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Log-majorization basics

Log-majorization basics1 2 3

(Weak) majorization for vectors
Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn, and let (a[1], . . . , a[n]) be
the decreasing rearrangement of a.

The weak majorization or submajorization a ≺w b means that
k∑

i=1

a[i] ≤
k∑

i=1

b[i], 1 ≤ k ≤ n.

The majorization a ≺ b means that a ≺w b and equality holds
for k = n in the above.

1A.W. Marshall, I. Olkin and B.C. Arnold, Inequalities: Theory of Majorization
and Its Applications, Springer, New York, second edition, 2011.

2F.H., Log-majorizations and norm inequalities for exponential operators, in
Linear Operators, J. Janas, F. H. Szafraniec and J. Zemánek (eds.), Banach
Center Publications, Vol. 38, 1997, pp. 119–181.

3F.H., Matrix Analysis: Matrix Monotone Functions, Matrix Means, and
Majorization, Interdisciplinary Information Sciences 16 (2010), 139–248.
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Log-majorization basics

Proposition

a ≺ b iff
∑n

i=1 f (ai) ≤
∑n

i=1 f (bi) for any convex function f on
an interval containing all ai, bi.
a ≺w b iff

∑n
i=1 f (ai) ≤

∑n
i=1 f (bi) for any non-decreasing

convex function f on an interval containing all ai, bi.

Proposition
If a ≺ b and f is a convex function on an interval containing all
ai, bi, then f (a) ≺w f (b), where f (a) := ( f (a1), . . . , f (an)).
If a ≺w b and f is a non-decreasing convex function on an
interval containing all ai, bi, then f (a) ≺w f (b).
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Log-majorization basics

(Weak) log-majorization for non-negative vectors
Let a, b ∈ Rn and a, b ≥ 0.

The weak log-majorization or log-submajorization a ≺w log b
means that

k∏
i=1

a[i] ≤
k∏

i=1

b[i], 1 ≤ k ≤ n.

The log-majorization a ≺log b means that a ≺w log b and
equality holds for k = n in the above.

Note
When a, b > 0,

a ≺log b ⇐⇒ log a ≺ log b,

a ≺w log b ⇐⇒ log a ≺w log b,

where log a := (log a1, . . . , log an).
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Log-majorization basics

Proposition
Let a, b ≥ 0 in Rn, and assume that a ≺w log b. If f is a continuous
non-decreasing function on [0,∞) such that f (ex) is convex, then
f (a) ≺w f (b).

Therefore,

a ≺w log b =⇒ a ≺w b =⇒
n∑

i=1

f (ai) ≤
n∑

i=1

f (bi)

for f as above.
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Log-majorization basics

LetMsa
n denote the set of all Hermitian n × n matrices, andM+n the

set of all positive semidefinite n × n matrices.
For A ∈ Msa

n write

λ(A) = (λ1(A), . . . , λn(A))

for the eigenvalues of A in decreasing order with counting
multiplicities.
For X ∈ Mn write

s(X) = (s1(X), . . . , sn(X))

for the singular values of X (i.e., the eigenvalues of
|X| := (X∗X)1/2) in decreasing order with multiplicities.
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Log-majorization basics

(Weak) (log-)majorization for matrices
For A, B ∈ Msa

n we write A ≺ B (resp., A ≺w B) if λ(A) ≺ λ(B)
(resp., λ(A) ≺w λ(B)).
For A, B ∈ M+n we write A ≺log B (resp., A ≺w log B) if
λ(A) ≺log λ(B) (resp., λ(A) ≺w log λ(B)).

Unitarily invariant norms
A norm ∥ · ∥ onMn is said to be unitarily invariant (or symmetric) if

∥UXV∥ = ∥X∥
for all X ∈ Mn and all unitaries U,V ∈ Mn. E.g.,

for 1 ≤ p ≤ ∞, the Schatten p-norm is

∥X∥p := (Tr |X|p)1/p =

( n∑
i=1

sp
i
(X)

)1/p

,

for k = 1, . . . , n the Ky Fan k-norm is

∥X∥(k) :=
k∑

i=1

si(X).

Fumio Hiai (Tohoku University) Log-majorizations for matrices with applications 2016, Sep. (at Ritsumeikan Univ.) 8 / 43



Log-majorization basics

Proposition
Concerning the following conditions for X, Y ∈ Mn, we have

(i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) =⇒ (v) ⇐⇒ (vi) ⇐⇒ (vii).

(i) |X| ≺w log |Y|;
(ii) ∥ |X|p∥(k) ≤ ∥ |Y|p∥(k) for every k = 1, . . . , n and every p > 0;
(iii) ∥ f (|X|)∥ ≤ ∥ f (|Y|)∥ for every symmetric norm ∥ · ∥ and every

continuous non-decreasing function f : [0,∞) → [0,∞) such
that f (ex) is convex on R;

(iv) det f (|X|) ≤ det f (|Y|) for every continuous non-decreasing
function f : [0,∞) → [0,∞) such that log f (ex) is convex on R;

(v) |X| ≺w |Y|, i.e., ∥X∥(k) ≤ ∥Y∥(k) for every k = 1, . . . , n;
(vi) ∥X∥ ≤ ∥Y∥ for every symmetric norm ∥ · ∥;
(vii) ∥ f (|X|)∥ ≤ ∥ f (|Y|)∥ for every symmetric norm ∥ · ∥ and every

non-decreasing convex function f : [0,∞) → [0,∞).
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Log-majorization basics

Useful variational formulas
For A ∈ Msa

n and 1 ≤ k ≤ n,
k∑

i=1

λi(A) = max{Tr AP : P a projection, dim P = k}.
For X ∈ Mn and 1 ≤ k ≤ n,

∥X∥(k) = max{∥XP∥1 : P a projection, dim P = k}
= min{∥Y∥1 + k∥Z∥∞ : X = Y + Z}

.

For A ∈ M+n and 1 ≤ k ≤ n,
k∏

i=1

λi(A) = max{det V AV∗ : VV∗ = Ik
}
.

For X ∈ Mn and 1 ≤ k ≤ n,
k∏

i=1

si(X) = max{| det WXV∗| : VV∗ = WW∗ = Ik
}
.
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Log-majorization basics

Anti-symmetric tensor powers

LetH be an n-dimensional Hilbert space (e.g.,H = Cn), and
1 ≤ k ≤ n.

H⊗k is the k-fold tensor product ofH .
For x1, . . . , xk ∈ H define

x1 ∧ · · · ∧ xk :=
1
√

k!

∑
π∈Sk

(sgn π)xπ(1) ⊗ · · · ⊗ xπ(k) inH⊗k.

The k-fold antisymmetric tensor productH∧k (dimH∧k =
(

n
k

)
)

is defined as the subspace ofH⊗k spanned by
{x1 ∧ · · · ∧ xk : xi ∈ H}.
For every X ∈ B(H) the k-fold antisymmetric power X∧k is
defined by

X∧k := X⊗k|H∧k .
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Log-majorization basics

Let A ∈ B(H)+ and X, Y ∈ B(H).

Lemma
(X∗)∧k = (X∧k)∗.
(XY)∧k = (X∧k)(Y∧k).
|X|∧k = |X∧k|.
A∧k ≥ 0 and (Ap)∧k = (Ap)∧k for all p ≥ 0
(for all p ∈ R if A is invertible).

Lemma
k∏

i=1

λi(A) = λ1(A∧k) (= ∥A∧k∥∞), (♠)

k∏
i=1

si(X) = s1(X∧k) (= ∥X∧k∥∞).
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Araki’s log-majorization

Araki’s log-majorization

Golden-Thompson inequality (1965) For H, K ∈ Msa
n ,

Tr eH+K ≤ Tr eHeK.

Lieb-Thirring inequality (1976) For A, B ∈ M+n ,

Tr (A1/2BA1/2)m ≤ Tr Am/2Bm Am/2, m = 1, 2, . . . .

Araki’s log-majorization (1990)4

(A1/2BA1/2)r ≺log Ar/2Br Ar/2, r ≥ 1,

(Aq/2Bq Aq/2)1/q ≺log (Ap/2Bp Ap/2)1/p, 0 < q < p.
By the Lie-Trotter formula, for every p > 0,

elog A +̇ log B ≺log (Ap/2Bp Ap/2)1/p, eH+K ≺log (epH/2epKepH/2)1/p.

4H. Araki, On an inequality of Lieb and Thirring, Lett. Math. Phys. 19 (1990),
167–170.
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Araki’s log-majorization

Proof of Araki’s log-majorization We may assume that A, B are
invertible. First, show that

∥(A1/2BA1/2)r∥∞ ≤ ∥Ar/2Br Ar/2∥∞, r ≥ 1. (∗)
For this, it suffices to show that

Ar/2Br Ar/2 ≤ I =⇒ A1/2BA1/2 ≤ I,

equivalently, Br ≤ A−r =⇒ B ≤ A−1. But this is just the
Löwner-Heinz inequality. Next, apply (∗) to A∧k, B∧k. Since

((A1/2BA1/2)r)∧k = ((A∧k)1/2(B∧k)(A∧k)1/2)r,

(Ar/2Br Ar/2)∧k = (A∧k)r/2(B∧k)r(A∧k)r/2,

we have ∥((A1/2BA1/2)r)∧k∥∞ ≤ ∥(Ar/2Br Ar/2)∧k∥∞, which implies
by (♠) that k∏

i=1

λi((A1/2BA1/2)r) ≤
k∏

i=1

λi(Ar/2Br Ar/2).

□
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Ando-Hiai’s log-majorization

Operator means

Associated with an operator monotone function f ≥ 0 on
[0,∞) with f (1) = 1, the operator mean σ f (in the sense of
Kubo-Ando, 1980) is defined by

Aσ f B := A1/2 f (A−1/2BA−1/2)A1/2

for A, B ∈ M+n with A > 0, and is extended to general
A, B ∈ M+n as

Aσ f B := lim
ε↘0

(A + εI)σ f (B + εI).

In particular, for 0 ≤ α ≤ 1, associated with f (x) = xα,

A #α B := A1/2(A−1/2BA−1/2)αA1/2

is the weighted geometric mean. The geometric mean # = #1/2
was first introduced by Pusz-Woronowicz, 1975.
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Ando-Hiai’s log-majorization

Ando-Hiai’s log majorization

Complementary Golden-Thompson inequality (1993)5

For A, B ∈ M+n and 0 ≤ α ≤ 1,

Tr (Ap #α Bp)1/p ≤ Tr exp{(1 − α) log A +̇ α log B}, p > 0.

Ando-H’s log-majorization (1994)6

Ar #α Br ≺log (A #α B)r, r ≥ 1,

(Ap #α Bp)1/p ≺log (Aq #α Bq)1/q, 0 < q < p.
By the Lie-Trotter formula, for every p > 0,

(Ap #α Bp)1/p ≺log e(1−α) log A +̇ α log B, (epH #α epK)1/p ≺log e(1−α)H+αK.

5F.H. and D. Petz, The Golden-Thompson trace inequality is complemented,
Linear Algebra Appl. 181 (1993), 153–185.

6T. Ando and F.H., Log majorization and complementary Golden-Thompson
type inequalities, Linear Algebra Appl. 197 (1994), 113–131.
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Ando-Hiai’s log-majorization

Proof of Ando-H’s log-majorization
By continuity we may assume that A, B are invertible. Since

(Ar #α Br)∧k = (A∧k)r #α (B∧k)r, ((A #α B)r)∧k = ((A∧k) #α (B∧k))r,

it suffices to show that

∥Ar #α Br∥∞ ≤ ∥(A #α B)r∥∞, r ≥ 1,

equivalently,
A #α B ≤ I =⇒ Ar #α Br ≤ I.

When 1 ≤ r ≤ 2, write r = 2 − ε with 0 ≤ ε ≤ 1, and let
C := A−1/2BA−1/2 so that A #α B ≤ I implies Cα ≤ A−1 or A ≤ C−α,
so A1−ε ≤ C−α(1−ε). We have
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Ando-Hiai’s log-majorization

Ar #α Br = A1− ε2
{A−1+ ε2 B · B−ε · BA−1+ ε2

}αA1− ε2

= A1− ε2
{A−

1−ε
2 CA1/2(A−1/2C−1 A−1/2)εA1/2CA−

1−ε
2
}αA1− ε2

= A1/2{A1−ε #α [C(A #ε C−1)C]}A1/2

≤ A1/2{C−α(1−ε) #α [C(C−α #ε C−1)C]}A1/2

= A1/2CαA1/2 = A #α B ≤ I.

When r > 2, write r = 2ms with 1 ≤ s ≤ 2. Repeating use of the
above case gives

Ar #α Br ≺w log (A2m−1 s #α B2m−1 s)2 ≺w log · · ·
≺w log (As #α Bs)2m ≺w log (A #α B)r.

□
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The Furuta inequality

The Furuta inequality

The Furuta inequality (1987) Let A, B ∈ M+n . For r, p ≥ 0 and
q ≥ 1 with (1 + r)q ≥ p + r,

A ≥ B ≥ 0 =⇒ (A
r
2 Bp A

r
2 )

1
q ≤ A

p+r
q .

The critical case is when q = p+r
1+r , i.e.,

A ≥ B ≥ 0 =⇒ (A
r
2 Bp A

r
2 )

1+r
p+r ≤ A1+r or A−r # 1+r

p+r
Bp ≤ A

for p ≥ 1 and r ≥ 0.
Fujii-Kamei (2006)7 showed that Ando-H’s inequality implies
the Furuta inequality and vice versa.

7M. Fujii and E. Kamei, Ando-Hiai inequality and Furuta inequality, Linear
Algebra Appl. 416 (2006), 541–545.
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The Furuta inequality

Proof of Ando-H =⇒ Furuta
Assume that p ≥ 1, r ≥ 0, and A ≥ B > 0. When 0 ≤ r ≤ 1, since
A−r ≤ B−r,

Bp # p
p+r

A−r ≤ Bp # p
p+r

B−r = I.

When r ≥ 1,
B

p
r # p

p+r
A−1 ≤ B

p
r # p

p+r
B−1 = I,

so Ando-H implies that Bp # p
p+r

A−r ≤ I. We then have

A−r # 1+r
p+r

Bp = Bp # p−1
p+r

A−r = Bp # p−1
p

(Bp # p
p+r

A−r)

≤ Bp # p−1
p

I = B ≤ A,

since C #α D = D #1−α C and C #αβ D = C #α (C #β D). □
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The Furuta inequality

The Furuta inequality with negative powers: Tanahashi (1999)8

Let A, B ∈ M+n with A > 0. Assume that 0 < p ≤ 1, −1 ≤ r < 0,
and either

1
2 ≤ q ≤ 1, −r(1 − q) ≤ p ≤ q − r(1 − q),

or

0 < q < 1
2 , −r(1 − q) ≤ p ≤ q − r(1 − q),

−r(1 − q) − q
1 − 2q

≤ p ≤
−r(1 − q)

1 − 2q
.

Then
A ≥ B ≥ 0 =⇒ (A

r
2 Bp A

r
2 )

1
q ≤ A

p+r
q , hence,

(A
r
2 Bp A

r
2 )

1
q′ ≤ A

p+r
q′ for every q′ ≥ q.

8K. Tanahashi, The Furuta inequality with negative powers, Proc. Amer. Math.
Soc. 127 (1999), 1683–1692.
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Applications to quantum divergences

Various Rényi divergences

For A, B ∈ M+n with B > 0 and for α, z > 0, define

Pα(A, B) := B1/2(B−1/2 AB−1/2)αB1/2.

Qα,z(A, B) := (B
1−α
2z A

α
z B

1−α
2z
)z.

Note Pα is the operator perspective for xα, whose general theory
has recently been developed by Effros, Hansen, and others.
Pα(A, B) = B #α A when 0 ≤ α ≤ 1.

For α, z > 0 with α , 1,
The (conventional) Rényi divergence is

Dα(A∥B) :=
1
α − 1

log Tr AαB1−α =
1
α − 1

log Tr Qα,1(A, B).
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Applications to quantum divergences

The sandwiched Rényi divergence9 is

D∗α(A∥B) :=
1
α − 1

log Tr (B
1−α
2α AB

1−α
2α

)α
=

1
α − 1

log Tr Qα,α(A, B).

The α-z-Rényi divergence10 11 is

Dα,z(A∥B) :=
1
α − 1

log Tr (B
1−α
2z A

α
z B

1−α
2z
)z
=

1
α − 1

log Tr Qα,z(A, B).

9M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr and M. Tomamichel, On
quantum Rényi entropies: A new generalization and some properties, J. Math.
Phys. 54 (2013), 122203.

10V. Jaksic, Y. Ogata, Y. Pautrat and C.-A. Pillet, Entropic fluctuations in
quantum statistical mechanics. An Introduction, in: Quantum Theory from Small
to Large Scales, August 2010, in: Lecture Notes of the Les Houches Summer
School, vol. 95, Oxford University Press, 2012.

11K.M.R. Audenaert and N. Datta, α-z-Rényi relative entropies, J. Math. Phys.
56 (2015), 022202.
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Applications to quantum divergences

The “maximal” α-Rényi divergence12 is

D̂α(A∥B) :=
1
α − 1

log Tr B1/2(B−1/2 AB−1/2)αB1/2

=
1
α − 1

log Tr Pα(A, B).

Note
Dα = Dα,1, D∗α = Dα,α.
Dα = D∗α = Dα,z = D̂α if AB = BA.
When Tr A = 1, the Umegaki relative entropy is

lim
α→1

Dα(A∥B) = lim
α→1

D∗α(A∥B) = D(A∥B) := Tr A(log A−log B),

and the Belavkin-Staszewski relative entropy is

lim
α→1

D̂α(A∥B) = DBS(A∥B) := Tr A log(A1/2B−1 A1/2).

12A special case of K. Matsumoto, A new quantum version of f -divergence,
arXiv:1311.4722.
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Applications to quantum divergences

Applications to Rényi divergences

When z > z′ > 0, by Araki’s log-majorization,

Qα,z(A, B) ≺log Qα,z′(A, B),

and hence

Dα,z(A∥B) ≤ Dα,z′(A∥B) for α > 1,
Dα,z(A∥B) ≥ Dα,z′(A∥B) for 0 < α < 1.

In particular, D∗α(A∥B) ≤ Dα(A∥B) for all α > 0 with α , 1.

For 0 < α ≤ 1 and z > 0, by Araki’s and Ando-H’s
log-majorizations together,

Pα(A, B) = B #α A ≺log Qα,z(A, B),

and hence Dα,z(A∥B) ≤ D̂α(A∥B) for 0 < α < 1 and z > 0.
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Applications to quantum divergences

When α ≥ 1, we have

Proposition
If α ≥ 1 and 0 < z ≤ min{α/2, α − 1}, then

Pα(A, B) ≺log Qα,z(A, B).

If α ≥ 1 and z ≥ max{α/2, α − 1}, then

Qα,z(A, B) ≺log Pα(A, B).

Proof The case α = 1 is trivial. Assume that α > 1 and
0 < z ≤ min{α/2, α − 1}. For the first log-majorization, it suffices to
show that

B
1−α
2z A

α
z B

1−α
2z ≤ I =⇒ B1/2(B−1/2 AB−1/2)αB1/2 ≤ I,

that is,
A
α
z ≤ B

α−1
z =⇒ (B−1/2 AB−1/2)α ≤ B−1.
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Applications to quantum divergences

Setting Ã := A
α
z and B̃ := B

α−1
z , we may prove that

0 ≤ Ã ≤ B̃ =⇒
(
B̃

z
2(1−α) Ã

z
α B̃

z
2(1−α)

)α
≤ B̃

z
1−α .

Let
p :=

z
α
, q :=

1
α
, r :=

z
1 − α

.

Then 0 < p, q ≤ 1, −1 ≤ r < 0 and p+r
q =

z
1−α . Note that

−r(1 − q) =
z

α − 1

(
1 − 1
α

)
=

z
α
= p ≤ q − r(1 − q).

When q < 1
2 and so α > 2, we further note that

−r(1 − q) − q
1 − 2q

=
z − 1
α − 2

≤ z
α
= p ≤ z

α − 2
=
−r(1 − q)

1 − 2q
.

Hence, the first result follows from the Furuta inequality with
negative powers.
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Applications to quantum divergences

Next, assume that α > 1 and z ≥ max{α/2, α − 1}. For the second
log-majorization, we need to show that

B1/2(B−1/2 AB−1/2)αB1/2 ≤ I =⇒ B
1−α
2z A

α
z B

1−α
2z ≤ I,

that is,
(B−1/2 AB−1/2)α ≤ B−1 =⇒ A

α
z ≤ B

α−1
z .

Setting Ã := (B−1/2 AB−1/2)α and B̃ := B−1, we may prove that

0 ≤ Ã ≤ B̃ =⇒
(
B̃−

1
2 Ã

1
α B̃−

1
2
) α

z ≤ B̃
1−α

z .

Let
p :=

1
α
, q :=

z
α
, r := −1.

Since the Furuta inequality with negative powers holds for these
p, q, r, the second result follows. □
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Applications to quantum divergences

In the following picture, the region of Pα ≺log Qα,z is drawn with
horizontal blue lines, the region of Qα,z ≺log Pα is with vertical red
lines, and the remaining regions are:
(a) 1 < α < 2 and α − 1 < z < α/2,
(b) α > 2 and α/2 < z < α − 1.
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Applications to quantum divergences

Conjecture
For any α, z in (a) and (b), there is a pair A, B such that neither
Pα(A, B) ≺log Qα,z(A, B) nor Qα,z(A, B) ≺log Pα(A, B) holds.

A partial result for the above is the following:

Proposition
Assume that α > 1 and E is an orthogonal projection with
EB , BE. Then:

Pα(E, B) ≺log Qα,z(E, B) if and only if z ≤ α − 1.
Qα,z(E, B) ≺log Pα(E, B) if and only if z ≥ α − 1.
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Applications to quantum divergences

Corollary
If 0 < α ≤ 2 and α , 1, then

D∗α(A∥B) ≤ Dα(A∥B) ≤ D̂α(A∥B).

If α ≥ 2, then

D∗α(A∥B) ≤ D̂α(A∥B) ≤ Dα(A∥B).

As α → 1,

D(A∥B)
[
= D1(A∥B) = Tr A(log A − log B)

]
≤ DBS(A∥B)

[
= D̂1(A∥B) = Tr A log(A1/2B−1 A1/2)

]
.

D ≤ DBS was first shown in13

13F.H. and D. Petz, The proper formula for relative entropy and its asymptotics
in quantum probability, Comm. Math. Phys. 143 (1991), 99–114.
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Applications to quantum divergences

Proposition
If A, B are not commuting and α , 2, then all of the above
inequalities are strict.

The proof is based on14 15

14F.H., Equality cases in matrix norm inequalities of Golden-Thompson type,
Linear and Multilinear Algebra 36 (1994), 239–249.

15F.H. and M. Mosonyi, Different quantum f -divergences and the reversibility of
quantum operations, arXiv:1604.03089.
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(Log-)supermajorization and anti-norms

(Log-)supermajorization
Let a, b ∈ Rn and a, b ≥ 0.

The supermajorization a ≺w b means that
k∑

i=1

a[n+1−i] ≥
k∑

i=1

b[n+1−i], 1 ≤ k ≤ n.

The log-supermajorization a ≺w log b means that
k∏

i=1

a[n+1−i] ≥
k∏

i=1

b[n+1−i], 1 ≤ k ≤ n.

Note
When

∑n
i=1 ai =

∑n
i=1 bi,

a ≺ b ⇐⇒ a ≺w b ⇐⇒ a ≺w b.

When
∏n

i=1 ai =
∏n

i=1 bi > 0,

a ≺log b ⇐⇒ a ≺w log b ⇐⇒ a ≺w log b.
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(Log-)supermajorization and anti-norms

(Log-)supermajorization for matrices
For A, B ∈ M+n we write

A ≺w B if λ(A) ≺w λ(B).
A ≺w log B if λ(A) ≺w log λ(B).

Note

A ≺w B ⇐⇒ −A ≺w −B.

When A, B are invertible,

A ≺w log B ⇐⇒ log A ≺w log B
⇐⇒ A−1 ≺w log B−1.
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(Log-)supermajorization and anti-norms

Symmetric anti-norms16 17 18

Definition A symmetric anti-norm ∥ · ∥! onM+n is a non-negative
continuous functional such that

1. ∥αA∥! = α∥A∥! for all A ∈ M+n and all reals α ≥ 0,
2. ∥A∥! = ∥UAU∗∥! for all A ∈ M+n and all unitary matrices U,
3. ∥A + B∥! ≥ ∥A∥! + ∥B∥! for all A, B ∈ M+n .

16J.-C. Bourin and F.H., Norm and anti-norm inequalities for positive
semi-definite matrices, Internat. J. Math. 22 (2011), 1121–1138.

17J.-C. Bourin and F.H., Jensen and Minkowski inequalities for operator means
and anti-norms, Linear Algebra Appl. 456 (2014), 22–53.

18J.-C. Bourin and F.H., Anti-norms on finite von Neumann algebras, Publ. Res.
Inst. Math. Sci. 51 (2015), 207–235.
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(Log-)supermajorization and anti-norms

Definition Let ∥ · ∥ be a symmetric norm onMn and p > 0. For
A ∈ M+n define

∥A∥! :=
∥A−p∥−1/p if A is invertible,

0 otherwise.

Then ∥ · ∥! is a symmetric anti-norm. A symmetric anti-norm ∥ · ∥!
defined in this way is called a derived anti-norm.

Examples
The Ky Fan k-anti-norm onM+n is

∥A∥{k} :=
k∑

j=1

λn+1− j(A),

For p > 0 and k = 1, . . . , n,

∥A∥−p,k :=
( k∑

j=1

λ−p
n+1− j

(A)
)−1/p

= ∥A−p∥−1/p
(k)
.
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(Log-)supermajorization and anti-norms

Examples (Cont.)
For k = 1, . . . , n,

∆k(A) :=
( k∏

j=1

λn+1− j(A)
)1/k

.

In particular, ∆n = det1/d.

Note

∆k(A) = lim
p↘0

(
1
k

k∑
j=1

λ−p
n+1− j

(A)
)−1/p

= lim
p↘0

k1/p∥A∥−p,k.

Therefore, ∆k is a limit point of the derived anti-norms.
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(Log-)supermajorization and anti-norms

Proposition

Concerning the following conditions for A, B ∈ M+n , we have

(a) ⇐⇒ (b) ⇐⇒ (c) ⇐⇒ (d) =⇒
(e) ⇐⇒ ( f ) ⇐⇒ (g) ⇐⇒ (h) ⇐⇒ (i).

(a) A ≺w B, i.e., ∥A∥{k} ≥ ∥B∥{k} for every k = 1, . . . , d;
(b) ∥A∥! ≥ ∥B∥! for every symmetric anti-norm ∥ · ∥!;
(c) ∥ f (A)∥! ≥ ∥ f (B)∥! for every symmetric anti-norm ∥ · ∥! and

every continuous non-decreasing concave function
f : [0,∞) → [0,∞);

(d) ∥ f (A)∥ ≤ ∥ f (B)∥ for every symmetric norm ∥ · ∥ and every
non-increasing convex function f : (0,∞) → [0,∞), where
∥ f (A)∥ for non-invertible A is defined as
∥ f (A)∥ := limε↘0 ∥ f (A + εI)∥;
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(Log-)supermajorization and anti-norms

Proposition (Cont.)

(e) A ≺w log B, i.e., ∆k(A) ≥ ∆k(B) for every k = 1, . . . , n;
(f) ∥A∥−p,k ≥ ∥B∥−p,k for every k = 1, . . . , n and every p > 0;
(g) ∥ f (A)∥! ≥ ∥ f (B)∥! for every derived anti-norm ∥ · ∥! and every

continuous non-decreasing function f : [0,∞) → [0,∞) such
that log f (ex) is concave on R;

(h) det f (A) ≥ det f (B) for every continuous non-decreasing
function f : [0,∞) → [0,∞) such that log f (ex) is concave on
R;

(i) ∥ f (A)∥ ≤ ∥ f (B)∥ for every symmetric norm ∥ · ∥ and every
non-increasing function f : (0,∞) → [0,∞) such that f (ex) is
convex on R, where ∥ f (A)∥ for non-invertible A is as in (d).
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Final remarks
1. The powerful method to obtain symmetric norm inequalities
(in particular, trace inequalities) is weak (log-)majorization, as

weak log-majorization ⇐⇒ power symmetric norm inequality

∥Ap∥ ≤ ∥Bp∥ for all p > 0
⇓ ⇓

weak majorization ⇐⇒ symmetric norm inequality.

2. A counterpart of the above is the relation between
(log-)supermajorization and symmetric (derived) anti-norms, as

supermajorization ⇐⇒ symmetric anti-norm inequality

⇓ ⇓
log-supermajorization ⇐⇒ derived anti-norm inequality

∥A−p∥ ≤ ∥B−p∥ for all p > 0.
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3. When matrix functions are made from operations of products,
absolute values and powers (like |ApBq · · · |r), the antisymmetric
power technique is quite useful to obtain log-majorizations between
such matrix functions. This technique reduces log-majorizations to
simple operator inequalities.

4. Important quantities in quantum information are mostly matrix
trace functions. Hence, the log-majorization method is often very
useful.
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5. Beyond the case in 3, we have characterizations of
(log-)majorizations in the following forms of logarithmic integral
average of eigenvalues:

λ(A) ≺w log exp
∫
Ξ

log λ(Bξ) dν(ξ) and λ(A) ≺w log exp
∫
Ξ

log λ(Bξ) dν(ξ)

⇓ ⇑

λ(A) ≺w log

∫
Ξ

λ(Bξ) dν(ξ) λ(A) ≺w log
∫
Ξ

λ(Bξ) dν(ξ)

⇓ ⇑

λ(A) ≺w

∫
Ξ

λ(Bξ) dν(ξ) λ(A) ≺w
∫
Ξ

λ(Bξ) dν(ξ)

in terms of inequalities with respect to symmetric (anti-)norms 19.

19F.H., R. König and M. Tomamichel, Generalized log-majorization and
multivariate trace inequalities, arXiv:1609.01999.
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Thank you!
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