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B(K), B(H) algebras of bounded operators on K, H
B(K)t, B(H)* cones of positive operators on K, H

¢ : B(K) — B(H) bounded linear map

» ¢ is positive if $(B(K)") < B(H)™*
> ¢ is k-positive (k € N) if the map
Mi(B(K)) 3 [Xjj] — [¢p(X;))] € Mi(B(H)) is positive.
> ¢ is completely positive (or CP) if it is k-positive for any k€ N.

> ¢ is decomposableif p(X) = ¢1(X) + P2 (X)Y, X € B(K), where
1, ¢, are CP maps.
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Decomposability of positive maps in low dimensions

Theorem (Stormer and Woronowicz)
Assume one of the following conditions holds:
1. dimK=dimH =2,
2. dimK=2 anddimH =3,
3. dimK =3 anddimH = 2.
Then every positive map ¢ : B(K) — B(H) is decomposable.

Choi gave the first example of nondecomposable positive map
¢: B(C3) — B(C?)

a a2 a3 ap +ass —ap2 —a13
¢ a1 g2 3 = —ar ap2 +dy —a3
azy dzz dss —asy —asz azgs + app

Another examples of non-decomposable maps were given by
Woronowicz, Tang, Ha, Osaka, Robertson, Kye and others.
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Extremal positive maps

The set (K, H) of all positive maps ¢ : B(K) — B(H) is a convex
cone.

We say, that a map ¢ is extremal if it generates an extremal ray in
that cone, i.e.

VyeB: o¢-vyeP = weR'ep

Examples:
1. Choi map
2. ForA:K— H,

Adx: B(K) 3 X — AXA* € B(H)

Adgot: B(K) 3 X — AX'A* € B(H)
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Duality for positive maps

» T1(H) - trace class operators on H.
» Duality between B(B(K), B(H)) and B(K)® T (H)

Z,dra= Y Tr(pX)Y})
Z=Y X;®YV;, X;eBK),Y;€eB(H), ¢eP

» Choi matrix of a map ¢:

Cp =) eie] ®pleie])
ij

> ¢!

) is a 'density matrix’ of the functional

B(K)® B(H) 3 Z+— (Z,)q

ie.
(Z,})a=Tr(6y2).
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Duality for positive maps

For S < B(B(K), B(H)), consider its dual cone S° c B(K)® T' (H)
S = {Ze BK®T (H) : (Z,dyq = 0 for all € L.

v

v

B° consist of separable positive matrices, i.e.

ZeP® o Z=) X®Y;, Xi=0, ¥p=0.
k

CP ‘B completely positive maps, CP° = B(K® H)* (Choi
theorem)

Dec <3 decomposable maps, Dec® is composed of PPT
positive matrices

v

v

ZeDec® © Z=0andZ!' =0,

where
XeV) =xeY.



Positive maps as entanglement witnesses

A positive definite matrix Z € B(K ® H) is called entangled if it is not
separable




Positive maps as entanglement witnesses

Definition

A positive definite matrix Z € B(K ® H) is called entangled if it is not
separable

» Zis entangled if and only if there is ¢ € 3 such that (Z, ¢)q < 0.
We say that such ¢ is an entanglement witness for Z



Positive maps as entanglement witnesses

Definition

A positive definite matrix Z € B(K ® H) is called entangled if it is not
separable

» Zis entangled if and only if there is ¢ € 3 such that (Z, ¢)q < 0.
We say that such ¢ is an entanglement witness for Z

» ZisaPPT matrix if and only if (Z, ¢p)q > 0 for every
decomposable ¢.



Positive maps as entanglement witnesses

Definition

A positive definite matrix Z € B(K ® H) is called entangled if it is not
separable

» Zis entangled if and only if there is ¢ € 3 such that (Z, ¢)q < 0.
We say that such ¢ is an entanglement witness for Z

» ZisaPPT matrix if and only if (Z, ¢p)q > 0 for every
decomposable ¢.

» Zis a PPT entangled matrix if and only if there is a
nondecomposable map ¢, such that (Z,¢)q < 0.
This provides also a nice criterion for nondecomposability.
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Duality and exposed positive maps

For each S <3 one can define a dual face S’ < B° by

S =1{ZeP°:(Z,P)q =0}

Similarly, one defines dual faces for subsets of 22°.

Definition

We say that a face F <33 is exposed, if F"' = F.
A map ¢ € is exposed if (P} =R .

Theorem (Straszewicz, 1935)
Ifa set K < R" is closed and convex then cl(Exp K) = ExtK.
It follows from the above theorem that the problem of the

description of positive maps can be reduced to the problem of
characterization of exposed positive maps.
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Examples

» (MM’2011) For finite dimensional dimensional K and H and
any A: K — H, the maps

Ady: X — AXA*,  Adgot:X— AX'A*

are exposed.
» Choi map is an extremal nonexposed positive map.

» Other examples are due to Crusciniski and Sarbicki, Ha and
Kye, and others..
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Example of Miller and Olkiewicz

Miller and Olkiewicz ('14) considered the following example of a
bistochastic map.
S: B(C* — B(C?)

1 1
5 (x11 + x22) 0 3 X13
X11 X12 X13 . :
= Y +x _x
S| X1 X2 X3 0 2(x11 22) V232
X31 X32 X33 1 1
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Example of Miller and Olkiewicz

Miller and Olkiewicz ('14) considered the following example of a
bistochastic map.
S: B(C* — B(C?)

L 1
5 (X11 + X22) 0 —=X13
X11 X1z X13 2 . \1@
S| X1 X0 Xp3 | = 0 Q(xll + X22) EXSZ
X31 X32 X33 1 1
=X =X X
\@ 31 \[2 23 33

Theorem (Miller, Olkiewicz)

S is a bistochastic, exposed and nondecomposable (even atomic)
map.
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Generalization by Rutkowski et al.

Rutkowski, Sarbicki and Chrus$ciriski proposed the following
generalization of the map S:

Ad . B(Q:d‘l'l) - B(Cd+1)

d
le,',' 0 0 \/EXLd_;_]
i=
1 d
Aa(X) = 4 0 > Xij 0 Vxa_1ae1
i=1
d
0 s 0 L i Vdxgii,a
i=
Vidxgiy - Vdxga Vdxga  dxgenan

Theorem (Rutkowski et al.)

A4 is a bistochastic positive, nondecomposable and optimal map.
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Miller-Olkiewicz map as a merging

V2 0 0
For V= 0 V2 0 |, consider denormalized’ version of S
0 0 1
¢X)=VSX)V*
X1 X2  Xi13 X11 + X22 0 X13
G| X1 X2 X3 | = 0 X1+ X2 X32
X31 X32 X33 X31 X23 X33
(,b = (l)ess + ¢diag
X11 0 X13 X22 0 0
Pess: X—| 0 x2 X32 |, Pdiag:X—| 0 x11 O

X31 X23 X33 0 0 0
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Miller-Olkiewicz map as a merging

> identity
X11 X2 X13 x1 0 xi3
Gess:| X201 X0 o3 =] 0 oo Xz
X31  X32 X33 X31  X23 X33
> transposition
X11 X2 Xi3 x1 0 xi3

Gess:| X1 X2 X3 |—| 0 X X3
X31 X32 X33 X31 X23 X33



Miller-Olkiewicz map as a merging

> identity

Pess

> transposition

Pess

X11
X21
X31

X12
X22
X32

X22
X32

X13
X23
X33

X23
X33

X11

X31

X22
X23

X22
X23

X13
X32
X33

X32
X33



Miller-Olkiewicz map as a merging

> identity
X11
Pess 1| X21
X31
> transposition
X11
Pess | X2

X31

X12
X22
X32

X12
X22
X32

X13
X23
X33

X13
X23
X33

X11

X31

X11

X31

X22
X23

X22
X23

X13
X32
X33

X13
X32
X33



Miller-Olkiewicz map as a merging

> identity
X111 X112 X13 X11
Gess:| X211 X o3 = O
X31  X32 X33 X31
> transposition
X11 X122 X13 X11
Pess:| X211 X2 Xp3 |—| O
X31  X32 X33 X31

» merging of identity and transposition

X11 X122 X13 X11
Sess 1| X211 X2 Xp3 |—| O
X31 X32 X33 X31

X22
X23

X22
X23

X22
X23

X13
X32
X33

X13
X32
X33

X13
X32
X33
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Merging of positive maps

Let K3, K>, Hy, H» be Hilbert spaces and
¢1 : B(Ky) — B(Hh), ¢2 : B(Ky) — B(H>)

be positive maps.
Let K3 = H3 = C, and consider spaces

K=K &K, ®Ks, H=H, 9 H,® Hy

Each element X € B(K) can be represented in the matrix form

X Xz Xis
X=| Xo1, X2 |, Xo3
X31 ' X3p ' X33

where X;j € B(Kj, K;). In particular

X3eBC,K)=K, X3€BK,O=K', XseC.



Merging of positive maps

Consider a ¢ : B(K) — B(H) given by

K)o )P 0 i BiXis+GXf)
pX= 0 2K +01(X1)Ps | ByXos + GXgp
X3IBI + Xlt3 Cik ! ngBék + X2t3 Cg ! X33

where
» B;,C;:K;— H;, i=1,2, linearoperators
» w;:BK)—C, i=1,2, positivefunctionals

» P;e B(H;), i=1,2, projection onto the range of ¢;(Ip«;)

Definition

We say that the map ¢ is a merging of 1, ¢» by means of ingredients
B;, G, w;.
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Positivity of merging

Question: Is a merging of positive maps ¢, and ¢, positive?
Letn; € K;, y; € H;. Define

pimi ¥ =/ Vo bimm)yy  €imi ¥ = Kyi, Bmal + Kyi, Cino)l

0imiy) = \/pi(ni,yi)z —eimyy)? oy =\/o,mn) 1 Pryyl

Theorem
The merging ¢ of positive maps ¢y, ¢p» by means of B;, C;, w; is a
positive map if and only if the following conditions are satisfied
(D) €imiyi) < iy, y) fori=1,2,m;€ K, yi € H,
(ii) foreveryn, € Ki,n2 € K>, y1 € Hy, y» € Hp,

01(M1,11)02(N2,)2) + 01(N1,)2)02M2, 1) = €1(N1, 1) €212, ¥2)



Examples: ¢, 4,

MO0 =A1XA],  $a(X) = A XA}
Bi=A;, B=0, =0, G=A4
01X =Tr(A1X43), w2(X) =Tr(AX'A})
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Examples: ¢, 4,

MO0 =A1XA],  $a(X) = A XA}
Bi=A;, B=0, =0, G=A4
01X =Tr(AIX4;), w2(X) =Tr(AX'A})

AXA T AXADE 0 ArXig
o= 0 AXpA T AXnANE | AX;,
X314 1 X53A>2k | X33

where
» A;: K; — H, are Hilbert-Schmidt operators, i =1,2.
» E;isthe projection in B(H;) onto the range of A; for i=1,2.



Examples: ¢, 4,

A1 X1 AT + Tr(A X5, A5 Ey | 0 | A1 Xis



Examples: ¢, 4,

XA+ T X ADE 0 A X
pX)=1 0 AX,A+TAXnADE | AX;,
X147 | X343 | X3
ML,y = 1K, Ao, 12(n2,y2) = [y, A2},
€1(n1, 1) = Ky, Ao, €2(12,¥2) = [{y2,A2m2) 1,
611, ) =0, 62(n2,)2) =0,

o1, y2) = 1Ay, o2(n2, 1) = 142021y 1.



Examples: ¢, 4,

XA+ T A XADE 0 AXig
pO=1 0 XA +TIAXNADE | AX;,
X147 | X543 | Xs3
H1(my,y) =Ky, A, H2(N2,¥2) = [(y2, A212) ],
e1my, ) =Ky, Ainvl, €2(M2,¥2) = Ky2, A2n2)|,
61(m1,y1) =0, 62(n2,y2) =0,
a1(M1,¥2) = lAim Iy, a2M2,y1) = 1 A2n2lllinll.

5152 +0102=€1€

Hence ¢ is positive.
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Examples: Qg x,

01X =TrOlpx,), P20 =X"
Bl = id](l, Bg = 0, C1 = 0, C2 = ld[(2
w1 (X)) =Tr(X), w2(X)=Tr(X)

(Tr(Xq1) + Tr(Xa22))Ip(x;) | 0 | Xi3



Examples: Q; «,

$1(X) = Tr(X)lpx,),
By =idg,, B»=0,

P2(X) = X"

C1 :0, Cg =id[<2

w1 (X) =Tr(X), w2(X)=Tr(X)
(T + Tro) gy - 0O X3
o=l 0 XXl | Xsp
X31 ] X4 X33

pimuy) = lylilinl,
e1muL,) =KyLnol,

1M1,y =/ Iyil2lm 11,

o1(m1,y2) = Inlly=l,

H2 (M2, ¥2) = Ky2, 21,
€2(n2,¥2) = Ky2,M2)1,

02(n2,12) =0,
o2m2,11) = N2yl
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Define v;: B(K;) — B(H;) and y;: B(K;) — B(H;) by

viX) = BXB;,  xiX)=CX'C], X € B(Ky).
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Properties of merging

¢;:B(K;) — B(H;), B;C:Ki—H; i=1,2
Define v;: B(K;) — B(H;) and y;: B(K;) — B(H;) by

vi(X)=BXB}, xi0=CX'C], X € B(K).

Corollary

If the merging of positive maps ¢1, ¢» by means of B;, C;, w; is
positive, theny;+ y; < ¢; fori=1,2.

No notrivial merging of two extremal nondecomposable maps

produces a positive map. Therefore, in order to get some nontrivial
positive map by the merging procedure one should consider maps
¢ and ¢, with some 'regularity’ properties. However, for properly
chosen 'regular’ maps there is a possibility for nontrivial merging.

Surprisingly, merging of regular’ maps can produce highly
‘nonregular’ positive maps.



Nondecomposable merging

Theorem

If ¢y is 2-positive and ¢, is 2-copositive, then there are operators
B;, C; and functionals w; such that merging of ¢ and ¢, by means of
C;, D;, w; is a positive nondecomposable map.

Corollary

Consequently, for each pair of positive maps satisfying assumptions
of the above theorem, there is a merging which is an entanglement
witness for some PPT state



3 x 3 example of PPT entagled state

By considering EW from the previous slide we obtain the following
example of (unnormalized) PPT entangled matrix

y - - . . . -h
1 —C
Z= Y —b_z
. . . 1 . —C
K . . sf .
— bl . . R b2 . . . Y_ 1 SZ

wherey >0, by, c; €C,

5= max{Ibi, leil}, s=max{\/|b1|2+|b2|2,\/|c1|2+|c2|2}



Exposed positive maps

Theorem (M,Rutkowski)

For A;: K; — H;, i=1,2, the map
$a, 4, B & Kz ® C) — B(H, & H, ® C) given by

AXA AT ADE 0 Ay
X~ 0 A X0, AL+ Tr(A X ADE, | AXS,
X314 | X35 A | Xs3

is exposed in the cone of positive maps.

Remark

Strong spanning property was shown by Chruscinski and Sarbicki to
be a useful sufficient condition for exposedness. Note, that P, a,
does not satisfy this property for general choice of Ay, As.



Optimal positive maps maps

A positive map ¢ : B(K) — B(H) is called optimal if there is no CP
map v such that ¢ < ¢.
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Optimal positive maps maps

A positive map ¢ : B(K) — B(H) is called optimal if there is no CP
map ¥ such that y < ¢. Equivalently: The face Face(¢) does not
contain CP maps.
Spanning property: There are vectors Ny € K and yy € H, k=1,...,N,
such that

> Vo Pmn )y =0fork=1,...,N,

» span{ni®yx: k=1,..., N} =Ko H.
Kye: Spanning property is equivalent to {¢}" n CP = @.

Theorem (M, Rutkowski)
The map Qx; x, : B(K1 & Kz @ C) — B(H; ® H, & C) given by

() + T lpwy 1 0 1 X
2 0 X, +TrX)lex | Xiy
X TR, X

satisfies spanning property.



Case 3 x 3 — positivity

The general form of ¢ : M5(C) — M5(C):

X11  X12  X13 fixn + unxon 0 bix13 + ¢1x31
O x21 X2 X3 |= 0 foxoo +wixi1 boxoz + CoX32

X31 X32 X33 bixz1 +c1x13  baXzp +CaXo3 X33
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Case 3 x 3 — positivity

The general form of ¢ : M5(C) — M5(C):

X11  X12  X13 fixn + unxon 0 bix13 + ¢1x31
O x21 X2 X3 |= 0 foxoo +wixi1 boxoz + CoX32
X31 X32 X33 bixz1 +c1x13  baXzp +CaXo3 X33

1/2 1/2 1/2
p=f"% o;=w? ei=Ibil+lcl, 6= i€

2, 82 2
(€5 + 6P x11 +05X22 0 by x13 + c1x31
2, 82 2
(X)) = 0 (82+62)XZ2 +07X11 b2 X3 + C2 X302
by x31 +C1x13 box32 + Cax23 X33



Case 3 x 3 — positivity

The general form of ¢ : M5(C) — M5(C):

X111 X12 X13 fixn + unxon 0 bix13 + ¢1x31
O x21 X2 X3 |= 0 foxoo +wixi1 boxoz + CoX32
X31 X32 X33 bixz1 +c1x13  baXzp +CaXo3 X33

1/2 1/2 1/2
p=f"% o;=w? ei=Ibil+lcl, 6= i€

2, g2 2
(€5 + 6P x11 +05X22 0 bixi3 + c1x31
2, 82 2
P X) = 0 (e5+05) X2 +07X11  b2Xo3 + C2X32
byx31 + c1x13 bax3p + C2xp3 X33
Proposition

The above map is positive if and only if 0102 + 6102 = €1€5.



Case 3 x 3 — complete (co)positivity

2., 52 2
(e +0%)X11 + 05X 0 bixi3 + c1x31
2., 52 2
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Case 3 x 3 — complete (co)positivity

2, 52 2
(e +67)X11 + 05X 0 b1x13 + ¢1x31
2, 52 2
H(X) = 0 (65 +05) X2+ 07X11  baXo3 + CoX32
bix31 + c1x13 b2 X33 + C2x23 X33
Proposition

The following conditions are equivalent:
(i) ¢ is completely positive (respectively completely copositive);
(ii) ¢ is 2-positive (respectively 2 -copositive);

(iii) ¢1 = ¢ =0 (respectively by = by =0) and 5,02 = €, €.
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(e +0%)X11 + 05X 0 bixi3 + c1x31
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2., 52 2
(e +67)X11 + 05X 0 bixi3 + c1x31
2., 52 2
H(X) = 0 (65 +05) X2+ 07X11  baXo3 + CoX32
bix31 + c1x13 bax32 + C2X23 X33

b=(bl, b)), E=(cilleD!,  si=max{lb,lcl},i=1,2,
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Proposition
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Case 3 x 3 — decomposability vs. nondecomposability

2., 52 2
(e +67)X11 + 05X 0 bixi3 + c1x31
2., 52 2
H(X) = 0 (65 +05) X2+ 07X11  baXo3 + CoX32
bix31 + c1x13 bax32 + C2X23 X33

b=(bl, b)), E=(cilleD!,  si=max{lb,lcl},i=1,2,
s=max{|[Dll, IZl}, 6= (02+62)12, &=(e2+e2)/?
Proposition

1. If b andt are linearly dependent, then ¢ is decomposable.
2. Ifse2+ 692 < | bl + [Tl1%, then ¢ is nondecomposable.

If II?)II = ||Zll, then the inequality in 2. is equivalent to linear
independence of b and ¢.



Case 3 x 3 - extremality

Theorem
The following are equivalent:
1. ¢ is exposed,
2. ¢ is extremal,
3. each of the following conditions is satisfied
3.1 b#£0and¢#0,
32 01=6,=0,

3.3 0102 =¢€1€2,
3.4 (b,¢)=0.



Case 3 x 3 - optimality

Theorem
The following are equivalent:
1. ¢ is optimal,
2. ¢ satisfies spanning property,
3. each of the following conditions is satisfied
3.1 b#£0and¢#0,

3.2 0102+0102 = €162,
3.3 (b,¢)=0.
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1. Concrete: construction of a new family of PPT entangled
states.



Applications

1. Concrete: construction of a new family of PPT entangled
states.

2. Possible: construction of NPT bound entangled states (?) -
work in progress
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Main idea of the proof

» K=KioeKeoC, H=HieH,oC
» Z={¢,mMeKxH: n¢E&s" )M =0

» By Kye’s characterization of exposed faces, ¢ : B(K) — B(H) is
exposed iff

VyeP: VEMNeZ: yE =0 = yeR .
> (n,pEE*)n) is equal to

IALEL PN Ean2 12 + 1 A2E 1PN Ern 12 + Ky, AvED) P + 12, AsEa)
ifa =0, and
-2 23, = = |2
ja (j|a| B+ @, M) + i, A 5)|
- 2
+”06E1771®A252—aA151®E2172” )

ifa#0.



Sketch of the proof

» Thus (¢,n) € Z iff one of the following conditions holds

a=0, A& =0, Ay =0
a=0, A& #0, Aér =0
a=0, A& =0, Arér #0
a=0, A1 #0, Axér #0
a#0,A1E1 =0, Ayés =0
a#0, AE1 #£0, Axés =0
a#0, Aié1 =0, Aply #0

a#0, A& #0, Asls #£0

and
and
and
and
and

and

and

m L A&y, E2n2 =0

Ein1 =0, 12 LA,

Exm =0, Ezn2=0

=0

(A1¢1,m) = —ap, Bn2 =0
Exmy =0, (A&, m2) = —afp

a
Eny =- . P — 2A1£1,
A&l +ﬁ||A252||
a —_—
Eny = Ao

AL ELIIZ + | Ano |



Sketch of the proof

» Now, assume (n, ¢ ({¢*)n) =0 forall (§,n) € Z.



Sketch of the proof

» Now, assume (n, ¢ ({¢*)n) =0 forall (§,n) € Z.
» One shows that there are sesquilinear vector valued forms
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Sketch of the proof

» Now, assume (n, ¢ ({¢*)n) =0 forall (§,n) € Z.
» One shows that there are sesquilinear vector valued forms

Wi (K@ Kp) x (K @ K2) — B(H, Hy), k,1=1,2

and linear maps Ry, Q. : K; @ K, — Hj for k= 1,2 such that
w(éE*) is equal to

W11(0,¢0) W12(¢0,¢0) @Ry +06Q1§
W21(C0,60) War(lo, &) @Réo+aQed
a(Ri&o)* +@(Qiéo)*  a(Roéo)* +a(Qeép)* Alal?

for any ¢ € K where ¢ = &y + aefor a unique
So=61+&HeKg9 Ky and a e C.

» Finally, by a sequence of reasonings using
linearity-antilinearity interplay, one that all ingredients are
multiples by A of respective terms of ¢.
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