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Log-majorization basics' 2 3

(Weak) majorization for vectors
Leta = (al, coey a,),b = (bl, cooy bn) e R" and let (am, ooy a[,,]) be
the decreasing rearrangement of a.

@ The weak majorization or submajorization a <,, b means that

k k
Za[i]SZb[i], 1$k$n.
i=1

i=1
@ The majorization a < b means that a <,, b and equality holds
for k = n in the above.

TA.W. Marshall, 1. Olkin and B.C. Arnold, Inequalities: Theory of Majorization
and Its Applications, Springer, New York, second edition, 2011.

2F.H., Log-majorizations and norm inequalities for exponential operators, in
Linear Operators, J. Janas, F. H. Szafraniec and J. Zemanek (eds.), Banach
Center Publications, Vol. 38, 1997, pp. 119-181.

3F.H., Matrix Analysis: Matrix Monotone Functions, Matrix Means, and
Majorization, Interdisciplinary Information Sciences 16 (2010), 139-248.
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Log-majorization basics

Proposition
@ a < b iff Z:’zl fla;) < E?:l f(b;) for any convex function f on
an interval containing all a;, b;.
@ a<, biff Z:’zlf(ai) < Z;Ll f(b;) for any non-decreasing
convex function f on an interval containing all a;, b;.

Proposition
@ Ifa < b and f is a convex function on an interval containing all
ai, b;, then f(a) <, f(b), where f(a) := (f(a),..., f(a.).
@ Ifa <, b and f is a non-decreasing convex function on an
interval containing all a;, b;, then f(a) <,, f(b).
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Log-majorization basics

(Weak) log-majorization for non-negative vectors
Leta,b € R" and a,b > 0.

@ The weak log-majorization or log-submajorization a <, 105 b
means that

k
b[i], 1 < k < n.
i=1

k
ap) <
=1

1

@ The log-majorization a <, b means that a <1, b and
equality holds for k = n in the above.

Note
When a,b > 0,
a < b & loga <logb,

a<yg b & loga <, logb,

where log a := (log ay,...,loga,).
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Log-majorization basics

Proposition
Leta,b > 0in R”, and assume that a <,,1o¢ b. If f is a continuous
non-decreasing function on [0, co) such that f(e*) is convex, then

f@) <, f(b).

Therefore,

a<ugh = a<,b = ) fla)< ) fb)

i=1 i=1

for f as above.
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Log-majorization basics

Let M’* denote the set of all Hermitian rn x n matrices, and M* the
set of all positive semidefinite n x n matrices.

@ For A € Mff‘ write
A(A) = (A1(A),...,4,(A))

for the eigenvalues of A in decreasing order with counting
multiplicities.

@ For X € M, write
s(X) = (51(X), .« ., 52(X))

for the singular values of X (i.e., the eigenvalues of
IX] := (X*X)'2) in decreasing order with multiplicities.
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(Weak) (log-)majorization for matrices
@ For A, B € M)’ we write A < B (resp., A <,, B) if A(A) < A(B)
(resp., A(A) <, A(B)).
@ For A, B € M} we write A <o B (resp., A <, 10g B) if
A(A) <iog A(B) (resp., A(A) <y10g A(B)).
Unitarily invariant norms
A norm || - || on M, is said to be unitarily invariant (or symmetric) if

IUXVI| = [IX]]

for all X € M, and all unitaries U,V € M,. E.g.,
@ for1 < p < o0, the Schatten p-norm is

n 1/p
IX1l, == (Tr |X|)"? = (Z sf(X)) :
i=1

e fork =1,...,nthe Ky Fan k-nor;{n is

Xl 2= | si(X).
i=1
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Log-majorization basics

Proposition
Concerning the following conditions for X, Y € Mi,, we have

() &= (i) & (i) & (iv) = (v) & (vi) & (vii).

(I) IXI <wlog IYI,
(i) MXPlw < Y1)l for every k = 1,...,n and every p > 0;

(i) LLAXDI < LAY DI for every symmetric norm || - || and every
continuous non-decreasing function f : [0, c0) — [0, o0) such
that f(e*) is convex on RR;

(iv) det f(JX|) < det f(|Y]) for every continuous non-decreasing
function f : [0, 00) — [0, c0) such that log f(e*) is convex on IR;

(v) 1XI < [Y1, ie., [IXllgy < WYl for every k = 1,...,n;
(vi) IXII < IIY]l| for every symmetric norm || - ||;

(vii) ILFAXDI < LFAY DI for every symmetric norm || - || and every
non-decreasing convex function f : [0, c0) = [0, c0).
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Log-majorization basics

Useful variational formulas
@ ForAeM"and1 <k < n,

k
D" A4(A) = max{Tr AP : P a projection, dim P = k}.

i=1
@ ForXeM,and1 <k <n,

IIX|l = max{[|XP]|, : P a projection, dim P = k}
= min{||Y| + klIZ|l. : X =Y + Z}.
@ ForAeM; and1< k < n,

k
[ ] 4:A) = max{det vAV* : VV* = I},

i=1
@ ForXeM,and1 < k < n,
k
[ ]5:%) = max{ldet Wxv*| : vV* = Ww* = L.
i=1
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Log-majorization basics

Anti-symmetric tensor powers

Let H be an n-dimensional Hilbert space (e.g., H = C"), and
1<k<n.

@ H®k s the k-fold tensor product of HH.

@ For xy,...,x; € H define

1 ,
Xy Aeee AXyp i= — Z(Sgn T)Xnt) @+ @ Xy IN HE,
k! TESK

@ The k-fold antisymmetric tensor product H* (dim H ¢ = (’,:))
is defined as the subspace of H®* spanned by
{X1 A AXxp:x; €H}

@ For every X € B(H) the k-fold antisymmetric power X*¥ is

defined by
XAk = X®k|:,.{/\k.

Fumio Hiai (Tohoku University) Log-majorizations for matrices with applications 2016, Sep. (at Ritsumeikan Univ.) 11/43



Let A € B(H)* and X,Y € B(H).
Lemma
° (X*)Ak (XAk)*
P (XY)Ak (X/\k)(YAk)
Y IXIAk |XAk|
@ AN > 0 and (AP)M = (AP)  forall p > 0
(for all p € Rif A is invertible).

Lemma

A(A) = 4(A™) (= 1A ]lw), (#)

—-

~
1
—

si(X) = 51(X™) (= 1XM]l)-

1=

i=1
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Araki’s log-majorization

@ Golden-Thompson inequality (1965) For H, K € ML},
Tre*% < TrefleX.

@ Lieb-Thirring inequality (1976) For A, B € M,

Tr (AY2BA'Y*)™ < Tr A™?B™"A™*, m=1,2,....
@ Araki's log-majorization (1990)*

(Al/ZBAI/Z)r <log Ar/ZBrAr/Z, r>1,

(A‘I/ZB‘IA"/Z)I/" <log (AP/ZBPAP/Z)UP, 0<qg<p.

@ By the Lie-Trotter formula, for every p > 0,

elogA-i- log B <log (Ap/ZBpAp/Z)I/p, €H+K <log (epH/ZepKepH/Z)l/p.

4H. Araki, On an inequality of Lieb and Thirring, Lett. Math. Phys. 19 (1990),
167-170.
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Araki’s log-majorization

Proof of Araki’'s log-majorization We may assume that A, B are
invertible. First, show that

I(A*BAY?) |, < IA7*B"A™| oy rx1. ()

For this, it suffices to show that
ATPBAT? <1 = AV2BAV? <1,

equivalently, B < A = B < A~l. But this is just the
Léwner-Heinz inequality. Next, apply () to A**, BA*, Since

((AVZBAV2) )N = ((ANOU2(BAk) AN )

(A2B" T2 = (ANEYI2(BARYT ANy,

we have [|((AY2BAY2)") ||, < |I(AT>B AT*)M¥||.,, which implies
by () that .
Ai((Al/ZBAl/Z)r) < n /li(Ar/ZBrAr/Z).

k
i=1 i=1
4
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Ando-Hiai’s log-majorization

Operator means

@ Associated with an operator monotone function f > 0 on
[0, o) with f(1) = 1, the operator mean o (in the sense of
Kubo-Ando, 1980) is defined by

AosB:= AVPf(ATVPBATYH) AN

for A, B € M! with A > 0, and is extended to general
A,B € M as

AosB := li{l(}(A +el)oy (B + €l).

@ In particular, for 0 < @ < 1, associated with f(x) = x¢,
A #a B := AI/Z(A—I/ZBA—I/Z)LVAI/Z

is the weighted geometric mean. The geometric mean # = #,,,
was first introduced by Pusz-Woronowicz, 1975.
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Ando-Hiai’s log majorization
@ Complementary Golden-Thompson inequality (1993)°
ForA,BeM'and0<a <1,
Tr (A” #, BP)'/? < Tr exp{(1 — a)log A + alogB}, p > 0.
@ Ando-H’s log-majorization (1994)°
A"#, B" <103 (A#, B)', rx1,

(Ap #a/ Bp)l/p <log (Aq #a' Bq)l/q, 0< q <p.
@ By the Lie-Trotter formula, for every p > 0,

(AP #, BP)I/P <log e(l—a/)logA+alogB’ (epH #, epK)l/p <log e—H+aK

SEH. and D. Petz, The Golden-Thompson trace inequality is complemented,
Linear Algebra Appl. 181 (1993), 153—185.
8T. Ando and F.H., Log majorization and complementary Golden-Thompson
type inequalities, Linear Algebra Appl. 197 (1994), 113-131.
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Ando-Hiai’s log-majorization

Proof of Ando-H’s log-majorization
By continuity we may assume that A, B are invertible. Since

(A" #, BOY™ = (A #, (BMY,  (A#, B = (A #, (BN,
it suffices to show that
A" #, B'|lc < I(A#y B) |loos r1,

equivalently,
A#,B<I = A"#,B"<1.

Whenl<r<2 writer=2—-ewith0 <&<1,andlet
C:=A'"2BA "2 sothat A#, B < IimpliesC* < A™'orA < C™,
so Al7% < €1~ We have
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Ando-Hiai’s log-majorization

A"#,B" = A"IH{AT™IB. B . BAT* 1) A
= Al—%{A—I?ECAI/Z(A—1/2c—1A—1/2)8A1/2CA—%}O'Al—§
= AVHA" #, [C(A #, CTHCJAY?
< AVHC O #, [C(C" #,CTHCAT?
= AY2C*A'? = A#,B < I
When r > 2, write r = 2™s with 1 < s < 2. Repeating use of the
above case gives
A’ #a B’ <wlog (Azm_ls #a Bzm_ls)2 <wlog °ce
<w log (As #af Bs)z’” <w log (A #a B)r-

a
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The Furuta inequality

@ The Furuta inequality (1987) Let A,B € M. Forr,p > 0 and
q=21with(Q+rg=>p+r,

A>B>0 = (ASB’A%)i < AT,

ptr

@ The critical case is when g = 1,

i.e.,

A>B>0 = (ASBPA%) <A™ or A" #w. B’ <A

p+r

forp>1andr 2> 0.
@ Fujii-Kamei (2006)” showed that Ando-H'’s inequality implies
the Furuta inequality and vice versa.

M. Fuijii and E. Kamei, Ando-Hiai inequality and Furuta inequality, Linear
Algebra Appl. 416 (2006), 541-545.
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The Furuta inequality

Proof of Ando-H = Furuta
Assumethatp>1,r>0,and A > B > 0. When 0 < r < 1, since
A" < B,

B’#» ATT<B’#» B"=1.

p+r p+r

Whenr > 1, ) )
B #» A'<Br#,B' =1,

p+r p+r

so Ando-H implies that B? #% A™" < I. We then have

A_r#1+r BP = BP #p— A_r = BP #p—l (BP# P _r)

p+r p+r ptr

<B#,..I1=B <A,
4

sinceC#,D =D#_,Cand C#,3 D = C#,(C#z D). O
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The Furuta inequality

The Furuta inequality with negative powers: Tanahashi (1999)2
Let A, B € M with A > 0. Assumethat0 < p<1,-1<r <0,
and either

1<q<1, -rQ-¢<p<qg-rl-yg,
or
0<g<3 -rl-g9<p<q-rd-yg,
—r(1 - q) - —r(1 -
r(l—-gq) qus r( q).
1-2q 1-2q
Then

A>B>0 = (A’BPA%)i < AT, hence,

(ASBPAS)T < A7 for every ¢’ > q.

8K. Tanahashi, The Furuta inequality with negative powers, Proc. Amer. Math.
Soc. 127 (1999), 1683—1692.
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Applications to quantum divergences

Various Rényi divergences

For A, B € M with B > 0 and for @, z > 0, define
@ P,(A,B) := BV*(B12AB~1/?)*B/2,
® 0..(A,B) := (BFASBT).
Note P, is the operator perspective for x*, whose general theory

has recently been developed by Effros, Hansen, and others.
P,(A,B) =B#,Awhen0 <a <1

Fora,z > O witha # 1,
@ The (conventional) Rényi divergence is

1 1
D, (A||B) := - log Tr A°B™ = " log Tr Q.1 (A, B).
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Applications to quantum divergences

@ The sandwiched Rényi divergence?® is

D’ (A]|B) :=

1 o o 1
- log Tr (B% AB%)" = ~log Tr Q0,o(A, B).

@ The a-z-Rényi divergence™ ' is

Da,z(A”B) =

1 - (3 — 1
- log Tr (BEASB=) = - log Tr 0,.:(4, B).

®M. Miiller-Lennert, F. Dupuis, O. Szehr, S. Fehr and M. Tomamichel, On
quantum Rényi entropies: A new generalization and some properties, J. Math.
Phys. 54 (2013), 122203.

10V, Jaksic, Y. Ogata, Y. Pautrat and C.-A. Pillet, Entropic fluctuations in
quantum statistical mechanics. An Introduction, in: Quantum Theory from Small
to Large Scales, August 2010, in: Lecture Notes of the Les Houches Summer
School, vol. 95, Oxford University Press, 2012.

""K.M.R. Audenaert and N. Datta, a-z-Rényi relative entropies, J. Math. Phys.
56 (2015), 022202.
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Applications to quantum divergences

@ The “maximal” a-Rényi divergence'? is

—~ 1
D, (A||B) := — log Tr B'/*(B~'/2AB~1/?)*B1/2

1
= log Tr P,(A, B).
a-1

Note
® D, =Dy, D), = Dy
® D,=D:=D,,=D,if AB = BA.
@ When Tr A = 1, the Umegaki relative entropy is

lin% D,(A||B) = lin} D’ (A|lB) = D(A||B) := Tr A(log A-log B),

and the Belavkin-Staszewski relative entropy is

lim D.(AlIB) = Dgs(A||B) := Tr Alog(A'*B'A"?).

127 special case of K. Matsumoto, A new quantum version of f-divergence,
arXiv:1311.4722.
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Applications to Rényi divergences

@ When z > 7/ > 0, by Araki’s log-majorization,

Qa,z(A, B) <log Qa,z’ (A9 B)a

and hence

D, (AllB) < D, (AlIB) for a > 1,
D, . (AlB) 2 D, (A|llB) for 0 <ea < 1.
In particular, D’ (Al|B) < D.(Al|B) for alla@ > 0 with @ # 1.

@ For0 < a@ <£1andz > 0, by Araki’'s and Ando-H’s
log-majorizations together,

Pa'(Aa B) = B#a A <log Qa,z(A, B)9

and hence D, ,(A||B) < D,(A||B) for0 < @ < 1and z > 0.
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Applications to quantum divergences

When a > 1, we have

Proposition
@ Ifa>1and0 < z < min{a/2, @ — 1}, then

Paf(A, B) <log Q(l,z(A, B)-

o Ifa >1and z > max{a/2,a — 1}, then

Qa/,z(A, B) <log Pa/(Aa B)-

Proof The case @ = 1is trivial. Assume that @ > 1 and
0 < z < min{a/2, a — 1}. For the first log-majorization, it suffices to
show that

B ATBT <I = BY(B'2AB %) B2 <],

that is, )
A < BT = (B YV*AB'V*»* < B\
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. e @ =4 a=1
Setting A := Az and B := Bz , we may prove that

~r~_z

0<A<B = (BZ<1 - A« BTi-o «r)) < Bi=.
Let z 1 z
== == =

Then0 < p,¢g <1,-1<r < 0and &= = £ Note that

-rl-gq) =

(1-2)=i=psq-ra-o.

a-1 a

When ¢ < 1 and so @ > 2, we further note that

-rd-¢9-q z-1 =z z -r(l —¢q)
= <—=p< = .
1-2¢q a-2 « a-2 1-2¢q
Hence, the first result follows from the Furuta inequality with
negative powers.
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Applications to quantum divergences

Next, assume that @ > 1 and z > max{«a/2,  — 1}. For the second
log-majorization, we need to show that

B'2(B\2ABV*)B2 < | — BT ATBT <1,

that is, 1
(BV2AB*)* < B! — A: <BT.

Setting A := (B"Y2AB~'/2)? and B := B!, we may prove that

Let
p::l, q:=£, r:=-1.
a a
Since the Furuta inequality with negative powers holds for these
ps q, 1, the second result follows. O
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Applications to quantum divergences

In the following picture, the region of P, <ieg Q... is drawn with
horizontal blue lines, the region of Q,.; <i,g P. is With vertical red
lines, and the remaining regions are:

(@ l<a<2anda-1<z<al2,
(b)) a>2anda/2 <z<a-1.

z A
=
1
(a)
0 1 2 a
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Applications to quantum divergences

Conjecture
For any a, z in (a) and (b), there is a pair A, B such that neither
Poz(Aa B) <log Qa,z(A9 B) nor Qa/,z(A’ B) <log Pa/(Aa B) holds.

A partial result for the above is the following:

Proposition

Assume that @ > 1 and E is an orthogonal projection with
EB # BE. Then:

@ P,(E,B) <ig Qo (E,B)ifandonlyifz < @ — 1.
@ Q. (E,B) <ig Po(E,B)ifandonlyifz > a — 1.
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Applications to quantum divergences

Corollary
@ If0<a<2anda # 1, then

D;(A||B) < D,(A|IB) < Do(A||B).
@ Ifa > 2, then

D;(Al|B) < D,(AlIB) < Do(A[|B).
e Asa — 1,

D(A||B) [= D\(AllB) = Tr A(log A - log B)]
< Dys(AllB) [= Di(AlIB) = Tr Alog(A'?B~1A12)).

D < Dgg was first shown in'®
8EH. and D. Petz, The proper formula for relative entropy and its asymptotics
in quantum probability, Comm. Math. Phys. 143 (1991),.99-114.
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Applications to quantum divergences

Proposition
If A, B are not commuting and @ # 2, then all of the above
inequalities are strict.

The proof is based on'* °

4EH., Equality cases in matrix norm inequalities of Golden-Thompson type,
Linear and Multilinear Algebra 36 (1994), 239-249.

SEH. and M. Mosonyi, Different quantum f-divergences and the reversibility of
quantum operations, arXiv:1604.03089.
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(Log-)supermajorization

Leta,b e R"anda,b > 0.
@ The supermajorization a <” b means that

K k
Z Alni1-i] 2 Z bins1-i, 1<k<n
i=1 i=1

@ The log-supermajorization a <*'°& b means that

k k
I_I Alpi1-i] 2 I_[ bius1-ips 1<k<n.
i=1 i=1

Note
°© When X" a; = X" b,

a<b & a<,b & a<"bh.
@ When H?:l a; = ;;1 b; >0,
A< b & a<,ub & a<th.
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(Log-)supermajorization and anti-norms

(Log-)supermajorization for matrices
For A, B € M we write

@ A" Bif A(A) < A(B).
@ A <le Bif A(A) <"'°¢ A(B).

Note

o
A< B &< -A <, -B.

@ When A, B are invertible,

A <" B < logA <" logB
= A<, B\
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(Log-)supermajorization and anti-norms

Symmetric anti-norms® 17 18

Definition A symmetric anti-norm || < ||y on M; is a non-negative
continuous functional such that

1. lleAll, = allAll; for all A € M and all reals @ > 0,
2. |All; = IUAU™||, for all A € M} and all unitary matrices U,
3. lA + BIl, 2 llAll, + [I1B]l, for all A, B € M.

16J.-C. Bourin and F.H., Norm and anti-norm inequalities for positive
semi-definite matrices, Internat. J. Math. 22 (2011), 1121-1138.

17J.-C. Bourin and F.H., Jensen and Minkowski inequalities for operator means
and anti-norms, Linear Algebra Appl. 456 (2014), 22-53.

18J.-C. Bourin and F.H., Anti-norms on finite von Neumann algebras, Publ. Res.
Inst. Math. Sci. 51 (2015), 207-235.
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(Log-)supermajorization and anti-norms

Definition Let|| - || be a symmetric norm on M, and p > 0. For
A € M define

I|A~P|[7/P if A is invertible,

A[l; == .
0 otherwise.

Then || - ||y is @ symmetric anti-norm. A symmetric anti-norm || - ||,
defined in this way is called a derived anti-norm.

Examples
@ The Ky Fan k-anti-norm on MI* is

k
IAllgy = ) duerj(A),

Jj=1
@ Forp>0andk =1,...,n,

k -1/p
—— -p - -p=1/p
NAIl-p .-(E. 1A,,H_J.(A)) = 1471,
J:
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(Log-)supermajorization and anti-norms

Examples (Cont.)
@ Fork=1,...,n,

k 1/k
A(A) = (ﬂ A,,+1_,-(A)) :

j=1
In particular, A, = det!/?.

Note

k -1/p
e -p — Yo 2 1/P
Au(A) _%(k;am_jm)) = lim K7 AlL .

Therefore, Ay is a limit point of the derived anti-norms.
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(Log-)supermajorization and anti-norms

Proposition
Concerning the following conditions for A, B € M}, we have

() = b)) = (c) = d) =
(&) = (f) &= (g) & (h) < ().

(a) A <" B,i.e., ||Allg = l|Bll, forevery k = 1,...,d,
(b) 11All: = lIBII; for every symmetric anti-norm || - |,;
©) I = ILfFB)II; for every symmetric anti-norm || - ||, and

every continuous non-decreasing concave function
S 10, 00) = [0, c0);

(d) IIFCAN < IIf(B)| for every symmetric norm || - || and every
non-increasing convex function f : (0, o) — [0, 00), where
[Lf(A)Il for non-invertible A is defined as
IF(AI == limg I1f(A + DI;
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(Log-)supermajorization and anti-norms

Proposition (Cont.)

(e) A <" B ie., Ay(A) > A(B) forevery k =1,...,n;

() NAll-px = [IBll-px forevery k = 1,...,nand every p > 0;

(@) W = ILf(B)II; for every derived anti-norm || - ||; and every
continuous non-decreasing function f : [0, c0) — [0, c0) such
that log f(e*) is concave on [R;

(h) det f(A) > det f(B) for every continuous non-decreasing
function f : [0, 00) — [0, c0) such that log f(e*) is concave on
R;

(i) NI < Ilf(B)| for every symmetric norm || - || and every
non-increasing function f : (0, c0) — [0, c0) such that f(e*) is
convex on IR, where || f(A)|| for non-invertible A is as in (d).
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Final remarks

1. The powerful method to obtain symmetric norm inequalities
(in particular, trace inequalities) is weak (log-)majorization, as

weak log-majorization <= power symmetric norm inequality
IIAP]| < ||1BP|| for all p > 0
U Y

weak majorization < symmetric norm inequality.
2. A counterpart of the above is the relation between
(log-)supermajorization and symmetric (derived) anti-norms, as
supermajorization < symmetric anti-norm inequality
J J

log-supermajorization <= derived anti-norm inequality
[JA7P|| < ||[B7P|| for all p > 0.
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3. When matrix functions are made from operations of products,
absolute values and powers (like |[A?B? - - -|"), the antisymmetric
power technique is quite useful to obtain log-majorizations between
such matrix functions. This technique reduces log-majorizations to
simple operator inequalities.

4. Important quantities in quantum information are mostly matrix
trace functions. Hence, the log-majorization method is often very
useful.
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5. Beyond the case in 3, we have characterizations of
(log-)majorizations in the following forms of logarithmic integral
average of eigenvalues:

A(A) <y10g expj:log A(Bg) dv(é) and  A(A) <vlog expj:log/l(Bf) dv(§)

U Ll
A(A) <w1og ﬁ A(Bg) dv(£) A(A) <" ﬁ A(Bg) dv(§)
U ) Ll )
AA) <y, ﬁ A(Bg) dv(€) AA) <" f_ A(By) dv(£)

in terms of inequalities with respect to symmetric (anti-)norms 1°.

EH., R. Kénig and M. Tomamichel, Generalized log-majorization and
multivariate trace inequalities, arXiv:1609.01999.
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Thank you!
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