Merging of positive maps: exposed and optimal maps, and their applications

Marcin Marciniak (joint work with Adam Rutkowski)
Institute of Theoretical Physics and Astrophysics
University of Gdańsk

Quantum Information Theory and Related Topics 2016
Kusatsu, Japan
September 8, 2016

Contents

1. Brief introduction to positive maps
2. Merging of two positive maps and its properties
3. Examples of exposed and optimal positive maps
4. The case 3×3

Positive maps

Positive maps

K, H
$B(K), B(H)$
$B(K)^{+}, B(H)^{+}$
$\phi: B(K) \rightarrow B(H)$

Hilbert spaces
algebras of bounded operators on K, H
cones of positive operators on K, H
bounded linear map

Positive maps

K, H
$B(K), B(H)$
$B(K)^{+}, B(H)^{+}$
$\phi: B(K) \rightarrow B(H)$

Hilbert spaces
algebras of bounded operators on K, H
cones of positive operators on K, H
bounded linear map

- ϕ is positive if $\phi\left(B(K)^{+}\right) \subset B(H)^{+}$

Positive maps

K, H
$B(K), B(H)$
$B(K)^{+}, B(H)^{+}$
$\phi: B(K) \rightarrow B(H)$

Hilbert spaces
algebras of bounded operators on K, H
cones of positive operators on K, H
bounded linear map

- ϕ is positive if $\phi\left(B(K)^{+}\right) \subset B(H)^{+}$
- ϕ is k-positive $(k \in \mathbb{N}$) if the map
$M_{k}(B(K)) \ni\left[X_{i j}\right] \mapsto\left[\phi\left(X_{i j}\right)\right] \in M_{k}(B(H))$ is positive.

K, H
$B(K), B(H)$
$B(K)^{+}, B(H)^{+}$
$\phi: B(K) \rightarrow B(H)$

Hilbert spaces
algebras of bounded operators on K, H
cones of positive operators on K, H
bounded linear map

- ϕ is positive if $\phi\left(B(K)^{+}\right) \subset B(H)^{+}$
- ϕ is k-positive $(k \in \mathbb{N})$ if the map $M_{k}(B(K)) \ni\left[X_{i j}\right] \mapsto\left[\phi\left(X_{i j}\right)\right] \in M_{k}(B(H))$ is positive.
- ϕ is completely positive (or CP) if it is k-positive for any $k \in \mathbb{N}$.

K, H
$B(K), B(H)$
$B(K)^{+}, B(H)^{+}$
$\phi: B(K) \rightarrow B(H)$

Hilbert spaces
algebras of bounded operators on K, H
cones of positive operators on K, H
bounded linear map

- ϕ is positive if $\phi\left(B(K)^{+}\right) \subset B(H)^{+}$
- ϕ is k-positive $(k \in \mathbb{N})$ if the map $M_{k}(B(K)) \ni\left[X_{i j}\right] \mapsto\left[\phi\left(X_{i j}\right)\right] \in M_{k}(B(H))$ is positive.
- ϕ is completely positive (or CP) if it is k-positive for any $k \in \mathbb{N}$.
- ϕ is decomposable if $\phi(X)=\phi_{1}(X)+\phi_{2}(X)^{\mathrm{t}}, X \in B(K)$, where ϕ_{1}, ϕ_{2} are CP maps.

Decomposability of positive maps in low dimensions

Decomposability of positive maps in low dimensions

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

1. $\operatorname{dim} K=\operatorname{dim} H=2$,
2. $\operatorname{dim} K=2$ and $\operatorname{dim} H=3$,
3. $\operatorname{dim} K=3$ and $\operatorname{dim} H=2$.

Then every positive map $\phi: B(K) \rightarrow B(H)$ is decomposable.

Decomposability of positive maps in low dimensions

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

1. $\operatorname{dim} K=\operatorname{dim} H=2$,
2. $\operatorname{dim} K=2$ and $\operatorname{dim} H=3$,
3. $\operatorname{dim} K=3$ and $\operatorname{dim} H=2$.

Then every positive map $\phi: B(K) \rightarrow B(H)$ is decomposable.
Choi gave the first example of nondecomposable positive map $\phi: B\left(\mathbb{C}^{3}\right) \rightarrow B\left(\mathbb{C}^{3}\right)$

Decomposability of positive maps in low dimensions

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

1. $\operatorname{dim} K=\operatorname{dim} H=2$,
2. $\operatorname{dim} K=2$ and $\operatorname{dim} H=3$,
3. $\operatorname{dim} K=3$ and $\operatorname{dim} H=2$.

Then every positive map $\phi: B(K) \rightarrow B(H)$ is decomposable.
Choi gave the first example of nondecomposable positive map $\phi: B\left(\mathbb{C}^{3}\right) \rightarrow B\left(\mathbb{C}^{3}\right)$

$$
\phi\left(\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\right)=\left[\begin{array}{ccc}
a_{11}+a_{33} & -a_{12} & -a_{13} \\
-a_{21} & a_{22}+a_{11} & -a_{23} \\
-a_{31} & -a_{32} & a_{33}+a_{22}
\end{array}\right]
$$

Decomposability of positive maps in low dimensions

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

1. $\operatorname{dim} K=\operatorname{dim} H=2$,
2. $\operatorname{dim} K=2$ and $\operatorname{dim} H=3$,
3. $\operatorname{dim} K=3$ and $\operatorname{dim} H=2$.

Then every positive map $\phi: B(K) \rightarrow B(H)$ is decomposable.
Choi gave the first example of nondecomposable positive map $\phi: B\left(\mathbb{C}^{3}\right) \rightarrow B\left(\mathbb{C}^{3}\right)$

$$
\phi\left(\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\right)=\left[\begin{array}{ccc}
a_{11}+a_{33} & -a_{12} & -a_{13} \\
-a_{21} & a_{22}+a_{11} & -a_{23} \\
-a_{31} & -a_{32} & a_{33}+a_{22}
\end{array}\right]
$$

Another examples of non-decomposable maps were given by Woronowicz, Tang, Ha, Osaka, Robertson, Kye and others.

Extremal positive maps

The set $\mathfrak{P}(K, H)$ of all positive maps $\phi: B(K) \rightarrow B(H)$ is a convex cone.

Extremal positive maps

The set $\mathfrak{P}(K, H)$ of all positive maps $\phi: B(K) \rightarrow B(H)$ is a convex cone.
We say, that a map ϕ is extremal if it generates an extremal ray in that cone, i.e.

$$
\forall \psi \in \mathfrak{P}: \quad \phi-\psi \in \mathfrak{P} \Rightarrow \psi \in \mathbb{R}^{+} \phi
$$

Extremal positive maps

The set $\mathfrak{P}(K, H)$ of all positive maps $\phi: B(K) \rightarrow B(H)$ is a convex cone.
We say, that a map ϕ is extremal if it generates an extremal ray in that cone, i.e.

$$
\forall \psi \in \mathfrak{P}: \quad \phi-\psi \in \mathfrak{P} \Rightarrow \psi \in \mathbb{R}^{+} \phi
$$

Examples:

1. Choi map

Extremal positive maps

The set $\mathfrak{P}(K, H)$ of all positive maps $\phi: B(K) \rightarrow B(H)$ is a convex cone.
We say, that a map ϕ is extremal if it generates an extremal ray in that cone, i.e.

$$
\forall \psi \in \mathfrak{P}: \quad \phi-\psi \in \mathfrak{P} \Rightarrow \psi \in \mathbb{R}^{+} \phi
$$

Examples:

1. Choi map
2. For $A: K \rightarrow H$,

$$
\begin{gathered}
\operatorname{Ad}_{A}: B(K) \ni X \mapsto A X A^{*} \in B(H) \\
\operatorname{Ad}_{A} \circ \mathrm{t}: B(K) \ni X \mapsto A X^{\mathrm{t}} A^{*} \in B(H)
\end{gathered}
$$

Duality for positive maps

Duality for positive maps

- $T^{1}(H)$ - trace class operators on H.

Duality for positive maps

- $T^{1}(H)$ - trace class operators on H.
- Duality between $B(B(K), B(H))$ and $B(K) \hat{\otimes} T^{1}(H)$

$$
\begin{gathered}
\langle Z, \phi\rangle_{\mathrm{d}}=\sum_{i} \operatorname{Tr}\left(\phi\left(X_{i}\right) Y_{i}^{T}\right) \\
Z=\sum_{i} X_{i} \otimes Y_{i}, \quad X_{i} \in B(K), Y_{i} \in B(H), \quad \phi \in \mathfrak{P}
\end{gathered}
$$

Duality for positive maps

- $T^{1}(H)$ - trace class operators on H.
- Duality between $B(B(K), B(H))$ and $B(K) \hat{\otimes} T^{1}(H)$

$$
\begin{gathered}
\langle Z, \phi\rangle_{\mathrm{d}}=\sum_{i} \operatorname{Tr}\left(\phi\left(X_{i}\right) Y_{i}^{T}\right) \\
Z=\sum_{i} X_{i} \otimes Y_{i}, \quad X_{i} \in B(K), Y_{i} \in B(H), \quad \phi \in \mathfrak{P}
\end{gathered}
$$

- Choi matrix of a map ϕ :

$$
\mathscr{C}_{\phi}=\sum_{i j} e_{i} e_{j}^{*} \otimes \phi\left(e_{i} e_{j}^{*}\right)
$$

Duality for positive maps

- $T^{1}(H)$ - trace class operators on H.
- Duality between $B(B(K), B(H))$ and $B(K) \hat{\otimes} T^{1}(H)$

$$
\begin{gathered}
\langle Z, \phi\rangle_{\mathrm{d}}=\sum_{i} \operatorname{Tr}\left(\phi\left(X_{i}\right) Y_{i}^{T}\right) \\
Z=\sum_{i} X_{i} \otimes Y_{i}, \quad X_{i} \in B(K), Y_{i} \in B(H), \quad \phi \in \mathfrak{P}
\end{gathered}
$$

- Choi matrix of a map ϕ :

$$
\mathscr{C}_{\phi}=\sum_{i j} e_{i} e_{j}^{*} \otimes \phi\left(e_{i} e_{j}^{*}\right)
$$

- \mathscr{C}_{ϕ}^{t} is a 'density matrix' of the functional

$$
B(K) \otimes B(H) \ni Z \mapsto\langle Z, \phi\rangle_{\mathrm{d}}
$$

i.e.

$$
\langle Z, \phi\rangle_{\mathrm{d}}=\operatorname{Tr}\left(\mathscr{C}_{\phi}^{t} Z\right) .
$$

Duality for positive maps

- For $S \subset B(B(K), B(H))$, consider its dual cone $S^{\circ} \subset B(K) \hat{\otimes} T^{1}(H)$

$$
S^{\circ}=\left\{Z \in B(K) \hat{\otimes} T^{1}(H):\langle Z, \phi\rangle_{\mathrm{d}} \geq 0 \text { for all } \phi \in \mathfrak{P}\right\} .
$$

Duality for positive maps

- For $S \subset B(B(K), B(H))$, consider its dual cone $S^{\circ} \subset B(K) \hat{\otimes} T^{1}(H)$

$$
S^{\circ}=\left\{Z \in B(K) \hat{\otimes} T^{1}(H):\langle Z, \phi\rangle_{\mathrm{d}} \geq 0 \text { for all } \phi \in \mathfrak{P}\right\} .
$$

- \mathfrak{P}° consist of separable positive matrices, i.e.

$$
Z \in \mathfrak{P}^{\circ} \quad \Leftrightarrow \quad Z=\sum_{k} X_{k} \otimes Y_{k}, \quad X_{k} \geq 0, Y_{k} \geq 0 .
$$

Duality for positive maps

- For $S \subset B(B(K), B(H))$, consider its dual cone $S^{\circ} \subset B(K) \hat{\otimes} T^{1}(H)$

$$
S^{\circ}=\left\{Z \in B(K) \hat{\otimes} T^{1}(H):\langle Z, \phi\rangle_{\mathrm{d}} \geq 0 \text { for all } \phi \in \mathfrak{P}\right\} .
$$

- \mathfrak{P}° consist of separable positive matrices, i.e.

$$
Z \in \mathfrak{P}^{\circ} \quad \Leftrightarrow \quad Z=\sum_{k} X_{k} \otimes Y_{k}, \quad X_{k} \geq 0, Y_{k} \geq 0 .
$$

- $C P \subset \mathfrak{P}$ completely positive maps, $C P^{\circ}=B(K \otimes H)^{+}($Choi theorem)

Duality for positive maps

- For $S \subset B(B(K), B(H))$, consider its dual cone $S^{\circ} \subset B(K) \hat{\otimes} T^{1}(H)$

$$
S^{\circ}=\left\{Z \in B(K) \hat{\otimes} T^{1}(H):\langle Z, \phi\rangle_{\mathrm{d}} \geq 0 \text { for all } \phi \in \mathfrak{P}\right\} .
$$

- \mathfrak{P}° consist of separable positive matrices, i.e.

$$
Z \in \mathfrak{P}^{\circ} \quad \Leftrightarrow \quad Z=\sum_{k} X_{k} \otimes Y_{k}, \quad X_{k} \geq 0, Y_{k} \geq 0 .
$$

- $C P \subset \mathfrak{P}$ completely positive maps, $C P^{\circ}=B(K \otimes H)^{+}($Choi theorem)
- Dec $\subset \mathfrak{P}$ decomposable maps, Dec° is composed of PPT positive matrices

$$
Z \in \operatorname{Dec}^{\circ} \quad \Leftrightarrow \quad Z \geq 0 \text { and } Z^{\Gamma} \geq 0
$$

where

$$
(X \otimes Y)^{\Gamma}=X \otimes Y^{t} .
$$

Definition

A positive definite matrix $Z \in B(K \otimes H)$ is called entangled if it is not separable

Positive maps as entanglement witnesses

Definition

A positive definite matrix $Z \in B(K \otimes H)$ is called entangled if it is not separable

- Z is entangled if and only if there is $\phi \in \mathfrak{P}$ such that $\langle Z, \phi\rangle_{\mathrm{d}}<0$. We say that such ϕ is an entanglement witness for Z

Positive maps as entanglement witnesses

Definition

A positive definite matrix $Z \in B(K \otimes H)$ is called entangled if it is not separable

- Z is entangled if and only if there is $\phi \in \mathfrak{P}$ such that $\langle Z, \phi\rangle_{\mathrm{d}}<0$. We say that such ϕ is an entanglement witness for Z
- Z is a PPT matrix if and only if $\langle Z, \phi\rangle_{\mathrm{d}}>0$ for every decomposable ϕ.

Positive maps as entanglement witnesses

Definition

A positive definite matrix $Z \in B(K \otimes H)$ is called entangled if it is not separable

- Z is entangled if and only if there is $\phi \in \mathfrak{P}$ such that $\langle Z, \phi\rangle_{\mathrm{d}}<0$. We say that such ϕ is an entanglement witness for Z
- Z is a PPT matrix if and only if $\langle Z, \phi\rangle_{\mathrm{d}}>0$ for every decomposable ϕ.
- Z is a PPT entangled matrix if and only if there is a nondecomposable map ϕ, such that $\langle Z, \phi\rangle_{\mathrm{d}}<0$. This provides also a nice criterion for nondecomposability.

Duality and exposed positive maps

For each $S \subset \mathfrak{P}$ one can define a dual face $S^{\prime} \subset \mathfrak{P}^{\circ}$ by

$$
S^{\prime}=\left\{Z \in \mathfrak{P}^{\circ}:\langle Z, \phi\rangle_{\mathrm{d}}=0\right\}
$$

Duality and exposed positive maps

For each $S \subset \mathfrak{P}$ one can define a dual face $S^{\prime} \subset \mathfrak{P}^{\circ}$ by

$$
S^{\prime}=\left\{Z \in \mathfrak{P}^{\circ}:\langle Z, \phi\rangle_{\mathrm{d}}=0\right\}
$$

Similarly, one defines dual faces for subsets of \mathscr{P}°.

Definition

We say that a face $F \subset \mathfrak{P}$ is exposed, if $F^{\prime \prime}=F$.

Duality and exposed positive maps

For each $S \subset \mathfrak{P}$ one can define a dual face $S^{\prime} \subset \mathfrak{P}^{\circ}$ by

$$
S^{\prime}=\left\{Z \in \mathfrak{P}^{\circ}:\langle Z, \phi\rangle_{\mathrm{d}}=0\right\}
$$

Similarly, one defines dual faces for subsets of \mathscr{P}°.

Definition

We say that a face $F \subset \mathfrak{P}$ is exposed, if $F^{\prime \prime}=F$. $A \operatorname{map} \phi \in \mathfrak{P}$ is exposed if $\{\phi\}^{\prime \prime}=\mathbb{R}_{+} \phi$.

Duality and exposed positive maps

For each $S \subset \mathfrak{P}$ one can define a dual face $S^{\prime} \subset \mathfrak{P}^{\circ}$ by

$$
S^{\prime}=\left\{Z \in \mathfrak{P}^{\circ}:\langle Z, \phi\rangle_{\mathrm{d}}=0\right\}
$$

Similarly, one defines dual faces for subsets of \mathscr{P}°.

Definition

We say that a face $F \subset \mathfrak{P}$ is exposed, if $F^{\prime \prime}=F$.
$A \operatorname{map} \phi \in \mathfrak{P}$ is exposed if $\{\phi\}^{\prime \prime}=\mathbb{R}_{+} \phi$.
Theorem (Straszewicz, 1935)
If a set $K \subset \mathbb{R}^{n}$ is closed and convex then $\mathrm{cl}(\operatorname{Exp} K)=\operatorname{Ext} K$.

Duality and exposed positive maps

For each $S \subset \mathfrak{P}$ one can define a dual face $S^{\prime} \subset \mathfrak{P}^{\circ}$ by

$$
S^{\prime}=\left\{Z \in \mathfrak{P}^{\circ}:\langle Z, \phi\rangle_{\mathrm{d}}=0\right\}
$$

Similarly, one defines dual faces for subsets of \mathscr{P}°.

Definition

We say that a face $F \subset \mathfrak{P}$ is exposed, if $F^{\prime \prime}=F$.
$A \operatorname{map} \phi \in \mathfrak{P}$ is exposed if $\{\phi\}^{\prime \prime}=\mathbb{R}_{+} \phi$.
Theorem (Straszewicz, 1935)
If a set $K \subset \mathbb{R}^{n}$ is closed and convex then $\mathrm{cl}(\operatorname{Exp} K)=\operatorname{Ext} K$.
It follows from the above theorem that the problem of the description of positive maps can be reduced to the problem of characterization of exposed positive maps.

Examples

- (MM'2011) For finite dimensional dimensional K and H and any $A: K \rightarrow H$, the maps

$$
\operatorname{Ad}_{A}: X \mapsto A X A^{*}, \quad \operatorname{Ad}_{A} \circ \mathrm{t}: X \mapsto A X^{\mathrm{t}} A^{*}
$$

are exposed.

Examples

- (MM'2011) For finite dimensional dimensional K and H and any $A: K \rightarrow H$, the maps

$$
\operatorname{Ad}_{A}: X \mapsto A X A^{*}, \quad \operatorname{Ad}_{A} \circ \mathrm{t}: X \mapsto A X^{\mathrm{t}} A^{*}
$$

are exposed.

- Choi map is an extremal nonexposed positive map.

Examples

- (MM'2011) For finite dimensional dimensional K and H and any $A: K \rightarrow H$, the maps

$$
\operatorname{Ad}_{A}: X \mapsto A X A^{*}, \quad \operatorname{Ad}_{A} \circ \mathrm{t}: X \mapsto A X^{\mathrm{t}} A^{*}
$$

are exposed.

- Choi map is an extremal nonexposed positive map.
- Other examples are due to Cruściński and Sarbicki, Ha and Kye, and others..

Example of Miller and Olkiewicz

Miller and Olkiewicz ('14) considered the following example of a bistochastic map.

$$
S: B\left(\mathbb{C}^{3}\right) \rightarrow B\left(\mathbb{C}^{3}\right)
$$

Example of Miller and Olkiewicz

Miller and Olkiewicz ('14) considered the following example of a bistochastic map.

$$
\begin{gathered}
S: B\left(\mathbb{C}^{3}\right) \rightarrow B\left(\mathbb{C}^{3}\right) \\
S\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{2}\left(x_{11}+x_{22}\right) & 0 & \frac{1}{\sqrt{2}} x_{13} \\
0 & \frac{1}{2}\left(x_{11}+x_{22}\right) & \frac{1}{\sqrt{2}} x_{32} \\
\frac{1}{\sqrt{2}} x_{31} & \frac{1}{\sqrt{2}} x_{23} & x_{33}
\end{array}\right)
\end{gathered}
$$

Example of Miller and Olkiewicz

Miller and Olkiewicz ('14) considered the following example of a bistochastic map.

$$
\begin{gathered}
S: B\left(\mathbb{C}^{3}\right) \rightarrow B\left(\mathbb{C}^{3}\right) \\
S\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{2}\left(x_{11}+x_{22}\right) & 0 & \frac{1}{\sqrt{2}} x_{13} \\
0 & \frac{1}{2}\left(x_{11}+x_{22}\right) & \frac{1}{\sqrt{2}} x_{32} \\
\frac{1}{\sqrt{2}} x_{31} & \frac{1}{\sqrt{2}} x_{23} & x_{33}
\end{array}\right)
\end{gathered}
$$

Example of Miller and Olkiewicz

Miller and Olkiewicz ('14) considered the following example of a bistochastic map.

$$
\begin{gathered}
S: B\left(\mathbb{C}^{3}\right) \rightarrow B\left(\mathbb{C}^{3}\right) \\
S\left(\begin{array}{ccc}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{2}\left(x_{11}+x_{22}\right) & 0 & \frac{1}{\sqrt{2}} x_{13} \\
0 & \frac{1}{2}\left(x_{11}+x_{22}\right) & \frac{1}{\sqrt{2}} x_{32} \\
\frac{1}{\sqrt{2}} x_{31} & \frac{1}{\sqrt{2}} x_{23} & x_{33}
\end{array}\right)
\end{gathered}
$$

Theorem (Miller, Olkiewicz)
S is a bistochastic, exposed and nondecomposable (even atomic) map.

Generalization by Rutkowski et al.

Rutkowski, Sarbicki and Chruściński proposed the following generalization of the map S :

Generalization by Rutkowski et al.

Rutkowski, Sarbicki and Chruściński proposed the following generalization of the map S :

$$
\Lambda_{d}: B\left(\mathbb{C}^{d+1}\right) \rightarrow B\left(\mathbb{C}^{d+1}\right)
$$

Generalization by Rutkowski et al.

Rutkowski, Sarbicki and Chruściński proposed the following generalization of the map S :

$$
\begin{gathered}
\Lambda_{d}: B\left(\mathbb{C}^{d+1}\right) \rightarrow B\left(\mathbb{C}^{d+1}\right) \\
\Lambda_{d}(X)=\frac{1}{d}\left(\begin{array}{ccccc}
\sum_{i=1}^{d} x_{i i} & \cdots & 0 & 0 & \sqrt{d} x_{1, d+1} \\
\vdots & & \vdots & \vdots & \vdots \\
0 & \cdots & \sum_{i=1}^{d} x_{i i} & 0 & \sqrt{d} x_{d-1, d+1} \\
0 & \cdots & 0 & \sum_{i=1}^{d} x_{i i} & \sqrt{d} x_{d+1, d} \\
\sqrt{d} x_{d+1,1} & \cdots & \sqrt{d} x_{d+1, d-1} & \sqrt{d} x_{d, d+1} & d x_{d+1, d+1}
\end{array}\right)
\end{gathered}
$$

Generalization by Rutkowski et al.

Rutkowski, Sarbicki and Chruściński proposed the following generalization of the map S :

$$
\begin{gathered}
\Lambda_{d}: B\left(\mathbb{C}^{d+1}\right) \rightarrow B\left(\mathbb{C}^{d+1}\right) \\
\Lambda_{d}(X)=\frac{1}{d}\left(\begin{array}{ccccc}
\sum_{i=1}^{d} x_{i i} & \cdots & 0 & 0 & \sqrt{d} x_{1, d+1} \\
\vdots & & \vdots & \vdots & \vdots \\
0 & \cdots & \sum_{i=1}^{d} x_{i i} & 0 & \sqrt{d} x_{d-1, d+1} \\
0 & \cdots & 0 & \sum_{i=1}^{d} x_{i i} & \sqrt{d} x_{d+1, d} \\
\sqrt{d} x_{d+1,1} & \cdots & \sqrt{d} x_{d+1, d-1} & \sqrt{d} x_{d, d+1} & d x_{d+1, d+1}
\end{array}\right)
\end{gathered}
$$

Theorem (Rutkowski et al.)
Λ_{d} is a bistochastic positive, nondecomposable and optimal map.

Miller-Olkiewicz map as a merging

For $V=\left(\begin{array}{ccc}\sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1\end{array}\right)$, consider 'denormalized' version of S

$$
\phi(X)=V S(X) V^{*}
$$

Miller-Olkiewicz map as a merging

For $V=\left(\begin{array}{ccc}\sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1\end{array}\right)$, consider 'denormalized' version of S

$$
\phi(X)=V S(X) V^{*}
$$

$$
\phi\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\left(\begin{array}{ccc}
x_{11}+x_{22} & 0 & x_{13} \\
0 & x_{11}+x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

Miller-Olkiewicz map as a merging

For $V=\left(\begin{array}{ccc}\sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1\end{array}\right)$, consider 'denormalized' version of S

$$
\phi(X)=V S(X) V^{*}
$$

$$
\begin{aligned}
\phi\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) & =\left(\begin{array}{ccc}
x_{11}+x_{22} & 0 & x_{13} \\
0 & x_{11}+x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right) \\
\phi & =\phi_{\text {ess }}+\phi_{\text {diag }}
\end{aligned}
$$

Miller-Olkiewicz map as a merging

For $V=\left(\begin{array}{ccc}\sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1\end{array}\right)$, consider 'denormalized' version of S

$$
\begin{gathered}
\phi(X)=V S(X) V^{*} \\
\phi\left(\begin{array}{ccc}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\left(\begin{array}{ccc}
x_{11}+x_{22} & 0 & x_{13} \\
0 & x_{11}+x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right) \\
\phi=\phi_{\text {ess }}+\phi_{\text {diag }} \\
\phi_{\text {ess }}: X \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right),
\end{gathered}
$$

Miller-Olkiewicz map as a merging

For $V=\left(\begin{array}{ccc}\sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1\end{array}\right)$, consider 'denormalized' version of S

$$
\begin{gathered}
\phi(X)=V S(X) V^{*} \\
\phi\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\left(\begin{array}{ccc}
x_{11}+x_{22} & 0 & x_{13} \\
0 & x_{11}+x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right) \\
\phi=\phi_{\text {ess }}+\phi_{\text {diag }} \\
\phi_{\text {ess }}: X \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right), \quad \phi_{\text {diag }}: X \mapsto\left(\begin{array}{ccc}
x_{22} & 0 & 0 \\
0 & x_{11} & 0 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Miller-Olkiewicz map as a merging

Miller-Olkiewicz map as a merging

- identity

Miller-Olkiewicz map as a merging

- identity

$$
\phi_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

Miller-Olkiewicz map as a merging

- identity

$$
\phi_{\mathrm{ess}}:\left(\begin{array}{ll}
x_{11} & x_{13} \\
x_{31} & \\
x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ll}
x_{11} & x_{13} \\
x_{31} & x_{33}
\end{array}\right)
$$

Miller-Olkiewicz map as a merging

- identity

$$
\phi_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

Miller-Olkiewicz map as a merging

- identity

$$
\phi_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

- transposition

Miller-Olkiewicz map as a merging

- identity

$$
\phi_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

- transposition

$$
\phi_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

Miller-Olkiewicz map as a merging

- identity

$$
\phi_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

- transposition

$$
\phi_{\mathrm{ess}}:\left(\begin{array}{ll}
x_{22} & x_{23} \\
x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ll}
x_{22} & x_{32} \\
x_{23} & x_{33}
\end{array}\right)
$$

Miller-Olkiewicz map as a merging

- identity

$$
\phi_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

- transposition

$$
\phi_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

- identity

$$
\phi_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

- transposition

$$
\phi_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

- merging of identity and transposition

$$
\tilde{S}_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

Merging of positive maps

Let $K_{1}, K_{2}, H_{1}, H_{2}$ be Hilbert spaces and

$$
\phi_{1}: B\left(K_{1}\right) \rightarrow B\left(H_{1}\right), \quad \phi_{2}: B\left(K_{2}\right) \rightarrow B\left(H_{2}\right)
$$

be positive maps.

Merging of positive maps

Let $K_{1}, K_{2}, H_{1}, H_{2}$ be Hilbert spaces and

$$
\phi_{1}: B\left(K_{1}\right) \rightarrow B\left(H_{1}\right), \quad \phi_{2}: B\left(K_{2}\right) \rightarrow B\left(H_{2}\right)
$$

be positive maps.
Let $K_{3}=H_{3}=\mathbb{C}$, and consider spaces

$$
K=K_{1} \oplus K_{2} \oplus K_{3}, \quad H=H_{1} \oplus H_{2} \oplus H_{3}
$$

Merging of positive maps

Let $K_{1}, K_{2}, H_{1}, H_{2}$ be Hilbert spaces and

$$
\phi_{1}: B\left(K_{1}\right) \rightarrow B\left(H_{1}\right), \quad \phi_{2}: B\left(K_{2}\right) \rightarrow B\left(H_{2}\right)
$$

be positive maps.
Let $K_{3}=H_{3}=\mathbb{C}$, and consider spaces

$$
K=K_{1} \oplus K_{2} \oplus K_{3}, \quad H=H_{1} \oplus H_{2} \oplus H_{3}
$$

Each element $X \in B(K)$ can be represented in the matrix form

$$
X=\left(\begin{array}{c:c:c}
X_{11} & X_{12} & X_{13} \\
\hdashline \bar{X}_{21} & X_{22} & \bar{X}_{23} \\
\hdashline \bar{X}_{31} & \bar{X}_{32} & \bar{X}_{33}
\end{array}\right)
$$

where $X_{i j} \in B\left(K_{j}, K_{i}\right)$. In particular

$$
X_{i 3} \in B\left(\mathbb{C}, K_{i}\right)=K_{i}, \quad X_{3 j} \in B\left(K_{j}, \mathbb{C}\right)=K_{j}^{*}, \quad X_{33} \in \mathbb{C} .
$$

Merging of positive maps

Consider a $\phi: B(K) \rightarrow B(H)$ given by

where

- $B_{i}, C_{i}: K_{i} \rightarrow H_{i}, \quad i=1,2$, linear operators
- $\omega_{i}: B\left(K_{i}\right) \rightarrow \mathbb{C}, \quad i=1,2, \quad$ positive functionals
- $P_{i} \in B\left(H_{i}\right), \quad i=1,2, \quad$ projection onto the range of $\phi_{i}\left(\square_{B\left(K_{i}\right)}\right)$

Definition

We say that the map ϕ is a merging of ϕ_{1}, ϕ_{2} by means of ingredients B_{i}, C_{i}, ω_{i}.

Positivity of merging

Question: Is a merging of positive maps ϕ_{1} and ϕ_{2} positive?

Positivity of merging

Question: Is a merging of positive maps ϕ_{1} and ϕ_{2} positive?

Positivity of merging

Question: Is a merging of positive maps ϕ_{1} and ϕ_{2} positive? Let $\eta_{i} \in K_{i}, y_{i} \in H_{i}$. Define

$$
\begin{gathered}
\mu_{i}\left(\eta_{i}, y_{i}\right)=\sqrt{\left\langle y_{i}, \phi_{i}\left(\eta_{i} \eta_{i}^{*}\right) y_{i}\right\rangle} \quad \varepsilon_{i}\left(\eta_{i}, y_{i}\right)=\left|\left\langle y_{i}, B_{i} \eta_{i}\right\rangle\right|+\left|\left\langle y_{i}, C_{i} \bar{\eta}_{i}\right\rangle\right| \\
\delta_{i}\left(\eta_{i}, y_{i}\right)=\sqrt{\mu_{i}\left(\eta_{i}, y_{i}\right)^{2}-\varepsilon_{i}\left(\eta_{i}, y_{i}\right)^{2}} \quad \sigma_{i}\left(\eta_{i}, y_{i^{\prime}}\right)=\sqrt{\omega_{i}\left(\eta_{i} \eta_{i}^{*}\right)}\left\|P_{i^{\prime}} y_{i^{\prime}}\right\|
\end{gathered}
$$

Positivity of merging

Question: Is a merging of positive maps ϕ_{1} and ϕ_{2} positive? Let $\eta_{i} \in K_{i}, y_{i} \in H_{i}$. Define

$$
\begin{gathered}
\mu_{i}\left(\eta_{i}, y_{i}\right)=\sqrt{\left\langle y_{i}, \phi_{i}\left(\eta_{i} \eta_{i}^{*}\right) y_{i}\right\rangle} \quad \varepsilon_{i}\left(\eta_{i}, y_{i}\right)=\left|\left\langle y_{i}, B_{i} \eta_{i}\right\rangle\right|+\left|\left\langle y_{i}, C_{i} \bar{\eta}_{i}\right\rangle\right| \\
\delta_{i}\left(\eta_{i}, y_{i}\right)=\sqrt{\mu_{i}\left(\eta_{i}, y_{i}\right)^{2}-\varepsilon_{i}\left(\eta_{i}, y_{i}\right)^{2}} \quad \sigma_{i}\left(\eta_{i}, y_{i^{\prime}}\right)=\sqrt{\omega_{i}\left(\eta_{i} \eta_{i}^{*}\right)}\left\|P_{i^{\prime}} y_{i^{\prime}}\right\|
\end{gathered}
$$

Theorem

The merging ϕ of positive maps ϕ_{1}, ϕ_{2} by means of B_{i}, C_{i}, ω_{i} is a positive map if and only if the following conditions are satisfied
(i) $\varepsilon_{i}\left(\eta_{i}, y_{i}\right) \leq \mu_{i}\left(\eta_{i}, y_{i}\right)$ for $i=1,2, \eta_{i} \in K_{i}, y_{i} \in H_{i}$,
(ii) for every $\eta_{1} \in K_{1}, \eta_{2} \in K_{2}, y_{1} \in H_{1}, y_{2} \in H_{2}$,

$$
\delta_{1}\left(\eta_{1}, y_{1}\right) \delta_{2}\left(\eta_{2}, y_{2}\right)+\sigma_{1}\left(\eta_{1}, y_{2}\right) \sigma_{2}\left(\eta_{2}, y_{1}\right) \geq \varepsilon_{1}\left(\eta_{1}, y_{1}\right) \varepsilon_{2}\left(\eta_{2}, y_{2}\right)
$$

$$
\begin{gathered}
\phi_{1}(X)=A_{1} X A_{1}^{*}, \quad \phi_{2}(X)=A_{2} X^{t} A_{2}^{*} \\
B_{1}=A_{1}, \quad B_{2}=0, \quad C_{1}=0, \quad C_{2}=A_{2} \\
\omega_{1}(X)=\operatorname{Tr}\left(A_{1} X A_{2}^{*}\right), \quad \omega_{2}(X)=\operatorname{Tr}\left(A_{2} X^{t} A_{2}^{*}\right)
\end{gathered}
$$

$$
\begin{array}{cl}
\phi_{1}(X)=A_{1} X A_{1}^{*}, & \phi_{2}(X)=A_{2} X^{t} A_{2}^{*} \\
B_{1}=A_{1}, \quad B_{2}=0, & C_{1}=0, \\
C_{2}=A_{2} \\
\omega_{1}(X)=\operatorname{Tr}\left(A_{1} X A_{2}^{*}\right), & \omega_{2}(X)=\operatorname{Tr}\left(A_{2} X^{t} A_{2}^{*}\right) \\
\phi(X)=\left(\begin{array}{c:c}
A_{1} X_{11} A_{1}^{*}+\operatorname{Tr}\left(A_{2} X_{22}^{\mathrm{t}} A_{2}^{*}\right) E_{1} & 0 \\
\hdashline 0 & A_{1} X_{13} \\
\hdashline X_{31} \bar{A}_{1}^{*} & A_{2} X_{22}^{\mathrm{t}} \bar{A}_{2}^{*}+\operatorname{Tr}\left(A_{1} X_{11} A_{1}^{\bar{*}}\right) E_{2} \\
\hdashline \bar{A}_{2} \bar{X}_{32}^{\mathrm{t}} \\
\hdashline \bar{X}_{23}^{\mathrm{t}} \bar{A}_{2}^{*} & X_{33}
\end{array}\right)
\end{array}
$$

$$
\left.\begin{array}{cl}
\phi_{1}(X)=A_{1} X A_{1}^{*}, & \phi_{2}(X)=A_{2} X^{t} A_{2}^{*} \\
B_{1}=A_{1}, \quad B_{2}=0, & C_{1}=0, \\
C_{2}=A_{2} \\
\omega_{1}(X)=\operatorname{Tr}\left(A_{1} X A_{2}^{*}\right), & \omega_{2}(X)=\operatorname{Tr}\left(A_{2} X^{t} A_{2}^{*}\right) \\
\phi(X)=\left(\begin{array}{c:c}
A_{1} X_{11} A_{1}^{*}+\operatorname{Tr}\left(A_{2} X_{22}^{\mathrm{t}} A_{2}^{*}\right) E_{1} & 0 \\
\hdashline 0 & A_{1} X_{13} \\
\hdashline X_{31} \bar{A}_{1}^{*} & A_{22}^{\mathrm{t}} \bar{A}_{2}^{*}+\operatorname{Tr}\left(A_{1} X_{11} A_{1}^{\bar{*}}\right) E_{2}^{2} \\
\hdashline A_{2} \bar{X}_{32}^{\mathrm{t}} \\
\hdashline & X_{23}^{\mathrm{A}} \bar{A}_{2}^{*}
\end{array}\right. & X_{33}^{-}
\end{array}\right) .
$$

where

- $A_{i}: K_{i} \rightarrow H_{i}$ are Hilbert-Schmidt operators, $i=1,2$.
- E_{i} is the projection in $B\left(H_{i}\right)$ onto the range of A_{i} for $i=1,2$.

$$
\phi(X)=\left(\begin{array}{c:c:c}
A_{1} X_{11} A_{1}^{*}+\operatorname{Tr}\left(A_{2} X_{22}^{\mathrm{t}} A_{2}^{*}\right) E_{1} & 0 & A_{1} X_{13} \\
\hdashline 0 & A_{2} & \mathcal{A}_{2}^{\mathrm{t}} \bar{A}_{2}^{*}+\operatorname{Tr}\left(\bar{A}_{1} X_{11} A_{1}^{\bar{*}}\right) E_{2} \\
\hdashline X_{31} \bar{A}_{2}^{\mathrm{t}} \\
\hdashline \bar{A}_{12}^{\mathrm{t}} & \bar{X}_{23}^{\mathrm{t}} \bar{A}_{2}^{*} & X_{33}
\end{array}\right)
$$

$$
\begin{aligned}
& \phi(X)=\left(\begin{array}{ll:l}
A_{1} X_{11} A_{1}^{*}+\operatorname{Tr}\left(A_{2} X_{22}^{\mathrm{t}} A_{2}^{*}\right) E_{1} & 0 & A_{1} X_{13} \\
\hdashline 0 & \bar{A}_{2} X_{22}^{\mathrm{t}} \bar{A}_{2}^{*}+\operatorname{Tr}\left(A_{1} X_{11} A_{1}^{*}\right) & E_{2} \\
\hdashline X_{31} \bar{A}_{1}^{*} & \bar{A}_{2}^{\mathrm{t}} \\
\hdashline X_{23} \\
\mu_{1}\left(\eta_{1}, y_{1}\right)=\left|\left\langle y_{1}, A_{1} \eta_{1}\right\rangle\right|, & \mu_{2}\left(\eta_{2}, y_{2}\right)=\left|\left\langle y_{2}, A_{2} \overline{\eta_{2}}\right\rangle\right|, \\
\varepsilon_{1}\left(\eta_{1}, y_{1}\right)=\left|\left\langle y_{1}, A_{1} \eta_{1}\right\rangle\right|, & \varepsilon_{2}\left(\eta_{2}, y_{2}\right)=\mid\left\langle y_{2}, A_{2} \overline{\left.\eta_{2}\right\rangle}\right\rangle, \\
\delta_{1}\left(\eta_{1}, y_{1}\right)=0, & \delta_{33}
\end{array}\right) \\
& \sigma_{1}\left(\eta_{1}, y_{2}\right)=\left\|A_{1} \eta_{1}\right\|\left\|y_{2}\right\|, \\
& \sigma_{2}\left(\eta_{2}, y_{2}\right)=0, \\
& \sigma_{2}\left(\eta_{2}, y_{1}\right)=\left\|A_{2} \overline{\eta_{2}}\right\|\left\|y_{1}\right\| .
\end{aligned}
$$

$$
\begin{gathered}
\phi(X)=\left(\begin{array}{c:c}
A_{1} X_{11} A_{1}^{*}+\operatorname{Tr}\left(A_{2} X_{22}^{\mathrm{t}} A_{2}^{*}\right) E_{1} & 0 \\
\hdashline X_{31} \hat{A}_{1}^{*} & A_{1} X_{13} \\
\hdashline A_{2} \bar{X}_{22}^{\mathrm{t}} A_{2}^{*}+\operatorname{Tr}\left(A_{1} X_{11} A_{1}^{*}\right) E_{2} & \bar{A}_{23}^{\mathrm{A}} \bar{A}_{2}^{*} \\
\mu_{1}\left(\eta_{1}, y_{1}\right)=\left|\left\langle y_{1}, A_{1} \eta_{1}\right\rangle\right|, & \mu_{2}\left(\eta_{2}, y_{2}\right)=\left|\left\langle y_{2}, A_{2} \overline{\eta_{2}}\right\rangle\right|, \\
\varepsilon_{1}\left(\eta_{1}, y_{1}\right)=\left|\left\langle y_{1}, A_{1} \eta_{1}\right\rangle\right|, & \varepsilon_{2}\left(\eta_{2}, y_{2}\right)=\mid\left\langle y_{2}, A_{2} \overline{\left.\eta_{2}\right\rangle}\right\rangle, \\
\delta_{1}\left(\eta_{1}, y_{1}\right)=0, & \delta_{2}\left(\eta_{2}, y_{2}\right)=0, \\
\sigma_{1}\left(\eta_{1}, y_{2}\right)=\left\|A_{1} \eta_{1}\right\|\left\|y_{2}\right\|, & \sigma_{2}\left(\eta_{2}, y_{1}\right)=\left\|A_{2} \overline{\eta_{2}}\right\|\left\|y_{1}\right\| . \\
& \\
\delta_{1} \delta_{2}+\sigma_{1} \sigma_{2} \geq \varepsilon_{1} \varepsilon_{2}
\end{array}\right.
\end{gathered}
$$

Hence ϕ is positive.

$$
\begin{gathered}
\phi_{1}(X)=\operatorname{Tr}(X) \rrbracket_{B\left(K_{1}\right)}, \quad \phi_{2}(X)=X^{t} \\
B_{1}=\mathrm{id}_{K_{1}}, \quad B_{2}=0, \quad C_{1}=0, \quad C_{2}=\mathrm{id}_{K_{2}} \\
\omega_{1}(X)=\operatorname{Tr}(X), \quad \omega_{2}(X)=\operatorname{Tr}(X)
\end{gathered}
$$

$$
\begin{gathered}
\phi_{1}(X)=\operatorname{Tr}(X) \rrbracket_{B\left(K_{1}\right)}, \quad \phi_{2}(X)=X^{t} \\
B_{1}=\operatorname{id}_{K_{1}}, \quad B_{2}=0, \quad C_{1}=0, \quad C_{2}=\operatorname{id}_{K_{2}} \\
\omega_{1}(X)=\operatorname{Tr}(X), \quad \omega_{2}(X)=\operatorname{Tr}(X) \\
\Omega(X)=\left(\begin{array}{c:c:c}
\left(\operatorname{Tr}\left(X_{11}\right)+\operatorname{Tr}\left(X_{22}\right)\right) \rrbracket_{B\left(K_{1}\right)} & 0 & X_{13} \\
\hdashline 0 & \bar{X}_{22}^{\mathrm{t}}+\operatorname{Tr}\left(\bar{X}_{11}\right) \rrbracket_{B\left(K_{2} 2\right.} & \bar{X}_{32}^{\mathrm{t}} \\
\hdashline X_{31} & X_{23}^{\mathrm{t}} & X_{33}
\end{array}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \phi_{1}(X)=\operatorname{Tr}(X) \rrbracket_{B\left(K_{1}\right)}, \quad \phi_{2}(X)=X^{t} \\
& B_{1}=\operatorname{id}_{K_{1}}, \quad B_{2}=0, \quad C_{1}=0, \quad C_{2}=\operatorname{id}_{K_{2}} \\
& \omega_{1}(X)=\operatorname{Tr}(X), \quad \omega_{2}(X)=\operatorname{Tr}(X) \\
& \Omega(X)=\left(\begin{array}{c:c:c}
\left(\operatorname{Tr}\left(X_{11}\right)+\operatorname{Tr}\left(X_{22}\right)\right) n_{B\left(K_{1}\right)} & 0 & X_{13} \\
\hdashline 0 & \bar{x}^{\mathrm{t}^{\mathrm{t}}}+\operatorname{Tr}\left(\bar{X}_{11}\right) \square_{B\left(K_{2}\right)} & \bar{X}_{32}^{\mathrm{t}} \\
\hdashline X_{31} & \bar{X}_{23}^{\mathrm{t}} & \bar{X}_{33}
\end{array}\right) \\
& \mu_{1}\left(\eta_{1}, y_{1}\right)=\left\|y_{1}\right\|\left\|\eta_{1}\right\|, \quad \quad \mu_{2}\left(\eta_{2}, y_{2}\right)=\left|\left\langle y_{2}, \overline{\eta_{2}}\right\rangle\right|, \\
& \varepsilon_{1}\left(\eta_{1}, y_{1}\right)=\left|\left\langle y_{1}, \eta_{1}\right\rangle\right| \text {, } \\
& \varepsilon_{2}\left(\eta_{2}, y_{2}\right)=\left|\left\langle y_{2}, \overline{\eta_{2}}\right\rangle\right|, \\
& \delta_{1}\left(\eta_{1}, y_{1}\right)=\sqrt{\left\|y_{1}\right\|^{2}\left\|\eta_{1}\right\|^{2}}, \quad \delta_{2}\left(\eta_{2}, y_{2}\right)=0, \\
& \sigma_{1}\left(\eta_{1}, y_{2}\right)=\left\|\eta_{1}\right\|\left\|y_{2}\right\|, \quad \sigma_{2}\left(\eta_{2}, y_{1}\right)=\left\|\overline{\eta_{2}}\right\|\left\|y_{1}\right\| .
\end{aligned}
$$

Properties of merging

$$
\phi_{i}: B\left(K_{i}\right) \rightarrow B\left(H_{i}\right), \quad B_{i}, C_{i}: K_{i} \rightarrow H_{i}, \quad i=1,2
$$

Properties of merging

$$
\phi_{i}: B\left(K_{i}\right) \rightarrow B\left(H_{i}\right), \quad B_{i}, C_{i}: K_{i} \rightarrow H_{i}, \quad i=1,2
$$

Define $\psi_{i}: B\left(K_{i}\right) \rightarrow B\left(H_{i}\right)$ and $\chi_{i}: B\left(K_{i}\right) \rightarrow B\left(H_{i}\right)$ by

$$
\psi_{i}(X)=B_{i} X B_{i}^{*}, \quad \chi_{i}(X)=C_{i} X^{t} C_{i}^{*}, \quad X \in B\left(K_{i}\right) .
$$

Corollary

If the merging of positive maps ϕ_{1}, ϕ_{2} by means of B_{i}, C_{i}, ω_{i} is positive, then $\psi_{i}+\chi_{i} \leq \phi_{i}$ for $i=1,2$.

$$
\phi_{i}: B\left(K_{i}\right) \rightarrow B\left(H_{i}\right), \quad B_{i}, C_{i}: K_{i} \rightarrow H_{i}, \quad i=1,2
$$

Define $\psi_{i}: B\left(K_{i}\right) \rightarrow B\left(H_{i}\right)$ and $\chi_{i}: B\left(K_{i}\right) \rightarrow B\left(H_{i}\right)$ by

$$
\psi_{i}(X)=B_{i} X B_{i}^{*}, \quad \chi_{i}(X)=C_{i} X^{t} C_{i}^{*}, \quad X \in B\left(K_{i}\right)
$$

Corollary

If the merging of positive maps ϕ_{1}, ϕ_{2} by means of B_{i}, C_{i}, ω_{i} is positive, then $\psi_{i}+\chi_{i} \leq \phi_{i}$ for $i=1,2$.

No notrivial merging of two extremal nondecomposable maps produces a positive map. Therefore, in order to get some nontrivial positive map by the merging procedure one should consider maps ϕ_{1} and ϕ_{2} with some 'regularity' properties. However, for properly chosen 'regular' maps there is a possibility for nontrivial merging. Surprisingly, merging of 'regular' maps can produce highly 'nonregular' positive maps.

Nondecomposable merging

Theorem

If ϕ_{1} is 2-positive and ϕ_{2} is 2-copositive, then there are operators B_{i}, C_{i} and functionals ω_{i} such that merging of ϕ_{1} and ϕ_{2} by means of C_{i}, D_{i}, ω_{i} is a positive nondecomposable map.

Corollary

Consequently, for each pair of positive maps satisfying assumptions of the above theorem, there is a merging which is an entanglement witness for some PPT state

By considering EW from the previous slide we obtain the following example of (unnormalized) PPT entangled matrix

$$
Z=\left(\begin{array}{ccc|ccc|ccc}
\gamma & \cdot & -\overline{b_{1}} \\
\cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot & -c_{1} & \cdot & \cdot \\
\hline \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \gamma & \cdot & \cdot & \cdot & -\overline{b_{2}} \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot & -c_{2} & \cdot \\
\hline \cdot & \cdot & -\overline{c_{1}} & \cdot & \cdot & \cdot & s_{1}^{2} & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & -\overline{c_{2}} & \cdot & s_{2}^{2} & \cdot \\
-b_{1} & \cdot & \cdot & \cdot & -b_{2} & \cdot & \cdot & \cdot & \gamma^{-1} s^{2}
\end{array}\right)
$$

where $\gamma>0, b_{1}, c_{1} \in \mathbb{C}$,

$$
s_{i}=\max \left\{\left|b_{i}\right|,\left|c_{i}\right|\right\}, \quad s=\max \left\{\sqrt{\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}}, \sqrt{\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}}\right\}
$$

Exposed positive maps

Theorem (M,Rutkowski)

For $A_{i}: K_{i} \rightarrow H_{i}, i=1,2$, the map
$\phi_{A_{1}, A_{2}}: B\left(K_{1} \oplus K_{2} \oplus \mathbb{C}\right) \rightarrow B\left(H_{1} \oplus H_{2} \oplus \mathbb{C}\right)$ given by
$X \mapsto\left(\begin{array}{c:c:c}A_{1} X_{11} A_{1}^{*}+\operatorname{Tr}\left(A_{2} X_{22}^{\mathrm{t}} A_{2}^{*}\right) E_{1} & 0 & A_{1} X_{13} \\ \hdashline 0 & A_{1} & \left.\bar{A}_{2}^{\mathrm{t}} \bar{A}_{2}^{*}+\operatorname{Tr} A_{1} X_{11} A_{1}^{*}\right) E_{2} \\ \hdashline-A_{2} & \bar{X}_{32}^{\mathrm{t}} \\ \hdashline X_{31} \bar{A}_{1}^{*} & \bar{X}_{23} \bar{A}_{2}^{*} & X_{33}\end{array}\right)$
is exposed in the cone of positive maps.

Remark

Strong spanning property was shown by Chruscinski and Sarbicki to be a useful sufficient condition for exposedness. Note, that $\phi_{A_{1}, A_{2}}$ does not satisfy this property for general choice of A_{1}, A_{2}.

Optimal positive maps maps

A positive map $\phi: B(K) \rightarrow B(H)$ is called optimal if there is no CP map ψ such that $\psi \leq \phi$.

Optimal positive maps maps

A positive map $\phi: B(K) \rightarrow B(H)$ is called optimal if there is no CP map ψ such that $\psi \leq \phi$. Equivalently: The face Face (ϕ) does not contain CP maps.

A positive map $\phi: B(K) \rightarrow B(H)$ is called optimal if there is no CP map ψ such that $\psi \leq \phi$. Equivalently: The face Face (ϕ) does not contain CP maps.
Spanning property: There are vectors $\eta_{k} \in K$ and $y_{k} \in H, k=1, \ldots, N$, such that

- $\left\langle y_{k}, \phi\left(\eta_{k} \eta_{k}^{*}\right) y_{k}\right\rangle=0$ for $k=1, \ldots, N$,
- $\operatorname{span}\left\{\eta_{k} \otimes y_{k}: k=1, \ldots, N\right\}=K \otimes H$.

Optimal positive maps maps

A positive map $\phi: B(K) \rightarrow B(H)$ is called optimal if there is no CP map ψ such that $\psi \leq \phi$. Equivalently: The face Face (ϕ) does not contain CP maps.
Spanning property: There are vectors $\eta_{k} \in K$ and $y_{k} \in H, k=1, \ldots, N$, such that

- $\left\langle y_{k}, \phi\left(\eta_{k} \eta_{k}^{*}\right) y_{k}\right\rangle=0$ for $k=1, \ldots, N$,
- $\operatorname{span}\left\{\eta_{k} \otimes y_{k}: k=1, \ldots, N\right\}=K \otimes H$.

Kye: Spanning property is equivalent to $\{\phi\}^{\prime \prime} \cap C P=\varnothing$.

Optimal positive maps maps

A positive map $\phi: B(K) \rightarrow B(H)$ is called optimal if there is no CP map ψ such that $\psi \leq \phi$. Equivalently: The face Face (ϕ) does not contain CP maps.
Spanning property: There are vectors $\eta_{k} \in K$ and $y_{k} \in H, k=1, \ldots, N$, such that

- $\left\langle y_{k}, \phi\left(\eta_{k} \eta_{k}^{*}\right) y_{k}\right\rangle=0$ for $k=1, \ldots, N$,
- $\operatorname{span}\left\{\eta_{k} \otimes y_{k}: k=1, \ldots, N\right\}=K \otimes H$.

Kye: Spanning property is equivalent to $\{\phi\}^{\prime \prime} \cap C P=\varnothing$.

Theorem (M,Rutkowski)

The map $\Omega_{K_{1}, K_{2}}: B\left(K_{1} \oplus K_{2} \oplus \mathbb{C}\right) \rightarrow B\left(H_{1} \oplus H_{2} \oplus \mathbb{C}\right)$ given by

$$
X \mapsto\left(\begin{array}{c:c:c}
\left(\operatorname{Tr}\left(X_{11}\right)+\operatorname{Tr}\left(X_{22}\right)\right) \rrbracket_{B\left(K_{1}\right)} & 0 & X_{13} \\
\hdashline 0 & \bar{x}^{\mathrm{t}} & 0 \\
\hdashline X_{31} & \operatorname{Tr}\left(\bar{X}_{11}\right) \underline{a}_{B\left(K_{2}-\right.} & \bar{X}_{32}^{\mathrm{t}} \\
\hdashline \bar{X}_{23}^{\mathrm{t}} & \bar{X}_{33}
\end{array}\right)
$$

satisfies spanning property.

Case 3×3-positivity

The general form of $\phi: M_{3}(\mathbb{C}) \rightarrow M_{3}(\mathbb{C})$:
$\phi\left(\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right)=\left(\begin{array}{ccc}f_{1} x_{11}+w_{2} x_{22} & 0 & b_{1} x_{13}+c_{1} x_{31} \\ 0 & f_{2} x_{22}+w_{1} x_{11} & b_{2} x_{23}+c_{2} x_{32} \\ \overline{b_{1}} x_{31}+\overline{c_{1}} x_{13} & \overline{b_{2}} x_{32}+\overline{c_{2}} x_{23} & x_{33}\end{array}\right)$.

Case 3×3-positivity

The general form of $\phi: M_{3}(\mathbb{C}) \rightarrow M_{3}(\mathbb{C})$:
$\phi\left(\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right)=\left(\begin{array}{ccc}f_{1} x_{11}+w_{2} x_{22} & 0 & b_{1} x_{13}+c_{1} x_{31} \\ 0 & f_{2} x_{22}+w_{1} x_{11} & b_{2} x_{23}+c_{2} x_{32} \\ \overline{b_{1}} x_{31}+\overline{c_{1}} x_{13} & \overline{b_{2}} x_{32}+\overline{c_{2}} x_{23} & x_{33}\end{array}\right)$.

$$
\mu_{i}=f_{i}^{1 / 2}, \quad \sigma_{i}=w_{i}^{1 / 2}, \quad \varepsilon_{i}=\left|b_{i}\right|+\left|c_{i}\right|, \quad \delta_{i}=\left(\mu_{i}^{2}-\varepsilon_{i}^{2}\right)^{1 / 2} .
$$

Case 3×3-positivity

The general form of $\phi: M_{3}(\mathbb{C}) \rightarrow M_{3}(\mathbb{C})$:

$$
\begin{gathered}
\phi\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\left(\begin{array}{ccc}
f_{1} x_{11}+w_{2} x_{22} & 0 & b_{1} x_{13}+c_{1} x_{31} \\
0 & f_{2} x_{22}+w_{1} x_{11} & b_{2} x_{23}+c_{2} x_{32} \\
\overline{b_{1}} x_{31}+\overline{c_{1}} x_{13} & \overline{b_{2}} x_{32}+\overline{c_{2}} x_{23} & x_{33}
\end{array}\right) . \\
\mu_{i}=f_{i}^{1 / 2}, \quad \sigma_{i}=w_{i}^{1 / 2}, \quad \varepsilon_{i}=\left|b_{i}\right|+\left|c_{i}\right|, \quad \delta_{i}=\left(\mu_{i}^{2}-\varepsilon_{i}^{2}\right)^{1 / 2} . \\
\phi(X)=\left(\begin{array}{ccc}
\left(\varepsilon_{1}^{2}+\delta_{1}^{2}\right) x_{11}+\sigma_{2}^{2} x_{22} & 0 & b_{1} x_{13}+c_{1} x_{31} \\
0 & \left(\varepsilon_{2}^{2}+\delta_{2}^{2}\right) x_{22}+\sigma_{1}^{2} x_{11} & b_{2} x_{23}+c_{2} x_{32} \\
\overline{b_{1}} x_{31}+\overline{c_{1}} x_{13} & \overline{b_{2}} x_{32}+\overline{c_{2}} x_{23} & x_{33}
\end{array}\right) .
\end{gathered}
$$

Case 3×3-positivity

The general form of $\phi: M_{3}(\mathbb{C}) \rightarrow M_{3}(\mathbb{C})$:
$\phi\left(\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right)=\left(\begin{array}{ccc}f_{1} x_{11}+w_{2} x_{22} & 0 & b_{1} x_{13}+c_{1} x_{31} \\ 0 & f_{2} x_{22}+w_{1} x_{11} & b_{2} x_{23}+c_{2} x_{32} \\ \overline{b_{1}} x_{31}+\overline{c_{1}} x_{13} & \overline{b_{2}} x_{32}+\overline{c_{2}} x_{23} & x_{33}\end{array}\right)$.

$$
\begin{gathered}
\mu_{i}=f_{i}^{1 / 2}, \quad \sigma_{i}=w_{i}^{1 / 2}, \quad \varepsilon_{i}=\left|b_{i}\right|+\left|c_{i}\right|, \quad \delta_{i}=\left(\mu_{i}^{2}-\varepsilon_{i}^{2}\right)^{1 / 2} . \\
\phi(X)=\left(\begin{array}{ccc}
\left(\varepsilon_{1}^{2}+\delta_{1}^{2}\right) x_{11}+\sigma_{2}^{2} x_{22} & 0 & b_{1} x_{13}+c_{1} x_{31} \\
0 & \left(\varepsilon_{2}^{2}+\delta_{2}^{2}\right) x_{22}+\sigma_{1}^{2} x_{11} & b_{2} x_{23}+c_{2} x_{32} \\
\overline{b_{1}} x_{31}+\overline{c_{1}} x_{13} & \overline{b_{2} x_{32}+\overline{c_{2}} x_{23}} & x_{33}
\end{array}\right) .
\end{gathered}
$$

Proposition

The above map is positive if and only if $\sigma_{1} \sigma_{2}+\delta_{1} \delta_{2} \geq \varepsilon_{1} \varepsilon_{2}$.

Case 3×3-complete (co)positivity

$$
\phi(X)=\left(\begin{array}{ccc}
\left(\varepsilon_{1}^{2}+\delta_{1}^{2}\right) x_{11}+\sigma_{2}^{2} x_{22} & 0 & b_{1} x_{13}+c_{1} x_{31} \\
0 & \left(\varepsilon_{2}^{2}+\delta_{2}^{2}\right) x_{22}+\sigma_{1}^{2} x_{11} & b_{2} x_{23}+c_{2} x_{32} \\
\overline{b_{1}} x_{31}+\overline{c_{1}} x_{13} & \overline{b_{2}} x_{32}+\overline{c_{2}} x_{23} & x_{33}
\end{array}\right) .
$$

Case 3×3-complete (co)positivity

$$
\phi(X)=\left(\begin{array}{ccc}
\left(\varepsilon_{1}^{2}+\delta_{1}^{2}\right) x_{11}+\sigma_{2}^{2} x_{22} & 0 & b_{1} x_{13}+c_{1} x_{31} \\
0 & \left(\varepsilon_{2}^{2}+\delta_{2}^{2}\right) x_{22}+\sigma_{1}^{2} x_{11} & b_{2} x_{23}+c_{2} x_{32} \\
\overline{b_{1}} x_{31}+\overline{c_{1}} x_{13} & \overline{b_{2}} x_{32}+\overline{c_{2}} x_{23} & x_{33}
\end{array}\right) .
$$

Proposition

The following conditions are equivalent:
(i) ϕ is completely positive (respectively completely copositive);
(ii) ϕ is 2-positive (respectively 2-copositive);
(iii) $c_{1}=c_{2}=0$ (respectively $b_{1}=b_{2}=0$) and $\delta_{1} \delta_{2} \geq \varepsilon_{1} \varepsilon_{2}$.

Case 3×3 - decomposability vs. nondecomposability

$$
\phi(X)=\left(\begin{array}{ccc}
\left(\varepsilon_{1}^{2}+\delta_{1}^{2}\right) x_{11}+\sigma_{2}^{2} x_{22} & 0 & b_{1} x_{13}+c_{1} x_{31} \\
0 & \left(\varepsilon_{2}^{2}+\delta_{2}^{2}\right) x_{22}+\sigma_{1}^{2} x_{11} & b_{2} x_{23}+c_{2} x_{32} \\
\overline{b_{1}} x_{31}+\overline{c_{1}} x_{13} & \overline{b_{2}} x_{32}+\overline{c_{2}} x_{23} & x_{33}
\end{array}\right) .
$$

Case 3×3 - decomposability vs. nondecomposability

$$
\begin{gathered}
\phi(X)=\left(\begin{array}{ccc}
\left(\varepsilon_{1}^{2}+\delta_{1}^{2}\right) x_{11}+\sigma_{2}^{2} x_{22} & 0 & b_{1} x_{13}+c_{1} x_{31} \\
0 & \left(\varepsilon_{2}^{2}+\delta_{2}^{2}\right) x_{22}+\sigma_{1}^{2} x_{11} & b_{2} x_{23}+c_{2} x_{32} \\
\overline{b_{1}} x_{31}+\overline{c_{1}} x_{13} & \overline{b_{2} x_{32}+\overline{c_{2}} x_{23}} & x_{33}
\end{array}\right) . \\
\vec{b}=\left(\left|b_{1}\right|,\left|b_{2}\right|\right)^{t}, \quad \vec{c}=\left(\left|c_{1}\right|,\left|c_{2}\right|\right)^{t}, \quad s_{i}=\max \left\{| | b_{i}\left|,\left|c_{i}\right|\right\}, i=1,2,\right. \\
s=\max \{\|\vec{b}\|,\|\vec{c}\|\}, \quad \delta=\left(\delta_{1}^{2}+\delta_{2}^{2}\right)^{1 / 2}, \quad \varepsilon=\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}\right)^{1 / 2}
\end{gathered}
$$

Proposition

1. If \vec{b} and \vec{c} are linearly dependent, then ϕ is decomposable.
2. If $s\left(\varepsilon^{2}+\delta^{2}\right)^{1 / 2}<\|\vec{b}\|^{2}+\|\vec{c}\|^{2}$, then ϕ is nondecomposable.

Case 3×3 - decomposability vs. nondecomposability

$$
\begin{gathered}
\phi(X)=\left(\begin{array}{ccc}
\left(\varepsilon_{1}^{2}+\delta_{1}^{2}\right) x_{11}+\sigma_{2}^{2} x_{22} & 0 & b_{1} x_{13}+c_{1} x_{31} \\
0 & \left(\varepsilon_{2}^{2}+\delta_{2}^{2}\right) x_{22}+\sigma_{1}^{2} x_{11} & b_{2} x_{23}+c_{2} x_{32} \\
\overline{b_{1}} x_{31}+\overline{c_{1}} x_{13} & \overline{b_{2} x_{32}+\overline{c_{2}} x_{23}} & x_{33}
\end{array}\right) . \\
\vec{b}=\left(\left|b_{1}\right|,\left|b_{2}\right|\right)^{t}, \quad \vec{c}=\left(\left|c_{1}\right|,\left|c_{2}\right|\right)^{t}, \quad s_{i}=\max \left\{| | b_{i}\left|,\left|c_{i}\right|\right\}, i=1,2,\right. \\
s=\max \{\|\vec{b}\|,\|\vec{c}\|\}, \quad \delta=\left(\delta_{1}^{2}+\delta_{2}^{2}\right)^{1 / 2}, \quad \varepsilon=\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}\right)^{1 / 2}
\end{gathered}
$$

Proposition

1. If \vec{b} and \vec{c} are linearly dependent, then ϕ is decomposable.
2. If $s\left(\varepsilon^{2}+\delta^{2}\right)^{1 / 2}<\|\vec{b}\|^{2}+\|\vec{c}\|^{2}$, then ϕ is nondecomposable.

If $\|\vec{b}\|=\|\vec{c}\|$, then the inequality in 2 . is equivalent to linear independence of \vec{b} and \vec{c}.

Case 3×3 - extremality

Theorem

The following are equivalent:

1. ϕ is exposed,
2. ϕ is extremal,
3. each of the following conditions is satisfied

$$
\begin{aligned}
& 3.1 \vec{b} \neq 0 \text { and } \vec{c} \neq 0, \\
& 3.2 \quad \delta_{1}=\delta_{2}=0, \\
& 3.3 \quad \sigma_{1} \sigma_{2}=\varepsilon_{1} \varepsilon_{2}, \\
& 3.4\langle\vec{b}, \vec{c}\rangle=0 .
\end{aligned}
$$

Case 3×3 - optimality

Theorem

The following are equivalent:

1. ϕ is optimal,
2. ϕ satisfies spanning property,
3. each of the following conditions is satisfied

$$
\begin{aligned}
& 3.1 \quad \vec{b} \neq 0 \text { and } \vec{c} \neq 0, \\
& 3.2 \quad \sigma_{1} \sigma_{2}+\delta_{1} \delta_{2}=\varepsilon_{1} \varepsilon_{2}, \\
& 3.3\langle\vec{b}, \vec{c}\rangle=0 .
\end{aligned}
$$

Applications

1. Concrete: construction of a new family of PPT entangled states.
2. Concrete: construction of a new family of PPT entangled states.
3. Possible: construction of NPT bound entangled states (?) work in progress

Main idea of the proof

- $K=K_{1} \oplus K_{2} \oplus \mathbb{C}, H=H_{1} \oplus H_{2} \oplus \mathbb{C}$
- $\mathcal{Z}=\left\{(\xi, \eta) \in K \times H:\left\langle\eta, \phi\left(\xi \xi^{*}\right) \eta\right\rangle=0\right.$

Main idea of the proof

- $K=K_{1} \oplus K_{2} \oplus \mathbb{C}, H=H_{1} \oplus H_{2} \oplus \mathbb{C}$
- $\mathcal{Z}=\left\{(\xi, \eta) \in K \times H:\left\langle\eta, \phi\left(\xi \xi^{*}\right) \eta\right\rangle=0\right.$
- By Kye's characterization of exposed faces, $\phi: B(K) \rightarrow B(H)$ is exposed iff $\forall \psi \in \mathfrak{P}:\left(\forall(\xi, \eta) \in \mathcal{Z}:\left\langle\eta, \psi\left(\xi \xi^{*}\right) \eta\right\rangle=0\right) \quad \Rightarrow \quad \psi \in \mathbb{R}^{+} \phi$.

Main idea of the proof

- $K=K_{1} \oplus K_{2} \oplus \mathbb{C}, H=H_{1} \oplus H_{2} \oplus \mathbb{C}$
- $\mathcal{Z}=\left\{(\xi, \eta) \in K \times H:\left\langle\eta, \phi\left(\xi \xi^{*}\right) \eta\right\rangle=0\right.$
- By Kye's characterization of exposed faces, $\phi: B(K) \rightarrow B(H)$ is exposed iff $\forall \psi \in \mathfrak{P}:\left(\forall(\xi, \eta) \in \mathcal{Z}:\left\langle\eta, \psi\left(\xi \xi^{*}\right) \eta\right\rangle=0\right) \quad \Rightarrow \quad \psi \in \mathbb{R}^{+} \phi$.
- $\left\langle\eta, \phi\left(\xi \xi^{*}\right) \eta\right\rangle$ is equal to
$\left\|A_{1} \xi_{1}\right\|^{2}\left\|E_{2} \eta_{2}\right\|^{2}+\left\|A_{2} \overline{\xi_{2}}\right\|^{2}\left\|E_{1} \eta_{1}\right\|^{2}+\left|\left\langle\eta_{1}, A_{1} \xi_{1}\right\rangle\right|^{2}+\left|\left\langle\eta_{2}, A_{2} \overline{\xi_{2}}\right\rangle\right|^{2}$
if $\alpha=0$, and

$$
\begin{aligned}
& |\alpha|^{-2}\left(\left.| | \alpha\right|^{2} \bar{\beta}+\bar{\alpha}\left\langle\eta_{1}, A_{1} \xi_{1}\right\rangle+\left.\alpha\left\langle\eta_{2}, A_{2} \overline{\xi_{2}}\right\rangle\right|^{2}\right. \\
& \left.+\left\|\alpha E_{1} \eta_{1} \otimes A_{2} \overline{\xi_{2}}-\bar{\alpha} A_{1} \xi_{1} \otimes E_{2} \eta_{2}\right\|^{2}\right)
\end{aligned}
$$

if $\alpha \neq 0$.

Sketch of the proof

- Thus $(\xi, \eta) \in \mathcal{Z}$ iff one of the following conditions holds

$$
\begin{aligned}
& \alpha=0, A_{1} \xi_{1}=0, A_{2} \overline{\xi_{2}}=0 \\
& \alpha=0, A_{1} \xi_{1} \neq 0, A_{2} \overline{\xi_{2}}=0 \quad \text { and } \eta_{1} \perp A_{1} \xi_{1}, E_{2} \eta_{2}=0 \\
& \alpha=0, A_{1} \xi_{1}=0, A_{2} \overline{\xi_{2}} \neq 0 \quad \text { and } E_{1} \eta_{1}=0, \eta_{2} \perp A_{2} \overline{\xi_{2}} \\
& \alpha=0, A_{1} \xi_{1} \neq 0, A_{2} \overline{\xi_{2}} \neq 0 \quad \text { and } E_{1} \eta_{1}=0, E_{2} \eta_{2}=0 \\
& \alpha \neq 0, A_{1} \xi_{1}=0, A_{2} \overline{\xi_{2}}=0 \quad \text { and } \beta=0 \\
& \alpha \neq 0, A_{1} \xi_{1} \neq 0, A_{2} \overline{\xi_{2}}=0 \quad \text { and }\left\langle A_{1} \xi_{1}, \eta_{1}\right\rangle=-\bar{\alpha} \beta, E_{2} \eta_{2}=0 \\
& \alpha \neq 0, A_{1} \xi_{1}=0, A_{2} \overline{\xi_{2}} \neq 0 \quad \text { and } \\
& E_{1} \eta_{1}=0,\left\langle A_{2} \overline{\xi_{2}}, \eta_{2}\right\rangle=-\alpha \beta \\
& \alpha \neq 0, A_{1} \xi_{1} \neq 0, A_{2} \overline{\xi_{2}} \neq 0 \quad \text { and }\left\{\begin{array}{l}
E \eta_{1}=-\frac{\bar{\alpha} \beta}{\left\|A_{1} \xi_{1}\right\|^{2}+\left\|A_{2} \overline{\xi_{2}}\right\|^{2}} A_{1} \xi_{1}, \\
E \eta_{2}=-\frac{\alpha \beta}{\left\|A_{1} \xi_{1}\right\|^{2}+\left\|A_{2} \overline{\xi_{2}}\right\|^{2}} A_{2} \overline{\xi_{2}}
\end{array}\right.
\end{aligned}
$$

Sketch of the proof

- Now, assume $\left\langle\eta, \psi\left(\xi \xi^{*}\right) \eta\right\rangle=0$ for all $(\xi, \eta) \in \mathcal{Z}$.

Sketch of the proof

- Now, assume $\left\langle\eta, \psi\left(\xi \xi^{*}\right) \eta\right\rangle=0$ for all $(\xi, \eta) \in \mathcal{Z}$.
- One shows that there are sesquilinear vector valued forms

$$
\Psi_{k l}:\left(K_{1} \oplus K_{2}\right) \times\left(K_{1} \oplus K_{2}\right) \rightarrow B\left(H_{l}, H_{k}\right), \quad k, l=1,2
$$

and linear maps $R_{k}, Q_{k}: K_{1} \oplus K_{2} \rightarrow H_{k}$ for $k=1,2$ such that $\psi\left(\xi \xi^{*}\right)$ is equal to
$\left(\begin{array}{ccc}\Psi_{11}\left(\xi_{0}, \xi_{0}\right) & \Psi_{12}\left(\xi_{0}, \xi_{0}\right) & \bar{\alpha} R_{1} \xi_{0}+\alpha Q_{1} \overline{\xi_{0}} \\ \Psi_{21}\left(\xi_{0}, \xi_{0}\right) & \Psi_{22}\left(\xi_{0}, \xi_{0}\right) & \bar{\alpha} R_{2} \xi_{0}+\alpha Q_{2} \xi_{0} \\ \alpha\left(R_{1} \xi_{0}\right)^{*}+\bar{\alpha}\left(Q_{1} \overline{\xi_{0}}\right)^{*} & \alpha\left(R_{2} \xi_{0}\right)^{*}+\bar{\alpha}\left(Q_{2} \overline{\xi_{0}}\right)^{*} & \lambda|\alpha|^{2}\end{array}\right)$
for any $\xi \in K$ where $\xi=\xi_{0}+\alpha e$ for a unique $\xi_{0}=\xi_{1}+\xi_{2} \in K_{1} \oplus K_{2}$ and $\alpha \in \mathbb{C}$.

Sketch of the proof

- Now, assume $\left\langle\eta, \psi\left(\xi \xi^{*}\right) \eta\right\rangle=0$ for all $(\xi, \eta) \in \mathcal{Z}$.
- One shows that there are sesquilinear vector valued forms

$$
\Psi_{k l}:\left(K_{1} \oplus K_{2}\right) \times\left(K_{1} \oplus K_{2}\right) \rightarrow B\left(H_{l}, H_{k}\right), \quad k, l=1,2
$$

and linear maps $R_{k}, Q_{k}: K_{1} \oplus K_{2} \rightarrow H_{k}$ for $k=1,2$ such that $\psi\left(\xi \xi^{*}\right)$ is equal to
$\left(\begin{array}{ccc}\Psi_{11}\left(\xi_{0}, \xi_{0}\right) & \Psi_{12}\left(\xi_{0}, \xi_{0}\right) & \bar{\alpha} R_{1} \xi_{0}+\alpha Q_{1} \overline{\xi_{0}} \\ \Psi_{21}\left(\xi_{0}, \xi_{0}\right) & \Psi_{22}\left(\xi_{0}, \xi_{0}\right) & \bar{\alpha} R_{2} \xi_{0}+\alpha Q_{2} \bar{\xi}_{0} \\ \alpha\left(R_{1} \xi_{0}\right)^{*}+\bar{\alpha}\left(Q_{1} \overline{\xi_{0}}\right)^{*} & \alpha\left(R_{2} \xi_{0}\right)^{*}+\bar{\alpha}\left(Q_{2} \overline{\xi_{0}}\right)^{*} & \lambda|\alpha|^{2}\end{array}\right)$
for any $\xi \in K$ where $\xi=\xi_{0}+\alpha e$ for a unique $\xi_{0}=\xi_{1}+\xi_{2} \in K_{1} \oplus K_{2}$ and $\alpha \in \mathbb{C}$.

- Finally, by a sequence of reasonings using linearity-antilinearity interplay, one that all ingredients are multiples by λ of respective terms of ϕ.

References

- M. Marciniak, On extremal positive maps between type I factors, Banach Center Publ. 89, 201-221 (2010).
围 M. Marciniak, Rank properties of exposed positive maps, Lin. Multilin. Alg. 61, 970-975 (2013).
圊 M. Marciniak and A. Rutkowski, Merging of positive maps: a construction of various classes of positive maps on matrix algebras, preprint arXiv:1605.02219.

M. Miller and R. Olkiewicz, Stable subspaces of positive maps of matrix algebras, Open Syst. Inf. Dyn. 22, 1550011 (2015).
(A. Rutkowski, G. Sarbicki and D. Chruściński, A class of bistochastic positive optimal maps in \mathbb{M}_{d}, Open Syst. Inf. Dyn. 22, 1550016 (2015).

