A concise survey of log-majorizations for matrices with applications to quantum information

Fumio Hiai

Tohoku University

2016, Sep. (at Ritsumeikan Univ.)

Plan

- Log-majorization basics
- Araki's log-majorization
- Ando-Hiai's log-majorization
- The Furuta inequality
- Applications to quantum divergences
- (Log-)supermajorization and anti-norms

Log-majorization basics ${ }^{12} 3$

(Weak) majorization for vectors
Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{R}^{n}$, and let $\left(a_{[1]}, \ldots, a_{[n]}\right)$ be the decreasing rearrangement of \mathbf{a}.

- The weak majorization or submajorization $\mathbf{a}<_{w} \mathbf{b}$ means that

$$
\sum_{i=1}^{k} a_{[i]} \leq \sum_{i=1}^{k} b_{[i]}, \quad 1 \leq k \leq n
$$

- The majorization $\mathbf{a}<\mathbf{b}$ means that $\mathbf{a}<_{w} \mathbf{b}$ and equality holds for $\boldsymbol{k}=\boldsymbol{n}$ in the above.
${ }^{1}$ A.W. Marshall, I. Olkin and B.C. Arnold, Inequalities: Theory of Majorization and Its Applications, Springer, New York, second edition, 2011.
${ }^{2}$ F.H., Log-majorizations and norm inequalities for exponential operators, in Linear Operators, J. Janas, F. H. Szafraniec and J. Zemánek (eds.), Banach Center Publications, Vol. 38, 1997, pp. 119-181.
${ }^{3}$ F.H., Matrix Analysis: Matrix Monotone Functions, Matrix Means, and Majorization, Interdisciplinary Information Sciences 16 (2010), 139-248.

Proposition

- $\mathbf{a}<\mathbf{b}$ iff $\sum_{i=1}^{n} f\left(\boldsymbol{a}_{i}\right) \leq \sum_{i=1}^{n} f\left(\boldsymbol{b}_{i}\right)$ for any convex function f on an interval containing all $\boldsymbol{a}_{i}, \boldsymbol{b}_{i}$.
- a $<_{w} \mathbf{b}$ iff $\sum_{i=1}^{n} f\left(a_{i}\right) \leq \sum_{i=1}^{n} f\left(b_{i}\right)$ for any non-decreasing convex function f on an interval containing all $\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{b}_{\boldsymbol{i}}$.

Proposition

- If $\mathbf{a}<\mathbf{b}$ and \boldsymbol{f} is a convex function on an interval containing all a_{i}, b_{i}, then $f(\mathbf{a})<_{w} f(\mathbf{b})$, where $f(\mathbf{a}):=\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)$.
- If $\mathbf{a}<_{w} \mathbf{b}$ and f is a non-decreasing convex function on an interval containing all a_{i}, b_{i}, then $f(\mathbf{a})<_{w} f(\mathbf{b})$.
(Weak) log-majorization for non-negative vectors
Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{\boldsymbol{n}}$ and $\mathbf{a}, \mathbf{b} \geq \mathbf{0}$.
- The weak log-majorization or log-submajorization $\mathbf{a} \prec_{w \log } \mathbf{b}$ means that

$$
\prod_{i=1}^{k} a_{[i]} \leq \prod_{i=1}^{k} b_{[i]}, \quad 1 \leq k \leq n
$$

- The log-majorization $\mathbf{a}<_{\log } \mathbf{b}$ means that $\mathbf{a}<_{w \log } \mathbf{b}$ and equality holds for $\boldsymbol{k}=\boldsymbol{n}$ in the above.

Note
When $\mathbf{a}, \mathbf{b}>\mathbf{0}$,

$$
\begin{aligned}
\mathbf{a}<_{\log } \mathbf{b} & \Longleftrightarrow \log \mathbf{a}<\log \mathbf{b} \\
\mathbf{a}<_{w \log } \mathbf{b} & \Longleftrightarrow \log \mathbf{a}<_{w} \log \mathbf{b}
\end{aligned}
$$

where $\log \mathrm{a}:=\left(\log a_{1}, \ldots, \log a_{n}\right)$.

Proposition

Let $\mathbf{a}, \mathbf{b} \geq \mathbf{0}$ in \mathbb{R}^{n}, and assume that $\mathbf{a}<_{w \log } \mathbf{b}$. If \boldsymbol{f} is a continuous non-decreasing function on $[0, \infty)$ such that $f\left(e^{x}\right)$ is convex, then $f(\mathbf{a}) \prec_{w} f(\mathbf{b})$.

Therefore,

$$
\mathbf{a}<_{w \log } \mathbf{b} \Rightarrow \mathbf{a}<_{w} \mathbf{b} \Rightarrow \sum_{i=1}^{n} f\left(a_{i}\right) \leq \sum_{i=1}^{n} f\left(b_{i}\right)
$$

for f as above.

Let $\mathbb{M}_{n}^{s a}$ denote the set of all Hermitian $\boldsymbol{n} \times \boldsymbol{n}$ matrices, and \mathbb{M}_{n}^{+}the set of all positive semidefinite $\boldsymbol{n} \times \boldsymbol{n}$ matrices.

- For $\boldsymbol{A} \in \mathbb{M}_{n}^{s a}$ write

$$
\lambda(A)=\left(\lambda_{1}(A), \ldots, \lambda_{n}(A)\right)
$$

for the eigenvalues of \boldsymbol{A} in decreasing order with counting multiplicities.

- For $\boldsymbol{X} \in \mathbb{M}_{n}$ write

$$
s(X)=\left(s_{1}(X), \ldots, s_{n}(X)\right)
$$

for the singular values of X (i.e., the eigenvalues of $\left.|X|:=\left(X^{*} X\right)^{1 / 2}\right)$ in decreasing order with multiplicities.
(Weak) (log-)majorization for matrices

- For $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{M}_{n}^{\text {sa }}$ we write $\boldsymbol{A}<\boldsymbol{B}$ (resp., $\left.\boldsymbol{A} \prec_{w} \boldsymbol{B}\right)$ if $\lambda(\boldsymbol{A})<\lambda(\boldsymbol{B})$ (resp., $\lambda(\boldsymbol{A})<_{w} \lambda(\boldsymbol{B})$).
- For $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{M}_{n}^{+}$we write $\boldsymbol{A} \prec_{\log } \boldsymbol{B}$ (resp., $\boldsymbol{A} \prec_{w} \log \boldsymbol{B}$) if $\lambda(A) \prec_{\log } \lambda(B)\left(\right.$ resp., $\left.\lambda(A) \prec_{w \log } \lambda(B)\right)$.
Unitarily invariant norms
A norm \|| \| on $\mathbb{M}_{\boldsymbol{n}}$ is said to be unitarily invariant (or symmetric) if

$$
\|U X V\|=\|X\|
$$

for all $\boldsymbol{X} \in \mathbb{M}_{\boldsymbol{n}}$ and all unitaries $\boldsymbol{U}, \boldsymbol{V} \in \mathbb{M}_{\boldsymbol{n}}$. E.g.,

- for $\mathbf{1} \leq p \leq \infty$, the Schatten p-norm is

$$
\|X\|_{p}:=\left(\operatorname{Tr}|X|^{p}\right)^{1 / p}=\left(\sum_{i=1}^{n} s_{i}^{p}(X)\right)^{1 / p}
$$

- for $\boldsymbol{k}=\mathbf{1}, \ldots, \boldsymbol{n}$ the Ky Fan \boldsymbol{k}-norm is

$$
\|X\|_{(k)}:=\sum_{i=1}^{k} s_{i}(X)
$$

Proposition

Concerning the following conditions for $\boldsymbol{X}, \boldsymbol{Y} \in \mathbb{M}_{n}$, we have
(i) \Longleftrightarrow (ii) \Longleftrightarrow (iii) \Longleftrightarrow (iv) \Longrightarrow (v) \Longleftrightarrow (vi) \Longleftrightarrow (vii).
(i) $|X| \prec_{w \log }|Y|$;
(ii) $\left\||X|^{p}\right\|_{(k)} \leq\left\||Y|^{p}\right\|_{(k)}$ for every $\boldsymbol{k}=\mathbf{1}, \ldots, \boldsymbol{n}$ and every $\boldsymbol{p}>\mathbf{0}$;
(iii) $\|f(|X|)\| \leq\|f(|Y|)\|$ for every symmetric norm \|•\| and every continuous non-decreasing function $f:[0, \infty) \rightarrow[0, \infty)$ such that $f\left(e^{x}\right)$ is convex on \mathbb{R};
(iv) $\operatorname{det} f(|X|) \leq \operatorname{det} f(|Y|)$ for every continuous non-decreasing function $f:[0, \infty) \rightarrow[0, \infty)$ such that $\log f\left(e^{x}\right)$ is convex on \mathbb{R};
(v) $|\boldsymbol{X}|<_{w}|\boldsymbol{Y}|$, i.e., $\|X\|_{(k)} \leq\|Y\|_{(k)}$ for every $\boldsymbol{k}=\mathbf{1}, \ldots, \boldsymbol{n}$;
(vi) $\|X\| \leq\|Y\|$ for every symmetric norm \| $\|\|$;
(vii) $\|f(|X|)\| \leq\|f(|Y|)\|$ for every symmetric norm \| $\cdot \|$ and every non-decreasing convex function $f:[0, \infty) \rightarrow[0, \infty)$.

Useful variational formulas

- For $\boldsymbol{A} \in \mathbb{M}_{n}^{\text {sa }}$ and $\mathbf{1} \leq \boldsymbol{k} \leq \boldsymbol{n}$,

$$
\sum_{i=1}^{k} \lambda_{i}(A)=\max \{\operatorname{Tr} A P: P \text { a projection, } \operatorname{dim} P=k\} .
$$

- For $\boldsymbol{X} \in \mathbb{M}_{n}$ and $\mathbf{1} \leq \boldsymbol{k} \leq \boldsymbol{n}$,

$$
\begin{aligned}
\|X\|_{(k)} & =\max \left\{\|X P\|_{1}: P \text { a projection, } \operatorname{dim} P=k\right\} \\
& =\min \left\{\|Y\|_{1}+k\|Z\|_{\infty}: X=Y+Z\right\} .
\end{aligned}
$$

- For $\boldsymbol{A} \in \mathbb{M}_{n}^{+}$and $\mathbf{1} \leq \boldsymbol{k} \leq \boldsymbol{n}$,

$$
\prod_{i=1}^{k} \lambda_{i}(A)=\max \left\{\operatorname{det} V A V^{*}: V V^{*}=I_{k}\right\} .
$$

- For $\boldsymbol{X} \in \mathbb{M}_{n}$ and $\mathbf{1} \leq \boldsymbol{k} \leq \boldsymbol{n}$,

$$
\prod_{i=1}^{k} s_{i}(X)=\max \left\{\left|\operatorname{det} W X V^{*}\right|: V V^{*}=W W^{*}=I_{k}\right\}
$$

Anti-symmetric tensor powers

Let \mathcal{H} be an \boldsymbol{n}-dimensional Hilbert space (e.g., $\boldsymbol{\mathcal { H }}=\mathbb{C}^{n}$), and $1 \leq k \leq n$.

- $\mathcal{H}^{\otimes k}$ is the \boldsymbol{k}-fold tensor product of \mathcal{H}.
- For $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k} \in \mathcal{H}$ define

$$
x_{1} \wedge \cdots \wedge x_{k}:=\frac{1}{\sqrt{k!}} \sum_{\pi \in S_{k}}(\operatorname{sgn} \pi) x_{\pi(\mathbf{1})} \otimes \cdots \otimes x_{\pi(k)} \text { in } \mathcal{H}^{\otimes k}
$$

- The \boldsymbol{k}-fold antisymmetric tensor product $\boldsymbol{H}^{\wedge k}\left(\boldsymbol{\operatorname { d i m }} \mathcal{H}^{\wedge k}=\binom{n}{k}\right)$ is defined as the subspace of $\mathcal{H}^{\otimes k}$ spanned by $\left\{x_{1} \wedge \cdots \wedge x_{k}: x_{i} \in \mathcal{H}\right\}$.
- For every $X \in \mathcal{B}(\mathcal{H})$ the \boldsymbol{k}-fold antisymmetric power $\boldsymbol{X}^{\wedge k}$ is defined by

$$
X^{\wedge k}:=\left.X^{\otimes k}\right|_{\mathcal{H}^{\wedge k}} .
$$

Let $\boldsymbol{A} \in \mathcal{B}(\mathcal{H})^{+}$and $X, Y \in \mathcal{B}(\mathcal{H})$.

Lemma

- $\left(X^{*}\right)^{\wedge k}=\left(X^{\wedge k}\right)^{*}$.
- $(X Y)^{\wedge k}=\left(X^{\wedge k}\right)\left(Y^{\wedge k}\right)$.
- $|X|^{\wedge k}=\left|X^{\wedge k}\right|$.
- $\boldsymbol{A}^{\wedge k} \geq \mathbf{0}$ and $\left(\boldsymbol{A}^{p}\right)^{\wedge k}=\left(\boldsymbol{A}^{p}\right)^{\wedge k}$ for all $\boldsymbol{p} \geq \mathbf{0}$ (for all $\boldsymbol{p} \in \mathbb{R}$ if \boldsymbol{A} is invertible).

Lemma

$$
\begin{align*}
& \prod_{i=1}^{k} \lambda_{i}(A)=\lambda_{1}\left(A^{\wedge k}\right)\left(=\left\|A^{\wedge k}\right\|_{\infty}\right), \\
& \prod_{i=1}^{k} s_{i}(X)=s_{1}\left(X^{\wedge k}\right)\left(=\left\|X^{\wedge k}\right\|_{\infty}\right) .
\end{align*}
$$

Araki's log-majorization

- Golden-Thompson inequality (1965) For $\boldsymbol{H}, \boldsymbol{K} \in \mathbb{M}_{n}^{\text {sa }}$,

$$
\operatorname{Tr} e^{H+K} \leq \operatorname{Tr} e^{H} e^{K} .
$$

- Lieb-Thirring inequality (1976) For $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{M}_{n}^{+}$,

$$
\operatorname{Tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{m} \leq \operatorname{Tr} A^{m / 2} B^{m} A^{m / 2}, \quad m=1,2, \ldots
$$

- Araki's log-majorization (1990) ${ }^{4}$

$$
\begin{array}{ccc}
\left(A^{1 / 2} B A^{1 / 2}\right)^{r}<\log A^{r / 2} B^{r} A^{r / 2}, & r \geq 1, \\
\left(\boldsymbol{A}^{q / 2} \boldsymbol{B}^{q} \boldsymbol{A}^{q / 2}\right)^{1 / q}<_{\log }\left(\boldsymbol{A}^{p / 2} \boldsymbol{B}^{p} A^{p / 2}\right)^{1 / p}, & 0<q<p .
\end{array}
$$

- By the Lie-Trotter formula, for every $\boldsymbol{p}>\mathbf{0}$,

$$
e^{\log A+\log B}<_{\log }\left(A^{p / 2} B^{p} A^{p / 2}\right)^{1 / p}, \quad e^{H+K}<_{\log }\left(e^{p H / 2} e^{p K} e^{p H / 2}\right)^{1 / p} .
$$

${ }^{4} \mathrm{H}$. Araki, On an inequality of Lieb and Thirring, Lett. Math. Phys. 19 (1990), 167-170.

Proof of Araki's log-majorization We may assume that $\boldsymbol{A}, \boldsymbol{B}$ are invertible. First, show that

$$
\begin{equation*}
\left\|\left(A^{1 / 2} B A^{1 / 2}\right)^{r}\right\|_{\infty} \leq\left\|A^{r / 2} \boldsymbol{B}^{r} A^{r / 2}\right\|_{\infty}, \quad r \geq 1 . \tag{*}
\end{equation*}
$$

For this, it suffices to show that

$$
A^{r / 2} B^{r} A^{r / 2} \leq I \quad \Rightarrow \quad A^{1 / 2} B A^{1 / 2} \leq I,
$$

equivalently, $\boldsymbol{B}^{r} \leq \boldsymbol{A}^{-r} \Longrightarrow \boldsymbol{B} \leq \boldsymbol{A}^{-1}$. But this is just the Löwner-Heinz inequality. Next, apply (*) to $\boldsymbol{A}^{\wedge k}, \boldsymbol{B}^{\wedge k}$. Since

$$
\begin{aligned}
\left(\left(A^{1 / 2} B A^{1 / 2}\right)^{r}\right)^{\wedge k} & =\left(\left(A^{\wedge k}\right)^{1 / 2}\left(B^{\wedge k}\right)\left(A^{\wedge k}\right)^{1 / 2}\right)^{r}, \\
\left(A^{r / 2} B^{r} A^{r / 2}\right)^{\wedge k} & =\left(A^{\wedge k}\right)^{r / 2}\left(B^{\wedge k}\right)^{r}\left(A^{\wedge k}\right)^{r / 2},
\end{aligned}
$$

we have $\left\|\left(\left(\boldsymbol{A}^{1 / 2} \boldsymbol{B} \boldsymbol{A}^{1 / 2}\right)^{r}\right)^{\wedge k}\right\|_{\infty} \leq\left\|\left(\boldsymbol{A}^{r / 2} \boldsymbol{B}^{r} \boldsymbol{A}^{r / 2}\right)^{\wedge k}\right\|_{\infty}$, which implies by (\oplus) that

$$
\prod_{i=1}^{k} \lambda_{i}\left(\left(\boldsymbol{A}^{1 / 2} \boldsymbol{B} \boldsymbol{A}^{1 / 2}\right)^{r}\right) \leq \prod_{i=1}^{k} \lambda_{i}\left(\boldsymbol{A}^{r / 2} \boldsymbol{B}^{r} \boldsymbol{A}^{r / 2}\right)
$$

Operator means

- Associated with an operator monotone function $\boldsymbol{f} \geq \mathbf{0}$ on $\left[\mathbf{0}, \infty\right.$) with $\boldsymbol{f}(\mathbf{1})=\mathbf{1}$, the operator mean σ_{f} (in the sense of Kubo-Ando, 1980) is defined by

$$
A \sigma_{f} B:=A^{1 / 2} f\left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2}
$$

for $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{M}_{\boldsymbol{n}}^{+}$with $\boldsymbol{A}>\mathbf{0}$, and is extended to general $A, B \in \mathbb{M}_{n}^{+}$as

$$
A \sigma_{f} B:=\lim _{\varepsilon \searrow 0}(A+\varepsilon I) \sigma_{f}(B+\varepsilon I)
$$

- In particular, for $\mathbf{0} \leq \alpha \leq 1$, associated with $f(x)=\boldsymbol{x}^{\alpha}$,

$$
A \#_{\alpha} B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{\alpha} A^{1 / 2}
$$

is the weighted geometric mean. The geometric mean \# $=\#_{1 / 2}$ was first introduced by Pusz-Woronowicz, 1975.

Ando-Hiai's log majorization

- Complementary Golden-Thompson inequality $(1993)^{5}$ For $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{M}_{n}^{+}$and $\mathbf{0} \leq \alpha \leq \mathbf{1}$,
$\operatorname{Tr}\left(A^{p} \#_{\alpha} B^{p}\right)^{1 / p} \leq \operatorname{Tr} \exp \{(1-\alpha) \log A+\alpha \log B\}, \quad p>0$.
- Ando-H's log-majorization (1994) ${ }^{6}$

$$
\begin{array}{cc}
A^{r} \#_{\alpha} \boldsymbol{B}^{r}<_{\log }\left(\boldsymbol{A} \#_{\alpha} B\right)^{r}, & r \geq 1, \\
\left(\boldsymbol{A}^{p} \#_{\alpha} B^{p}\right)^{1 / p}<_{\log }\left(\boldsymbol{A}^{q} \#_{\alpha} B^{q}\right)^{1 / q}, & 0<q<p .
\end{array}
$$

- By the Lie-Trotter formula, for every $\boldsymbol{p}>\mathbf{0}$,

$$
\left(A^{p} \#_{\alpha} B^{p}\right)^{1 / p}<\log e^{(1-\alpha) \log A+\alpha \log B}, \quad\left(e^{p H} \#_{\alpha} e^{p K}\right)^{1 / p}<\log e^{(1-\alpha) H+\alpha K} .
$$

[^0]Proof of Ando-H's log-majorization
By continuity we may assume that $\boldsymbol{A}, \boldsymbol{B}$ are invertible. Since

$$
\left(\boldsymbol{A}^{r} \#_{\alpha} \boldsymbol{B}^{r}\right)^{\wedge k}=\left(\boldsymbol{A}^{\wedge k}\right)^{r} \#_{\alpha}\left(\boldsymbol{B}^{\wedge k}\right)^{r}, \quad\left(\left(\boldsymbol{A} \#_{\alpha} B\right)^{r}\right)^{\wedge k}=\left(\left(\boldsymbol{A}^{\wedge k}\right) \#_{\alpha}\left(\boldsymbol{B}^{\wedge k}\right)\right)^{r},
$$

it suffices to show that

$$
\left\|A^{r} \#_{\alpha} B^{r}\right\|_{\infty} \leq\left\|\left(A \#_{\alpha} B\right)^{r}\right\|_{\infty}, \quad r \geq 1
$$

equivalently,

$$
A \#_{\alpha} B \leq I \quad \Longrightarrow \quad A^{r} \#_{\alpha} B^{r} \leq I .
$$

When $1 \leq r \leq 2$, write $r=2-\varepsilon$ with $0 \leq \varepsilon \leq 1$, and let $\boldsymbol{C}:=\boldsymbol{A}^{-1 / 2} \boldsymbol{B} A^{-1 / 2}$ so that $\boldsymbol{A} \#_{\alpha} \boldsymbol{B} \leq \boldsymbol{I}$ implies $\boldsymbol{C}^{\alpha} \leq \boldsymbol{A}^{-1}$ or $\boldsymbol{A} \leq \boldsymbol{C}^{-\alpha}$, so $A^{1-\varepsilon} \leq C^{-\alpha(1-\varepsilon)}$. We have

$$
\begin{aligned}
A^{r} \#_{\alpha} B^{r} & =A^{1-\frac{\varepsilon}{2}}\left\{A^{-1+\frac{\varepsilon}{2}} B \cdot B^{-\varepsilon} \cdot B A^{-1+\frac{\varepsilon}{2}}\right\}^{\alpha} A^{1-\frac{\varepsilon}{2}} \\
& =A^{1-\frac{\varepsilon}{2}}\left\{A^{-\frac{1-\varepsilon}{2}} C A^{1 / 2}\left(A^{-1 / 2} C^{-1} A^{-1 / 2}\right)^{\varepsilon} A^{1 / 2} C A^{-\frac{1-\varepsilon}{2}}\right\}^{\alpha} A^{1-\frac{\varepsilon}{2}} \\
& =A^{1 / 2}\left\{A^{1-\varepsilon} \#_{\alpha}\left[C\left(A \#_{\varepsilon} C^{-1}\right) C\right]\right\} A^{1 / 2} \\
& \leq A^{1 / 2}\left\{C^{-\alpha(1-\varepsilon)} \#_{\alpha}\left[C\left(C^{-\alpha} \#_{\varepsilon} C^{-1}\right) C\right]\right\} A^{1 / 2} \\
& =A^{1 / 2} C^{\alpha} A^{1 / 2}=A \#_{\alpha} B \leq I .
\end{aligned}
$$

When $r>2$, write $r=2^{m} s$ with $\mathbf{1} \leq s \leq 2$. Repeating use of the above case gives

$$
\begin{aligned}
A^{r} \#_{\alpha} B^{r} & \prec_{w \log }\left(A^{2^{m-1} s} \#_{\alpha} B^{2^{m-1} s}\right)^{2} \prec_{w \log } \cdots \\
& \prec_{w \log }\left(A^{s} \#_{\alpha} B^{s}\right)^{2^{m}} \prec_{w \log }\left(A \#_{\alpha} B\right)^{r} .
\end{aligned}
$$

The Furuta inequality

- The Furuta inequality (1987) Let $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{M}_{n}^{+}$. For $\boldsymbol{r}, \boldsymbol{p} \geq \mathbf{0}$ and $q \geq 1$ with $(1+r) q \geq p+r$,

$$
\boldsymbol{A} \geq \boldsymbol{B} \geq \mathbf{0} \quad \Longrightarrow \quad\left(\boldsymbol{A}^{\frac{r}{2}} \boldsymbol{B}^{p} \boldsymbol{A}^{\frac{r}{2}}\right)^{\frac{1}{q}} \leq A^{\frac{p+r}{q}}
$$

- The critical case is when $q=\frac{p+r}{1+r}$, i.e.,

$$
\boldsymbol{A} \geq \boldsymbol{B} \geq \mathbf{0} \Rightarrow\left(\boldsymbol{A}^{\frac{r}{2}} \boldsymbol{B}^{p} A^{\frac{r}{2}}\right)^{\frac{1+r}{p+r}} \leq \boldsymbol{A}^{1+r} \quad \text { or } \quad A^{-r} \#_{\frac{1+r}{p+r}} \boldsymbol{B}^{p} \leq \boldsymbol{A}
$$

for $p \geq \mathbf{1}$ and $r \geq \mathbf{0}$.

- Fujii-Kamei $(2006)^{7}$ showed that Ando-H's inequality implies the Furuta inequality and vice versa.
${ }^{7}$ M. Fujii and E. Kamei, Ando-Hiai inequality and Furuta inequality, Linear Algebra Appl. 416 (2006), 541-545.

Proof of Ando-H \Rightarrow Furuta

Assume that $\boldsymbol{p} \geq \mathbf{1}, \boldsymbol{r} \geq \mathbf{0}$, and $\boldsymbol{A} \geq \boldsymbol{B}>\mathbf{0}$. When $\mathbf{0} \leq r \leq \mathbf{1}$, since $A^{-r} \leq B^{-r}$,

$$
\boldsymbol{B}^{p} \#_{\frac{p}{p+r}} \boldsymbol{A}^{-r} \leq \boldsymbol{B}^{p} \#_{\frac{p}{p+r}} \boldsymbol{B}^{-r}=I .
$$

When $r \geq 1$,

$$
B^{\frac{p}{r}} \#_{\frac{p}{p+r}} A^{-1} \leq B^{\frac{p}{r}} \#_{\frac{p}{p+r}} B^{-1}=I
$$

so Ando-H implies that $\boldsymbol{B}^{p} \#_{\frac{p}{p+r}} \boldsymbol{A}^{-r} \leq \boldsymbol{I}$. We then have

$$
\begin{aligned}
\boldsymbol{A}^{-r} \#_{\frac{1+r}{p+r}} \boldsymbol{B}^{p} & =\boldsymbol{B}^{p} \#_{\frac{p-1}{p-r}} \boldsymbol{A}^{-r}=\boldsymbol{B}^{p} \#_{\frac{p-1}{p}}\left(\boldsymbol{B}^{p} \#_{\frac{p}{p+r}} \boldsymbol{A}^{-r}\right) \\
& \leq \boldsymbol{B}^{p} \#_{\frac{p-1}{p}} \boldsymbol{I}=\boldsymbol{B} \leq \boldsymbol{A},
\end{aligned}
$$

since $\boldsymbol{C} \#_{\alpha} \boldsymbol{D}=\boldsymbol{D} \#_{1-\alpha} \boldsymbol{C}$ and $\boldsymbol{C} \#_{\alpha \beta} \boldsymbol{D}=\boldsymbol{C} \#_{\alpha}\left(\boldsymbol{C} \#_{\beta} \boldsymbol{D}\right)$.

The Furuta inequality with negative powers: Tanahashi (1999) ${ }^{8}$ Let $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{M}_{n}^{+}$with $\boldsymbol{A}>\mathbf{0}$. Assume that $\mathbf{0}<\boldsymbol{p} \leq \mathbf{1}, \mathbf{- 1} \leq r<\mathbf{0}$, and either

$$
\frac{1}{2} \leq q \leq 1, \quad-r(1-q) \leq p \leq q-r(1-q)
$$

or

$$
\begin{aligned}
& 0<q<\frac{1}{2}, \quad-r(1-q) \leq p \leq q-r(1-q), \\
& \frac{-r(1-q)-q}{1-2 q} \leq p \leq \frac{-r(1-q)}{1-2 q} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\boldsymbol{A} \geq \boldsymbol{B} \geq \mathbf{0} \Rightarrow & \left(\boldsymbol{A}^{\frac{r}{2}} \boldsymbol{B}^{\boldsymbol{p}} \boldsymbol{A}^{\frac{r}{2}}\right)^{\frac{1}{q}} \leq \boldsymbol{A}^{\frac{p+r}{q}}, \text { hence, } \\
& \left(\boldsymbol{A}^{\frac{r}{2}} \boldsymbol{B}^{p} \boldsymbol{A}^{\frac{r}{2}}\right)^{\frac{1}{q^{\prime}}} \leq \boldsymbol{A}^{\frac{p+r}{q^{\prime}}} \text { for every } \boldsymbol{q}^{\prime} \geq \boldsymbol{q} .
\end{aligned}
$$

${ }^{8}$ K. Tanahashi, The Furuta inequality with negative powers, Proc. Amer. Math. Soc. 127 (1999), 1683-1692.

Various Rényi divergences

For $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{M}_{n}^{+}$with $\boldsymbol{B}>\mathbf{0}$ and for $\alpha, z>\mathbf{0}$, define

- $P_{\alpha}(A, B):=B^{1 / 2}\left(B^{-1 / 2} A B^{-1 / 2}\right)^{\alpha} B^{1 / 2}$.
- $Q_{\alpha, z}(A, B):=\left(B^{\frac{1-\alpha}{2 z}} A^{\frac{\alpha}{z}} B^{\frac{1-\alpha}{2 z}}\right)^{z}$.

Note $\quad \boldsymbol{P}_{\boldsymbol{\alpha}}$ is the operator perspective for \boldsymbol{x}^{α}, whose general theory has recently been developed by Effros, Hansen, and others.
$\boldsymbol{P}_{\alpha}(\boldsymbol{A}, \boldsymbol{B})=\boldsymbol{B} \#_{\alpha} \boldsymbol{A}$ when $\mathbf{0} \leq \alpha \leq \mathbf{1}$.
For $\alpha, z>\mathbf{0}$ with $\alpha \neq \mathbf{1}$,

- The (conventional) Rényi divergence is

$$
D_{\alpha}(A \| B):=\frac{1}{\alpha-1} \log \operatorname{Tr} A^{\alpha} B^{1-\alpha}=\frac{1}{\alpha-1} \log \operatorname{Tr} Q_{\alpha, 1}(A, B)
$$

- The sandwiched Rényi divergence ${ }^{9}$ is

$$
D_{\alpha}^{*}(A \| B):=\frac{1}{\alpha-1} \log \operatorname{Tr}\left(B^{\frac{1-\alpha}{2 \alpha}} A B^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha}=\frac{1}{\alpha-1} \log \operatorname{Tr} Q_{\alpha, \alpha}(A, B) .
$$

- The α - z-Rényi divergence ${ }^{10{ }^{11}}$ is

$$
D_{\alpha, z}(A \| B):=\frac{1}{\alpha-1} \log \operatorname{Tr}\left(B^{\frac{1-\alpha}{2 z}} A^{\frac{\alpha}{z}} B^{\frac{1-\alpha}{2 z}}\right)^{z}=\frac{1}{\alpha-1} \log \operatorname{Tr} Q_{\alpha, z}(A, B) .
$$

${ }^{9}$ M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr and M. Tomamichel, On quantum Rényi entropies: A new generalization and some properties, J. Math. Phys. 54 (2013), 122203.
${ }^{10}$ V. Jaksic, Y. Ogata, Y. Pautrat and C.-A. Pillet, Entropic fluctuations in quantum statistical mechanics. An Introduction, in: Quantum Theory from Small to Large Scales, August 2010, in: Lecture Notes of the Les Houches Summer School, vol. 95, Oxford University Press, 2012.
${ }^{11}$ K.M.R. Audenaert and N. Datta, $\alpha-z$-Rényi relative entropies, J. Math. Phys. 56 (2015), 022202.

- The "maximal" α-Rényi divergence ${ }^{12}$ is

$$
\begin{aligned}
\widehat{D}_{\alpha}(A \| B): & =\frac{1}{\alpha-1} \log \operatorname{Tr} B^{1 / 2}\left(B^{-1 / 2} A B^{-1 / 2}\right)^{\alpha} B^{1 / 2} \\
& =\frac{1}{\alpha-1} \log \operatorname{Tr} P_{\alpha}(A, B)
\end{aligned}
$$

Note

- $D_{\alpha}=D_{\alpha, 1}, D_{\alpha}^{*}=D_{\alpha, \alpha}$.
- $D_{\alpha}=D_{\alpha}^{*}=D_{\alpha, z}=\widehat{\boldsymbol{D}}_{\alpha}$ if $\boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A}$.
- When $\operatorname{Tr} \boldsymbol{A}=\mathbf{1}$, the Umegaki relative entropy is
$\lim _{\alpha \rightarrow 1} D_{\alpha}(A \| B)=\lim _{\alpha \rightarrow 1} D_{\alpha}^{*}(A \| B)=D(A \| B):=\operatorname{Tr} A(\log A-\log B)$,
and the Belavkin-Staszewski relative entropy is

$$
\lim _{\alpha \rightarrow 1} \widehat{D}_{\alpha}(A \| B)=D_{\mathrm{BS}}(A \| B):=\operatorname{Tr} A \log \left(A^{1 / 2} B^{-1} A^{1 / 2}\right)
$$

${ }^{12} \mathrm{~A}$ special case of K . Matsumoto, A new quantum version of f-divergence, arXiv:1311.4722.

Applications to Rényi divergences

- When $z>z^{\prime}>\mathbf{0}$, by Araki's log-majorization,

$$
Q_{\alpha, z}(A, B)<_{\log } Q_{\alpha, z^{\prime}}(A, B),
$$

and hence

$$
\begin{array}{ll}
D_{\alpha, z}(A \| B) \leq D_{\alpha, z^{\prime}}(A \| B) & \text { for } \alpha>\mathbf{1}, \\
D_{\alpha, z}(A \| B) \geq D_{\alpha, z^{\prime}}(A \| B) & \text { for } 0<\alpha<\mathbf{1} .
\end{array}
$$

In particular, $\boldsymbol{D}_{\alpha}^{*}(\boldsymbol{A} \| \boldsymbol{B}) \leq \boldsymbol{D}_{\alpha}(\boldsymbol{A} \| \boldsymbol{B})$ for all $\alpha>\mathbf{0}$ with $\alpha \neq \mathbf{1}$.

- For $\mathbf{0}<\alpha \leq \mathbf{1}$ and $z>\mathbf{0}$, by Araki's and Ando-H's log-majorizations together,

$$
P_{\alpha}(A, B)=B \#_{\alpha} A<_{\log } Q_{\alpha, z}(A, B),
$$

and hence $\boldsymbol{D}_{\alpha, z}(\boldsymbol{A} \| \boldsymbol{B}) \leq \widehat{\boldsymbol{D}}_{\alpha}(\boldsymbol{A} \| \boldsymbol{B})$ for $\mathbf{0}<\alpha<\mathbf{1}$ and $z>\mathbf{0}$.

When $\alpha \geq 1$, we have

Proposition

- If $\alpha \geq \mathbf{1}$ and $0<z \leq \min \{\alpha / 2, \alpha-1\}$, then

$$
P_{\alpha}(A, B)<_{\log } Q_{\alpha, z}(A, B)
$$

- If $\alpha \geq \mathbf{1}$ and $z \geq \max \{\alpha / 2, \alpha-1\}$, then

$$
Q_{\alpha, z}(A, B)<_{\log } P_{\alpha}(A, B) .
$$

Proof The case $\alpha=\mathbf{1}$ is trivial. Assume that $\alpha>\mathbf{1}$ and
$\mathbf{0}<z \leq \min \{\alpha / 2, \alpha-1\}$. For the first log-majorization, it suffices to show that

$$
B^{\frac{1-\alpha}{2 z}} A^{\frac{\alpha}{z}} B^{\frac{1-\alpha}{2 z}} \leq I \Rightarrow B^{1 / 2}\left(B^{-1 / 2} A B^{-1 / 2}\right)^{\alpha} B^{1 / 2} \leq I,
$$

that is,

$$
A^{\frac{\alpha}{z}} \leq B^{\frac{\alpha-1}{z}} \Longrightarrow\left(B^{-1 / 2} A B^{-1 / 2}\right)^{\alpha} \leq B^{-1} .
$$

Setting $\widetilde{\boldsymbol{A}}:=\boldsymbol{A}^{\frac{\alpha}{z}}$ and $\widetilde{\boldsymbol{B}}:=\boldsymbol{B}^{\frac{\alpha-1}{\varepsilon}}$, we may prove that

$$
0 \leq \widetilde{A} \leq \widetilde{B} \Rightarrow\left(\widetilde{B}^{\frac{z}{2(1-\alpha)}} \widetilde{A}^{\frac{z}{\alpha}} \widetilde{B}^{\frac{z}{2(1-\alpha)}}\right)^{\alpha} \leq \widetilde{B}^{\frac{z}{1-\alpha}} .
$$

Let

$$
p:=\frac{z}{\alpha}, \quad q:=\frac{1}{\alpha}, \quad r:=\frac{z}{1-\alpha} .
$$

Then $\mathbf{0}<p, q \leq \mathbf{1}, \mathbf{- 1} \leq r<\mathbf{0}$ and $\frac{p+r}{q}=\frac{z}{1-\alpha}$. Note that

$$
-r(1-q)=\frac{z}{\alpha-1}\left(1-\frac{1}{\alpha}\right)=\frac{z}{\alpha}=p \leq q-r(1-q) .
$$

When $q<\frac{1}{2}$ and so $\alpha>2$, we further note that

$$
\frac{-r(1-q)-q}{1-2 q}=\frac{z-1}{\alpha-2} \leq \frac{z}{\alpha}=p \leq \frac{z}{\alpha-2}=\frac{-r(1-q)}{1-2 q} .
$$

Hence, the first result follows from the Furuta inequality with negative powers.

Next, assume that $\alpha>\mathbf{1}$ and $z \geq \max \{\alpha / \mathbf{2}, \alpha-\mathbf{1}\}$. For the second log-majorization, we need to show that

$$
B^{1 / 2}\left(B^{-1 / 2} A B^{-1 / 2}\right)^{\alpha} B^{1 / 2} \leq I \Rightarrow B^{\frac{1-\alpha}{2 z}} A^{\frac{\alpha}{z}} B^{\frac{1-\alpha}{2 z}} \leq I,
$$

that is,

$$
\left(B^{-1 / 2} A B^{-1 / 2}\right)^{\alpha} \leq B^{-1} \Rightarrow A^{\frac{\alpha}{z}} \leq B^{\frac{\alpha-1}{z}} .
$$

Setting $\widetilde{\boldsymbol{A}}:=\left(\boldsymbol{B}^{-1 / 2} \boldsymbol{A} \boldsymbol{B}^{-1 / 2}\right)^{\alpha}$ and $\widetilde{\boldsymbol{B}}:=\boldsymbol{B}^{-1}$, we may prove that

$$
0 \leq \widetilde{A} \leq \widetilde{B} \Rightarrow\left(\widetilde{B}^{-\frac{1}{2}} \widetilde{A}^{\frac{1}{x}} \widetilde{B}^{-\frac{1}{2}}\right)^{\frac{\alpha}{2}} \leq \widetilde{B}^{\frac{1-\alpha}{z}} .
$$

Let

$$
p:=\frac{1}{\alpha}, \quad q:=\frac{z}{\alpha}, \quad r:=-1 .
$$

Since the Furuta inequality with negative powers holds for these $\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}$, the second result follows.

In the following picture, the region of $\boldsymbol{P}_{\alpha}<_{\log } \boldsymbol{Q}_{\alpha, z}$ is drawn with horizontal blue lines, the region of $\boldsymbol{Q}_{\alpha, z}<_{\log } \boldsymbol{P}_{\alpha}$ is with vertical red lines, and the remaining regions are:
(a) $\mathbf{1}<\alpha<\mathbf{2}$ and $\alpha-\mathbf{1}<z<\alpha / \mathbf{2}$,
(b) $\alpha>2$ and $\alpha / 2<z<\alpha-1$.

Conjecture

For any $\boldsymbol{\alpha}, \boldsymbol{z}$ in (a) and (b), there is a pair $\boldsymbol{A}, \boldsymbol{B}$ such that neither $\boldsymbol{P}_{\alpha}(A, B)<_{\log } Q_{\alpha, z}(A, B)$ nor $\boldsymbol{Q}_{\alpha, z}(A, B)<_{\log } P_{\alpha}(A, B)$ holds.

A partial result for the above is the following:
Proposition
Assume that $\alpha>\mathbf{1}$ and \boldsymbol{E} is an orthogonal projection with $\boldsymbol{E} \boldsymbol{B} \neq \boldsymbol{B} \boldsymbol{E}$. Then:

- $P_{\alpha}(E, B)<_{\log } Q_{\alpha, z}(E, B)$ if and only if $z \leq \alpha-\mathbf{1}$.
- $\boldsymbol{Q}_{\alpha, z}(\boldsymbol{E}, \boldsymbol{B})<_{\log } \boldsymbol{P}_{\alpha}(\boldsymbol{E}, \boldsymbol{B})$ if and only if $z \geq \alpha-\mathbf{1}$.

Corollary

- If $\mathbf{0}<\alpha \leq \mathbf{2}$ and $\alpha \neq \mathbf{1}$, then

$$
D_{\alpha}^{*}(A \| B) \leq D_{\alpha}(A \| B) \leq \widehat{D}_{\alpha}(A \| B) .
$$

- If $\alpha \geq \mathbf{2}$, then

$$
D_{\alpha}^{*}(A \| B) \leq \widehat{D}_{\alpha}(A \| B) \leq D_{\alpha}(A \| B) .
$$

- As $\alpha \rightarrow \mathbf{1}$,

$$
\begin{aligned}
& D(A \| B)\left[=D_{1}(A \| B)=\operatorname{Tr} A(\log A-\log B)\right] \\
& \quad \leq D_{\mathrm{BS}}(A \| B)\left[=\widehat{D}_{1}(A \| B)=\operatorname{Tr} A \log \left(A^{1 / 2} B^{-1} A^{1 / 2}\right)\right] .
\end{aligned}
$$

$\boldsymbol{D} \leq \boldsymbol{D}_{\mathrm{BS}}$ was first shown in ${ }^{13}$
${ }^{13}$ F.H. and D. Petz, The proper formula for relative entropy and its asymptotics in quantum probability, Comm. Math. Phys. 143 (1991), 99-114.

Proposition
 If $\boldsymbol{A}, \boldsymbol{B}$ are not commuting and $\boldsymbol{\alpha} \boldsymbol{\neq \mathbf { 2 }}$, then all of the above inequalities are strict.

The proof is based on ${ }^{14} 15$

[^1]
(Log-)supermajorization

Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{\boldsymbol{n}}$ and $\mathbf{a}, \mathbf{b} \geq \mathbf{0}$.

- The supermajorization $\mathbf{a}<^{w} \mathbf{b}$ means that

$$
\sum_{i=1}^{k} a_{[n+1-i]} \geq \sum_{i=1}^{k} b_{[n+1-i]}, \quad 1 \leq k \leq n
$$

- The log-supermajorization $\mathbf{a}<^{w \log } \mathbf{b}$ means that

$$
\prod_{i=1}^{k} a_{[n+1-i]} \geq \prod_{i=1}^{k} b_{[n+1-i]}, \quad 1 \leq k \leq n
$$

Note

- When $\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} b_{i}$,

$$
\mathbf{a}<\mathbf{b} \Longleftrightarrow \mathbf{a}<_{w} \mathbf{b} \Longleftrightarrow \mathbf{a}<^{w} \mathbf{b} .
$$

- When $\prod_{i=1}^{n} a_{i}=\prod_{i=1}^{n} b_{i}>0$,

$$
\mathbf{a}<_{\log } \mathbf{b} \Longleftrightarrow \mathbf{a}<_{w \log } \mathbf{b} \Longleftrightarrow \mathbf{a}<^{w \log } \mathbf{b} .
$$

(Log-)supermajorization for matrices
For $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{M}_{n}^{+}$we write

- $\boldsymbol{A}<^{w} \boldsymbol{B}$ if $\lambda(\boldsymbol{A})<^{w} \lambda(\boldsymbol{B})$.
- $\boldsymbol{A} \prec^{w \log } \boldsymbol{B}$ if $\lambda(\boldsymbol{A})<^{w \log } \lambda(\boldsymbol{B})$.

Note

$$
A<^{w} B \Longleftrightarrow-\boldsymbol{A}<_{w}-B
$$

- When $\boldsymbol{A}, \boldsymbol{B}$ are invertible,

$$
\begin{aligned}
A<^{w \log } B & \Longleftrightarrow \log A \prec^{w} \log B \\
& \Longleftrightarrow A^{-1} \prec_{w \log } B^{-1} .
\end{aligned}
$$

Symmetric anti-norms ${ }^{161718}$

Definition A symmetric anti-norm \| $\cdot \|$: on \mathbb{M}_{n}^{+}is a non-negative continuous functional such that

1. $\|\alpha A\|!=\alpha\|A\|$: for all $\boldsymbol{A} \in \mathbb{M}_{n}^{+}$and all reals $\alpha \geq \mathbf{0}$,
2. $\|\boldsymbol{A}\|!:=\left\|\boldsymbol{U} \boldsymbol{A} \boldsymbol{U}^{*}\right\|$: for all $\boldsymbol{A} \in \mathbb{M}_{n}^{+}$and all unitary matrices \boldsymbol{U},
3. $\|\boldsymbol{A}+\boldsymbol{B}\|: \geq\|A\|!+\|B\|$: for all $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{M}_{n}^{+}$.
${ }^{16}$ J.-C. Bourin and F.H., Norm and anti-norm inequalities for positive semi-definite matrices, Internat. J. Math. 22 (2011), 1121-1138.
${ }^{17}$ J.-C. Bourin and F.H., Jensen and Minkowski inequalities for operator means and anti-norms, Linear Algebra Appl. 456 (2014), 22-53.
${ }^{18}$ J.-C. Bourin and F.H., Anti-norms on finite von Neumann algebras, Publ. Res. Inst. Math. Sci. 51 (2015), 207-235.

Definition Let $\|\cdot\|$ be a symmetric norm on \mathbb{M}_{n} and $\boldsymbol{p}>\mathbf{0}$. For $A \in \mathbb{M}_{n}^{+}$define

$$
\|A\|::= \begin{cases}\left\|A^{-p}\right\|^{-1 / p} & \text { if } A \text { is invertible } \\ 0 & \text { otherwise }\end{cases}
$$

Then I| $\cdot \|$: is a symmetric anti-norm. A symmetric anti-norm \| $\cdot \boldsymbol{\|}$: defined in this way is called a derived anti-norm.

Examples

- The Ky Fan k-anti-norm on \mathbb{M}_{n}^{+}is

$$
\|A\|_{\{k\}}:=\sum_{j=1}^{k} \lambda_{n+1-j}(A),
$$

- For $\boldsymbol{p}>\mathbf{0}$ and $\boldsymbol{k}=\mathbf{1}, \ldots, \boldsymbol{n}$,

$$
\|A\|_{-p, k}:=\left(\sum_{j=1}^{k} \lambda_{n+1-j}^{-p}(A)\right)^{-1 / p}=\left\|A^{-p}\right\|_{(k)}^{-1 / p} .
$$

Examples (Cont.)

- For $\boldsymbol{k}=\mathbf{1}, \ldots, \boldsymbol{n}$,

$$
\Delta_{k}(A):=\left(\prod_{j=1}^{k} \lambda_{n+1-j}(A)\right)^{1 / k} .
$$

In particular, $\boldsymbol{\Delta}_{\boldsymbol{n}}=\operatorname{det}^{1 / d}$.
Note

$$
\Delta_{k}(A)=\lim _{p>0}\left(\frac{1}{k} \sum_{j=1}^{k} \lambda_{n+1-j}^{-p}(A)\right)^{-1 / p}=\lim _{p \searrow 0} k^{1 / p}\|A\|_{-p, k} .
$$

Therefore, $\boldsymbol{\Delta}_{\boldsymbol{k}}$ is a limit point of the derived anti-norms.

Proposition

Concerning the following conditions for $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{M}_{n}^{+}$, we have

$$
\begin{aligned}
(a) & \Longleftrightarrow(b) \\
(e) & \Longleftrightarrow(c)
\end{aligned} \Longleftrightarrow(d) \Longrightarrow(\text { d }) \Longleftrightarrow(g) \Longleftrightarrow(h) \Longleftrightarrow(i) .
$$

(a) $\boldsymbol{A} \prec^{w} \boldsymbol{B}$, i.e., $\|\boldsymbol{A}\|_{\{k\}} \geq\|\boldsymbol{B}\|_{\{k\}}$ for every $\boldsymbol{k}=\mathbf{1}, \ldots, \boldsymbol{d}$;
(b) $\|\boldsymbol{A}\|: \geq\|\boldsymbol{I}\|$: for every symmetric anti-norm $\|\cdot\|$:;
(c) $\|f(\boldsymbol{A})\|: \geq\|f(\boldsymbol{B})\|$: for every symmetric anti-norm $\|\cdot\|$: and every continuous non-decreasing concave function $f:[0, \infty) \rightarrow[0, \infty)$;
(d) $\|f(\boldsymbol{A})\| \leq\|f(\boldsymbol{B})\|$ for every symmetric norm $\|\cdot\|$ and every non-increasing convex function $f:(0, \infty) \rightarrow[0, \infty)$, where $\|f(\boldsymbol{A})\|$ for non-invertible \boldsymbol{A} is defined as $\|f(A)\|:=\lim _{\varepsilon \backslash 0}\|f(A+\varepsilon I)\| ;$

Proposition (Cont.)

(e) $A<^{w \log } B$, i.e., $\boldsymbol{\Delta}_{k}(A) \geq \Delta_{k}(B)$ for every $k=1, \ldots, n$;
(f) $\|\boldsymbol{A}\|_{-p, k} \geq\|\boldsymbol{B}\|_{-p, k}$ for every $\boldsymbol{k}=\mathbf{1}, \ldots, \boldsymbol{n}$ and every $\boldsymbol{p}>\mathbf{0}$;
(g) $\|f(\boldsymbol{A})\|: \geq\|f(\boldsymbol{B})\|$: for every derived anti-norm $\|\cdot\|!$ and every continuous non-decreasing function $f:[0, \infty) \rightarrow[0, \infty)$ such that $\log f\left(e^{x}\right)$ is concave on \mathbb{R};
(h) $\operatorname{det} f(\boldsymbol{A}) \geq \operatorname{det} f(\boldsymbol{B})$ for every continuous non-decreasing function $f:[0, \infty) \rightarrow[0, \infty)$ such that $\log f\left(e^{x}\right)$ is concave on \mathbb{R};
(i) $\|\boldsymbol{f}(\boldsymbol{A})\| \leq\|\boldsymbol{f}(\boldsymbol{B})\|$ for every symmetric norm $\|\cdot\|$ and every non-increasing function $f:(0, \infty) \rightarrow[0, \infty)$ such that $f\left(e^{x}\right)$ is convex on \mathbb{R}, where $\|f(\boldsymbol{A})\|$ for non-invertible \boldsymbol{A} is as in (d).

Final remarks

1. The powerful method to obtain symmetric norm inequalities (in particular, trace inequalities) is weak (log-)majorization, as weak log-majorization \Longleftrightarrow power symmetric norm inequality

$$
\left\|\boldsymbol{A}^{p}\right\| \leq\left\|\boldsymbol{B}^{p}\right\| \text { for all } \boldsymbol{p}>\mathbf{0}
$$

$\Downarrow \Downarrow$
weak majorization \Longleftrightarrow symmetric norm inequality.
2. A counterpart of the above is the relation between (log-)supermajorization and symmetric (derived) anti-norms, as
supermajorization \Longleftrightarrow symmetric anti-norm inequality
$\Downarrow \quad \Downarrow$
log-supermajorization \Longleftrightarrow derived anti-norm inequality

$$
\left\|A^{-p}\right\| \leq\left\|B^{-p}\right\| \text { for all } p>\mathbf{0}
$$

3. When matrix functions are made from operations of products, absolute values and powers (like $\left|A^{p} \boldsymbol{B}^{q} \cdots\right|^{r}$), the antisymmetric power technique is quite useful to obtain log-majorizations between such matrix functions. This technique reduces log-majorizations to simple operator inequalities.
4. Important quantities in quantum information are mostly matrix trace functions. Hence, the log-majorization method is often very useful.
5. Beyond the case in 3, we have characterizations of (log-)majorizations in the following forms of logarithmic integral average of eigenvalues:

$$
\begin{aligned}
& \lambda(A)<_{w \log } \exp \int_{\Xi} \log \lambda\left(\boldsymbol{B}_{\xi}\right) d v(\xi) \text { and } \lambda(\boldsymbol{A})<^{w \log } \exp \int_{\Xi} \log \lambda\left(\boldsymbol{B}_{\xi}\right) d v(\xi) \\
& \Downarrow \\
& \lambda(A) \prec_{w \log } \int_{\Xi} \lambda\left(\boldsymbol{B}_{\xi}\right) d v(\xi) \\
& \lambda(A)<^{w \log } \int_{\Xi} \lambda\left(\boldsymbol{B}_{\xi}\right) d v(\xi) \\
& \lambda(\boldsymbol{A})<{ }_{w} \int_{\Xi} \lambda\left(\boldsymbol{B}_{\xi}\right) d v(\xi) \\
& \lambda(A)<^{w} \int_{\Xi} \lambda\left(\boldsymbol{B}_{\xi}\right) d v(\xi)
\end{aligned}
$$

in terms of inequalities with respect to symmetric (anti-)norms ${ }^{19}$.
${ }^{19}$ F.H., R. König and M. Tomamichel, Generalized log-majorization and multivariate trace inequalities, arXiv:1609.01999.

Thank you!

[^0]: ${ }^{5}$ F.H. and D. Petz, The Golden-Thompson trace inequality is complemented, Linear Algebra Appl. 181 (1993), 153-185.
 ${ }^{6}$ T. Ando and F.H., Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl. 197 (1994), 113-131.

[^1]: ${ }^{14}$ F.H., Equality cases in matrix norm inequalities of Golden-Thompson type, Linear and Multilinear Algebra 36 (1994), 239-249.
 ${ }^{15}$ F.H. and M. Mosonyi, Different quantum f-divergences and the reversibility of quantum operations, arXiv:1604.03089.

