, Hopf algebras and con-
formal field or string theory. It is discussed basically in a modular tensor category where
the modularity is the invertibility of S matrix expressed by the following Hopf link:

S

0

0

ā a b b̄

V0

V0 ⊗ V0

V ∗
a ⊗ Va ⊗ Vb ⊗ V ∗

b

V ∗
a ⊗ Vb ⊗ Va ⊗ V ∗

b

V ∗
a ⊗ Va ⊗ Vb ⊗ V ∗

b

V0 ⊗ V0

V0

The leading concept is ‘anyon’ with its fusion or splitting. In the quantum particles, the
Boson or the Fermion is discussed in the symmetric or anti-symmetric tensor products;
|y⟩⊗|x⟩ ∼ |x⟩⊗|y⟩ or |y⟩⊗|x⟩ ∼ −|x⟩⊗|y⟩ respectively. Recently in the special situations,
other types of particles (quasi-particles) like Majorana Fermions are considered: abelian
anyon; |y⟩ ⊗ |x⟩ ∼ eit|x⟩ ⊗ |y⟩ or non-abelian anyon; |y⟩ ⊗ |x⟩ ∼ eiH(|x⟩ ⊗ |y⟩). TQC
theory is based on non-abelian anyons. In this talk, we introduce this theory and its simple
model ‘the spin networks’.

Let F be a finite set of (quasi-)particles closed in fusion actions. We assume that it is
dual (a ∈ F ⇒ ā ∈ F , where ā is anti-particle of a) and contains the vacuum one 0. As
for the fusion rule, for the non-negative integer N c

ab for a, b, c ∈ F ,

a⊗ b →
∑
x∈F

Nx
abx, N c

ab = N c
ba, N b

a0 = δa,b

where the sum means all possibility of changing of a⊗ b.
Fibonacci anyon gives a simple example: F = {0, τ = τ̄}, τ = 0 + τ . Thus τ is non-

abelian anyon by
∑

xN
x
ττ = 2 > 1. Reflecting this difference of states, the fusion trees

(corresponding to conformal blocks) define the base state vectors:

|0⟩=
τ

τ

ττ

0 |1⟩=
τ

τ

ττ

τ |N⟩=
τ

0

ττ

τ

The third one is essentially the vacuum and then is the identity element, so that we can
neglect it. The particle braiding (R matrix) yields the braiding of vectors, which is called B
matrices. There is a non-diagonal B matrix which is why it is called ‘non-abelian’. Another
important matrix is F; particle flipping (or recoupling). These matrices are obtained by the
categorical rules (MacLane coherence theorem); F matrix is obtained by the pentagon rule
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and R matrix is by the hexagon one. Based on these, B matrices can construct quantum
gates approximately, which is the topological quantum computing.

TQC theory has a skein expression. A typical difference between the knot theory and
TQC is the toplogical spin. In the knot theory, it is nothing but a straight line via the
Reidemeiater move, but in TQC, the nontrivial phase θ appears. Thus the TQC theory
fits the bracket polynomials rather than the Jones ones.

Other outstanding property of TQC is the ribbon expression. The modular tensor
category in TQC is also a ribbon category, so that some formulae are easily obtained by
this expression.

In the last half of this talk, we introduce spin networks based on the Jones-Wenzl
projections and the Temperly-Lieb algebra, which is one of the simple model of TQC. The
difference of particle is based on the question ‘How many lines does each line in the skein
diagram consist of?’: The admissible 3-valent graph has the following expression (where
the box stands the Jones-Wenzl projection):

3

→4 5

The evaluations for θ-net and the tetrahedron net are important in the spin networks.
These evaluations are complicated but they yield those of 6-j symbols which is equivalent
to F matrix. By the transformation from spin networks to TQC, we also obtain an F
matrix formula in TQC.
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• Miklós Pálfia ( Sungkyunkwan Univ. and Hungarian Academy of Sciences, Hungary)
Title: LOEWNER’S THEOREM IN SEVERAL VARIABLES
Abstract:

We provide characterizations of operator monotone and concave func- tions in several
operator variables using LMIs and the theory of matrix convex sets. This completes the
work of Agler-McCarthy-Young [2] providing characterizations restricted for commutative
tuples of oper- ators, hence to the several real variable situation, the work of Helton-
McCullough-Vinnikov [6] characterizing free rational - thus already analytic - several vari-
able matrix convex functions and the work of Pascoe-Tully-Doyle [15] characterizing free
analytic matrix monotone functions in several variables.

For a free operator concave function we define its hypograph as the downward saturation
of its graph with respect to the positive definite order. Then operator concavity of a free
function is characterized by the matrix convexity of its hypograph. Given a closed matrix
con- vex hypograph as a subset of a Cartesian product of the linear space of bounded linear
operators, one can find its supporting linear functionals and represent them as linear pencils
of operators on the tensor product of the linear space with its dual space. Then the linear
pencil defines a linear matrix inequality (LMI) such that its extremal solution coin- cides
with the value of the operator concave function. We establish an explicit solution formula
for the extremal solutions of this LMI using the Schur complement. This LMI solution
technique alone seems to have further applications to the general theory, in particular
analytic rigidity, of matrix convex sets and LMIs.

The above approach leads to the extension of Loewner’s classical representation theorem
of operator concave and operator monotone functions from 1934, into the non-commutative
several variable situa- tion. Our theorem states that a free function defined on a k-variable
free self-adjoint domain is operator monotone if and only if it has a free analytic continu-
ation to the upper operator poly-halfspace Pik := {X2B(E)k : FXi > 0, 1 ≤ i ≤ k} for
any Hilbert space E, mapping Πk to Π. This approach also provides a new proof to the
one-variable case of Loewner’s theorem.
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• Yongdo Lim (Sungkyunkwan Univ. )
Title: Ando-Hiai inequality for probability measures
Abstract:

We establish an order inequality of probability measures on partially ordered symmetric
spaces of non-compact type, namely symmetric cones (self-dual homogeneous cones), char-
acterizing the Cartan barycenter among other invariant and contractive barycenters. The
derived inequality and partially ordered structures on the probability measure space lead
also to significant results on inequalities including the Ando-Hiai inequality for probability
measures on symmetric cones.
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• Rajarama Bhat (Indian Statistical Institute, Bangalore)
Title: Bures distance for completely positive maps
Abstract:

D. Bures had defined a metric on the set of normal states on a von Neumann algebra
using GNS representations of states. This notion has been extended to completely positive
maps between C*-algebras by D. Kretschmann, D. Schlingemann and R. F. Werner. They
also explored applications of the notion in quantum information. We present a Hilbert
C*-module version of this theory. We show that we do get a metric when the completely
positive maps under consideration map to a von Neumann algebra. Further, we include
several examples and counter examples. We also prove a rigidity theorem, showing that
representation modules of completely positive maps which are close to the identity map
contain a copy of the original algebra. This is a joint work with K. Sumesh.
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• Wai Shing Tang ( National Univ. of Singapore)
Title: All 2-positive linear maps from M3 to M3 are decomposable.
Abstract:

Following an idea of Choi, we obtain a decomposition theorem for k-positive linear maps
from Mm to Mn, where 2 ≤ k < min{m,n}.

As a consequence, we give an affirmative answer to Kye’s conjecture (also solved inde-
pendently by Choi) that every 2-positive linear map from M3 to M3 is decomposable.

This is joint work with Yu Yang and Denny H. Leung.
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• Hoang Phi Dung (Posts and Telecommunications Institute of Technology, Hanoi, Vietnam)
Title: Some Lojasiewicz inequalities and beyond
Abstract:

In this talk, we give some  Lojasiewicz-type inequalities for continuous definable functions
in an o-minimal structure. We also give a necessary and sufficient condition for which global
error bound exists and the relationship between the Palais-Smale condition and this global
error bound. In beyond, we study some facts related to matrices.

Some  Lojasiewicz inequalities

Let f : Rn → R be a real analytic function with f(0) = 0. Let V := {x ∈ Rn|f(x) = 0}
and K be a compact subset in Rn. Then the (classical)  Lojasiewicz inequality (see [1])
asserts that:

– There exist c > 0, α > 0 such that

(1) |f(x)| ≥ cd(x, V )α for x ∈ K.

Let f : Rn → R be a real analytic function with f(0) = 0 and ∇f(0) = 0. The  Lojasiewicz
gradient inequality (see [1]) asserts that:

– There exist C > 0, ρ ∈ [0, 1) and a neighbourhood U of 0 such that

(2) ∥∇f(x)∥ ≥ C|f(x)|ρ for x ∈ U.

We consider these inequalities in the case of o-minimal structures. Roughly speaking, o-
minimal structures are systems of subsets of Rk, k = 1, 2, . . . and functions on these subsets.
The functions contain polynomials and have geometric properties which are analogous to
polynomials.

Theorem (H. [6] ). Let f : Rn → R be a continuous definable function. Assume that
S := {x ∈ Rn | f(x) ≤ 0} ̸= ∅ and [f(x)]+ := max{f(x), 0}. Then the following two
statements are equivalent

(i) For any sequence xk ∈ Rn \ S, xk → ∞, we have
(i1) if f(xk) → 0 then d(xk, S) → 0;
(i2) if d(xk, S) → ∞ then f(xk) → ∞.

(ii) There exists a function µ : [0,+∞) → R, which is definable, strictly increasing and
continuous on [0,+∞) with µ(0) = 0, lim

t→+∞
µ(t) = +∞, such that

d(x, S) ≤ µ([f(x)]+), ∀x ∈ Rn.

Theorem (H. [6] ). Let f : Rn → R be a continuous definable function in some

o-minimal structure and suppose that K̃(f) ∩ (−ϵ, ϵ) = {0}. Then the following two
statements are equivalent.

(i) For any sequence xk → ∞, mf (xk) → 0 implies f(xk) → 0.
(ii) There exists a function φ : (0, δ) → R, which is definable, monotone and continuous

such that

mf (x) ≥ φ(|f(x)|), ∀x ∈ f−1(Dδ).

where mf (x) is the limiting subdifferential of f .

Let ν(A) is the minimum of the eigenvalues of
√
AA∗.
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Proposition (D. - Toan HM). Let A(x) be a real matrix polynomial (entries aij(x)
are the real polynomials). Then, for x ∼ 0, there exist positive numbers c, l such that

ν(A(x)) ≥ c.dist(x, {ν(A(x)) = 0})l.

Acknowledgments. We would like to thank Prof. Ha Huy Vui for his proposing the problem,
Assoc. Prof. Pham Tien Son for his suggestions and Dr. Dinh Si Tiep for his useful
discussions.
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• Seung-Hyeok Kye ( Seoul National Univ.)
Title: Detecting various kinds of entanglement in multi-qubit systems
Abstract:

We interpret multi-qubit entanglement witnesses as various kinds of positivity of multi-
linear maps and/or linear maps. We apply our results to characterize several kinds of
separability of X-shaped states including Greenberger-Horne-Zeilinger diagonal states.
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• Benoit Collins (Kyoto Univ.)
Title: Positive maps from free probability theory
Abstract:

We interpret the super convergence properties of the free additive convolution semigroup
in terms of Choi matrices, and provide new examples of maps that are positive but not
completely positive. In particular, we show that some of our constructions yield new
examples of indecomposable positive maps and describe some applications to the geometry
of the set of separable states. This is joint work with Patrick Hayden and Ion Nechita.
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• Shigeru Furuichi ( Nihon Univ.)

Title: On some inequalities for symmetric divergence measures

Abstract:

In the paper [1], the tight bounds for symmetric divergence measures are derived by
applying the results established in the paper [2]. In the paper [1], the minimization prob-
lem for Bhattacharyya coefficient, Chernoff information, Jensen-Shannon divergence and
Jeffrey’s divergence under the constraint on total variation distance. In this article, we are
going to report two kinds of extensions for the above results, mainly classical q-extension
and partially noncommutative (quantum) extension. The parametric q-extension means
that Tsallis entropy Hq(X) ≡ −

∑
x p(x)q lnq p(x) [3] converges to Shannon entropy when

q → 1. Namely, all results with the parameter q recover the usual (standard) Shannon’s
results when q → 1. However the non-additivity lnq(xy) = lnq y + (1 − q) lnq x lnq y of

q-logarithmic function defined by lnq(x) ≡ x1−q − 1

1 − q
, (q ̸= 1, x ≥ 0) often disable some

computations, while the case q = 1 goes well. As you know, non-commutative case also
gives us difficulties for the computations due to its non-commutativity.

In my talk, I am going to talk about the lower bound for Jensen-Shannon-Tsallis di-
verence with parameter q is given by applying the results in [2]. In addition, the lower
bound for Jeffrey- Tsallis divergence with parameter q is also given by applying the re-
sults in [2] and deriving q-Pinsker’s inequality for q ≥ 1. This implies new upper bounds
of

∑
u∈U |p(u) − Qd,l(u)| for general probability distribution p(u) and the probability dis-

tribution Qd,l(u) composed by the elements of the terms of the left hand side of Kraft
inequality, with the q parametric extended average code length nq. (However I am not
likely this nq since its form is slightly complicated.) Finally, the lower bound for quantum
Jeffrey divergence is given by applying the monotonicity (data processing inequality) of
quantum f -divergence.

References
[1] I. Sason, Tight Bounds for Symmetric Divergence Measures and a Refined Bound for

Lossless Source Coding, IEEE, TIT, Vol. 61(2015),pp.701–707.
[2] G. L. Gilardoni, On the minimum f-divergence for given total variation, C. R. Acad.

Sci. Paris, Ser. I, Vol.343 (2006), pp.763-760.
[3] C.Tsallis, Possible generalization of Bolzmann-Gibbs statistics, J.Stat. Phys., Vol.52(1988),

pp. 479–487.
[4] I. Csiszár, Information-type measures of difference of probability distributions and

indirect observations, Stud. Sci. Math. Hungarica, Vol. 2(1967), pp. 299–318.
[5] S.Furuichi, K.Yanagi and K.Kuriyama, Fundamental properties of Tsallis relative

entropy, J.Math.Phys., Vol.45(2004), pp.4868–4877.
[6] S.Furuichi, Information theoretical properties of Tsallis entropies, J.Math.Phys.,

Vol.47(2006), 023302.
[7] D.Petz, Quantum information theory and quantum statistics, Springer, 2004.
[8] E.A.Carlen and E.H. Lieb, Remainder terms for some quantum entropy inequalities,

J. Math. Phys., Vol.55 (2014), 042201.



PROGRAM AND ABSTRACT 17

• Yoichi Udagawa ( Tokyo University of Science)

Title: Parameterized operator means and operator monotonicity of exp f(x).

Abstract:

A map M is called an operator mean if the operator M(A;B) satis
es the following four conditions; for positive operators A,B,C,D ≥ 0, 1. A ≤ C and

B ≤ D imply M(A;B) ≤ M(C;D), 2. X(M(A;B))X ≤ M(XAX;XBX) for all self-
adjoint operator X, 3. An ↘ A and Bn ↘ B imply M(An;Bn) ↘ M(A;B) in the strong
topology, 4. M(I; I) = I.

Each operator mean is often identi
ed with its representing function, namely corresponding operator monotone function, by

Kubo-Ando theory.
Recently, we have constructed a 2-parameter family of operator monotone function

{Fr,s(x)}r,s∈[−1,1] by integrating the function Ps,α(x) of the parameter α ∈ [0, 1] ([2]);

Fr,s(x) =

(
r(xr+s − 1)

(r + s)((xs − 1)

) 1
s

(x > 0)

This family interpolates many famous operator monotone functions and has mono-
tonicity for its parameters r, s ∈ [−1, 1]. In this talk, we treat this family as Sp,α(x) =(

p(xα−1)
α(xp−1)

) 1
α−p

. In [1], Nagisa and Wada have obtained an equavalent condition of parame-

ters p and α such that Sp,α(x) is operator monotone. However, their characterization have
not given any concrete range of parameters. Firstly, we extend the range of parameters p
and α such that Sp,α(x) is operator monotone as follows;

Theorem 1.Let

Sp,α(x) =

(
p(xα − 1)

α(xp − 1)

) 1
α−p

(x > 0).

Then Sp,α(x) is operator monotone if (p, α) ∈ A ⊂ R2, where

A = ([−2, 1] × [−1, 2]) ∪ ([−1, 2] × [−2, 1]) ∪ {(p, α) ∈ R2 | α = −p}.

From the above theorem, we regard Sp,α(x) as the representing function of 2-parameter
Stolarsky mean.

On the other hand, it is well known that exp(x) is not an operator mono- tone function,
in contract with its inverse function log x is so. But there exists a function f(x) such that
expff(x)g is an operator monotone function besides constant, like

exp

(
x log x

x− 1
− 1

)
.

Secondly, we give a characterization of such function;
Theorem 2. Let f(x) be a continuous function on (0,∞). If f(x) is not a constant or

log(αx)(α > 0), then the following are equivalent:
(1) exp{f(x)} is an operator monotone function,
(2) f(x) is an operator monotone function, and there exists an analytic con- tinuation

satisfying
0 < ν(r, θ) < θ,
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where
f(reiθ) = u(r, θ) + iν(r, θ)(0 < r, 0 < θ < π).
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• Gen Kimura (Shibaura Institute of Technology)

Title: Information gain and storage in General Probabilistic Theories

Abstract:

We discuss upper bounds on both information gain and storage in general probabilistic
theories (GPTs). Firstly, we introduce a systematic way to construct infinitely many
entropies in GPTs, and as one of its application, we prove that Holevo theorem, which
gives a famous upper bound of quantum accessible information can be generalized to hold
in any GPT. Secondly, we show a general bound on information storage, and point out an
interesting relation between the bound and the geometry of a state space.
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• Fumio Hiai (Tohoku Univ. )

Title: A concise survey of log-majorizations for matrices with applications

Abstract:

This is a tutorial talk about how useful are log-majorizations for matrices to obtain
matrix trace/norm inequalities. For two positive semidefinite n × n matrices A,B, the
weak-majorization A ≺w B and the supermajorization A ≺w B are defined as

k∑
i=1

λi(A) ≤
k∑

i=1

λi(B), 1 ≤ k ≤ n,

k∑
i=1

λn+1−i(A) ≥
k∑

i=1

λn+1−i(B), 1 ≤ k ≤ n,

respectively, where we denote λ1(A) ≥ · · · ≥ λn(A) for the eigenvalues of A in decreasing
order with counting multiplicities. On the other hand, the weak log-majorization A ≺w log B
and the log-supermajorization A ≺w log B are defined as

k∏
i=1

λi(A) ≤
k∏

i=1

λi(B), 1 ≤ k ≤ n,

k∏
i=1

λn+1−i(A) ≥
k∏

i=1

λn+1−i(B), 1 ≤ k ≤ n.

As is well-known, the notion of weak (log-)majorization is closely related to inequalities for
symmetric (or unitarily invariant) norms. For instance, A ≺w log B is equivalent to each of
the following:

– ∥Ap∥(k) ≤ ∥Bp∥(k) for all p > 0 and 1 ≤ k ≤ n, where ∥ · ∥(k) denotes the Ky Fan
k-norm,

– ∥f(A)∥ ≤ ∥f(B)∥ for every continuous non-decreasing function f : [0,∞) → [0,∞)
such that f(ex) is convex on (−∞,∞), and for every unitarily invariant norm ∥ · ∥.

But in my talk I want to stress also that the notion of (log-)supermajorization is very
related to symmetric anti-norms recently developed by Bourin and myself, which is not
yet well written in the literature.

Next, I will survey Araki’s log-majorization

(Aq/2BqAq/2)1/q ≺log (Ap/2BpAp/2)1/p, 0 < q < p,

and the log-majorization of Ando and myself

(Ap #α B
p)1/p ≺log (Aq #α B

q)1/q, 0 < q < p

in connection with the Furuta inequality, where #α denotes the weighted geometric mean
with 0 ≤ α ≤ 1. Finally, I will exemplify the usefulness of log-majorization method in
applications to inequalities between different types of quantum Rényi divergences.
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• Le Cong Trinh (Quy Nhon Univ. )

Title: On the location of eigenvalues of matrix polynomials

Abstract.

Let Cn×n denote the set of all n×n matrices whose entries in C. For a matrix polynomial
we mean the matrix-valued function in one complex variable of the form

P (z) = Amz
m + · · · + A1z + A0,

where Ai ∈ Cn×n for all i = 0, · · · ,m. If Am ̸= 0, P (z) is called a matrix polynomial
of degree m. When Am = I, the identity matrix, the matrix polynomial P (z) is called a
monic.

A number λ ∈ C is called an eigenvalue of the matrix polynomial P (z), if there exists
a nonzero vector x ∈ Cn such that P (λ)x = 0. Then the vector x is called, as usual, an
eigenvector associated to the eigenvalue λ. Note that each finite eigenvalue of P (z) is a
zero of the the characteristic polynomial det(P (z)).

The polynomial eigenvalue problem (PEP) is to find an eigenvalue λ and a non-zero
vector x ∈ Cn such that P (λ) = 0. For m = 1, (PEP) is actually the generalized eigenvalue
problem (GEP)

Ax = λBx,

and, in addition, if A1 = I, we have the standard eigenvalue problem

Ax = λx.

For m = 2 we have the quadratic eigenvalue problem (QEP).
(QEP), and more generally (PEP), plays an important role in applications to science

and engineering. We refer to [9] for a survey on applications of (QEP). Moreover, we
refer to the book of I. Gohberg, P. Lancaster and L. Rodman [4] for a theory of matrix
polynomials.

Computing eigenvalues of matrix polynomials (even computing zeros of univariate poly-
nomials and eigenvalues of scalar matrices) is a hard problem. Therefore, it is useful to
find the location of these eigenvalues. Note that, if Am is singular, then P (z) has an infi-
nite eigenvalue, and if A0 is singular then 0 is an eigenvalue of P (z). Therefore, in order
to find an upper bound and a lower bound for |λ|, we always assume Am and A0 to be
non-singular.

In [5], N.J. Higham and F. Tisseur have given some bounds for eigenvalues of matrix
polynomials based on the norm of their coefficient matrices. Continuing the idea of N.J.
Higham and F. Tisseur, in this talk we establish some other bounds for the module of
eigenvalues of the matrix polynomial P (z), generalize some known results on the location
of zeros of univariate polynomials given in [1, 2, 3, 6, 7, 8], and compare these bounds to
those given by N.J. Higham and F. Tisseur.
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