

Merging of positive maps: exposed and optimal maps, and their applications

Marcin Marciniak (joint work with Adam Rutkowski)

Institute of Theoretical Physics and Astrophysics University of Gdańsk

Quantum Information Theory and Related Topics 2016 Kusatsu, Japan September 8, 2016

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Contents

- 1. Brief introduction to positive maps
- 2. Merging of two positive maps and its properties
- 3. Examples of exposed and optimal positive maps

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

4. The case 3×3

Positive maps

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

К, Н	Hilbert spaces
B(K), B(H)	algebras of bounded operators on K , H
$B(K)^{+}, B(H)^{+}$	cones of positive operators on K, H
$\phi:B(K)\to B(H)$	bounded linear map

К, Н	Hilbert spaces
B(K), B(H)	algebras of bounded operators on K , H
$B(K)^{+}, B(H)^{+}$	cones of positive operators on K, H
$\phi:B(K)\to B(H)$	bounded linear map

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

•
$$\phi$$
 is positive if $\phi(B(K)^+) \subset B(H)^+$

K, H	Hilbert spaces
B(K), B(H)	algebras of bounded operators on K, H
$B(K)^{+}, B(H)^{+}$	cones of positive operators on K, H
$\phi:B(K)\to B(H)$	bounded linear map

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- ϕ is positive if $\phi(B(K)^+) \subset B(H)^+$
- ▶ ϕ is *k*-positive ($k \in \mathbb{N}$) if the map $M_k(B(K)) \ni [X_{ij}] \mapsto [\phi(X_{ij})] \in M_k(B(H))$ is positive.

K, H	Hilbert spaces
B(K), B(H)	algebras of bounded operators on K, H
$B(K)^{+}, B(H)^{+}$	cones of positive operators on K, H
$\phi:B(K)\to B(H)$	bounded linear map

- ϕ is positive if $\phi(B(K)^+) \subset B(H)^+$
- ▶ ϕ is *k*-positive ($k \in \mathbb{N}$) if the map $M_k(B(K)) \ni [X_{ij}] \mapsto [\phi(X_{ij})] \in M_k(B(H))$ is positive.
- ϕ is *completely positive* (or CP) if it is *k*-positive for any $k \in \mathbb{N}$.

▲□▶▲□▶▲□▶▲□▶ □ のQの

К, Н	Hilbert spaces
B(K), B(H)	algebras of bounded operators on K, H
$B(K)^{+}, B(H)^{+}$	cones of positive operators on K, H
$\phi:B(K)\to B(H)$	bounded linear map

- ϕ is positive if $\phi(B(K)^+) \subset B(H)^+$
- ▶ ϕ is *k*-positive ($k \in \mathbb{N}$) if the map $M_k(B(K)) \ni [X_{ij}] \mapsto [\phi(X_{ij})] \in M_k(B(H))$ is positive.
- ϕ is *completely positive* (or CP) if it is *k*-positive for any $k \in \mathbb{N}$.
- ► ϕ is *decomposable* if $\phi(X) = \phi_1(X) + \phi_2(X)^t$, $X \in B(K)$, where ϕ_1, ϕ_2 are CP maps.

Decomposability of positive maps in low dimensions

Decomposability of positive maps in low dimensions

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

- $1. \dim K = \dim H = 2,$
- 2. dim K = 2 and dim H = 3,
- 3. dim K = 3 and dim H = 2.

Then every positive map ϕ : $B(K) \rightarrow B(H)$ is decomposable.

◆□▶ ◆□▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ● ●

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

- $1. \dim K = \dim H = 2,$
- 2. dim K = 2 and dim H = 3,
- 3. dim K = 3 and dim H = 2.

Then every positive map ϕ : $B(K) \rightarrow B(H)$ is decomposable.

Choi gave the first example of nondecomposable positive map $\phi: B(\mathbb{C}^3) \to B(\mathbb{C}^3)$

◆□▶ ◆□▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ● ●

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

- $1. \dim K = \dim H = 2,$
- 2. dim K = 2 and dim H = 3,
- 3. dim K = 3 and dim H = 2.

Then every positive map ϕ : $B(K) \rightarrow B(H)$ is decomposable.

Choi gave the first example of nondecomposable positive map $\phi: B(\mathbb{C}^3) \to B(\mathbb{C}^3)$

$$\phi\left(\left[\begin{array}{rrrrr}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{array}\right]\right)=\left[\begin{array}{rrrrr}a_{11}+a_{33}&-a_{12}&-a_{13}\\-a_{21}&a_{22}+a_{11}&-a_{23}\\-a_{31}&-a_{32}&a_{33}+a_{22}\end{array}\right]$$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

- $1. \dim K = \dim H = 2,$
- 2. dim K = 2 and dim H = 3,
- 3. dim K = 3 and dim H = 2.

Then every positive map ϕ : $B(K) \rightarrow B(H)$ is decomposable.

Choi gave the first example of nondecomposable positive map $\phi: B(\mathbb{C}^3) \to B(\mathbb{C}^3)$

▲□▶▲□▶▲□▶▲□▶ □ ● のへで

Another examples of non-decomposable maps were given by Woronowicz, Tang, Ha, Osaka, Robertson, Kye and others.

The set $\mathfrak{P}(K, H)$ of all positive maps $\phi : B(K) \to B(H)$ is a convex cone.

The set $\mathfrak{P}(K, H)$ of all positive maps $\phi : B(K) \to B(H)$ is a convex cone.

We say, that a map ϕ is extremal if it generates an extremal ray in that cone, i.e.

$$\forall \psi \in \mathfrak{P}: \quad \phi - \psi \in \mathfrak{P} \quad \Rightarrow \quad \psi \in \mathbb{R}^+ \phi$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The set $\mathfrak{P}(K, H)$ of all positive maps $\phi : B(K) \to B(H)$ is a convex cone.

We say, that a map ϕ is extremal if it generates an extremal ray in that cone, i.e.

$$\forall \psi \in \mathfrak{P}: \quad \phi - \psi \in \mathfrak{P} \quad \Rightarrow \quad \psi \in \mathbb{R}^+ \phi$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples:

1. Choi map

The set $\mathfrak{P}(K, H)$ of all positive maps $\phi : B(K) \to B(H)$ is a convex cone.

We say, that a map ϕ is extremal if it generates an extremal ray in that cone, i.e.

$$\forall \psi \in \mathfrak{P}: \quad \phi - \psi \in \mathfrak{P} \quad \Rightarrow \quad \psi \in \mathbb{R}^+ \phi$$

Examples:

- 1. Choi map
- 2. For $A: K \to H$,

$$\operatorname{Ad}_A : B(K) \ni X \mapsto AXA^* \in B(H)$$
$$\operatorname{Ad}_A \circ t : B(K) \ni X \mapsto AX^tA^* \in B(H)$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

<□> <@> < E> < E> E のQ@

• $T^1(H)$ – trace class operators on H.

- $T^1(H)$ trace class operators on H.
- ▶ Duality between B(B(K), B(H)) and $B(K) \hat{\otimes} T^1(H)$

$$\langle Z, \phi \rangle_{\mathrm{d}} = \sum_{i} \mathrm{Tr} \left(\phi(X_i) Y_i^T \right)$$

$$Z = \sum_{i} X_i \otimes Y_i, \quad X_i \in B(K), \ Y_i \in B(H), \qquad \phi \in \mathfrak{P}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- $T^1(H)$ trace class operators on H.
- ▶ Duality between B(B(K), B(H)) and $B(K) \hat{\otimes} T^1(H)$

$$\langle Z, \phi \rangle_{\mathrm{d}} = \sum_{i} \mathrm{Tr} \left(\phi(X_i) Y_i^T \right)$$

$$Z = \sum_{i} X_i \otimes Y_i, \quad X_i \in B(K), \ Y_i \in B(H), \qquad \phi \in \mathfrak{P}$$

• Choi matrix of a map ϕ :

$$\mathscr{C}_{\phi} = \sum_{ij} e_i e_j^* \otimes \phi(e_i e_j^*)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- $T^1(H)$ trace class operators on H.
- ▶ Duality between B(B(K), B(H)) and $B(K) \hat{\otimes} T^1(H)$

$$\langle Z, \phi \rangle_{\mathrm{d}} = \sum_{i} \mathrm{Tr} \left(\phi(X_i) Y_i^T \right)$$

$$Z = \sum_{i} X_i \otimes Y_i, \quad X_i \in B(K), \ Y_i \in B(H), \qquad \phi \in \mathfrak{P}$$

• Choi matrix of a map ϕ :

$$\mathscr{C}_{\phi} = \sum_{ij} e_i e_j^* \otimes \phi(e_i e_j^*)$$

► \mathscr{C}^t_{ϕ} is a 'density matrix' of the functional $B(K) \otimes B(H) \ni Z \mapsto \langle Z, \phi \rangle_d$

i.e.

$$\langle Z, \phi \rangle_{\mathrm{d}} = \mathrm{Tr}(\mathscr{C}_{\phi}^{t}Z).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

► For $S \subset B(B(K), B(H))$, consider its dual cone $S^{\circ} \subset B(K) \otimes T^{1}(H)$ $S^{\circ} = \{Z \in B(K) \otimes T^{1}(H) : \langle Z, \phi \rangle_{d} \ge 0 \text{ for all } \phi \in \mathfrak{P}\}.$

- ► For $S \subset B(B(K), B(H))$, consider its dual cone $S^{\circ} \subset B(K) \hat{\otimes} T^{1}(H)$ $S^{\circ} = \{Z \in B(K) \hat{\otimes} T^{1}(H) : \langle Z, \phi \rangle_{d} \ge 0 \text{ for all } \phi \in \mathfrak{P}\}.$
- \mathfrak{P}° consist of separable positive matrices, i.e.

$$Z \in \mathfrak{P}^{\circ} \quad \Leftrightarrow \quad Z = \sum_{k} X_k \otimes Y_k, \quad X_k \ge 0, \ Y_k \ge 0.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► For $S \subset B(B(K), B(H))$, consider its dual cone $S^{\circ} \subset B(K) \otimes T^{1}(H)$ $S^{\circ} = \{Z \in B(K) \otimes T^{1}(H) : \langle Z, \phi \rangle_{d} \ge 0 \text{ for all } \phi \in \mathfrak{P}\}.$
- \mathfrak{P}° consist of separable positive matrices, i.e.

$$Z \in \mathfrak{P}^{\circ} \quad \Leftrightarrow \quad Z = \sum_{k} X_{k} \otimes Y_{k}, \quad X_{k} \ge 0, \ Y_{k} \ge 0.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

► $CP \subset \mathfrak{P}$ completely positive maps, $CP^\circ = B(K \otimes H)^+$ (Choi theorem)

- ► For $S \subset B(B(K), B(H))$, consider its dual cone $S^{\circ} \subset B(K) \hat{\otimes} T^{1}(H)$ $S^{\circ} = \{Z \in B(K) \hat{\otimes} T^{1}(H) : \langle Z, \phi \rangle_{d} \ge 0 \text{ for all } \phi \in \mathfrak{P}\}.$
- \mathfrak{P}° consist of separable positive matrices, i.e.

$$Z \in \mathfrak{P}^{\circ} \quad \Leftrightarrow \quad Z = \sum_{k} X_{k} \otimes Y_{k}, \quad X_{k} \ge 0, \ Y_{k} \ge 0.$$

- ► $CP \subset \mathfrak{P}$ completely positive maps, $CP^{\circ} = B(K \otimes H)^+$ (Choi theorem)
- Dec ⊂ 𝔅 decomposable maps, Dec° is composed of PPT positive matrices

$$Z \in \text{Dec}^{\circ} \quad \Leftrightarrow \quad Z \ge 0 \text{ and } Z^{\Gamma} \ge 0,$$

where

$$(X \otimes Y)^{\Gamma} = X \otimes Y^t.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Positive maps as entanglement witnesses

Definition

A positive definite matrix $Z \in B(K \otimes H)$ is called entangled if it is not separable

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Definition

A positive definite matrix $Z \in B(K \otimes H)$ is called entangled if it is not separable

► *Z* is entangled if and only if there is $\phi \in \mathfrak{P}$ such that $\langle Z, \phi \rangle_d < 0$. We say that such ϕ is an entanglement witness for *Z*

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三里 - のへぐ

Definition

A positive definite matrix $Z \in B(K \otimes H)$ is called entangled if it is not separable

► *Z* is entangled if and only if there is $\phi \in \mathfrak{P}$ such that $\langle Z, \phi \rangle_d < 0$. We say that such ϕ is an entanglement witness for *Z*

・ロト・一部・・ヨト・ヨト ヨー うらつ

► *Z* is a PPT matrix if and only if $\langle Z, \phi \rangle_d > 0$ for every decomposable ϕ .

Definition

A positive definite matrix $Z \in B(K \otimes H)$ is called entangled if it is not separable

- ► *Z* is entangled if and only if there is $\phi \in \mathfrak{P}$ such that $\langle Z, \phi \rangle_d < 0$. We say that such ϕ is an entanglement witness for *Z*
- ► *Z* is a PPT matrix if and only if $\langle Z, \phi \rangle_d > 0$ for every decomposable ϕ .
- Z is a PPT entangled matrix if and only if there is a nondecomposable map φ, such that (Z, φ)_d < 0. This provides also a nice criterion for nondecomposability.

ション (日本) (日本) (日本) (日本) (日本)

For each $S \subset \mathfrak{P}$ one can define a dual face $S' \subset \mathfrak{P}^\circ$ by

 $S' = \{Z \in \mathfrak{P}^\circ : \langle Z, \phi \rangle_{\mathrm{d}} = 0\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For each $S \subset \mathfrak{P}$ one can define a dual face $S' \subset \mathfrak{P}^\circ$ by

$$S' = \{Z \in \mathfrak{P}^\circ : \langle Z, \phi \rangle_{\mathrm{d}} = 0\}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Similarly, one defines dual faces for subsets of \mathscr{P}° .

Definition

We say that a face $F \subset \mathfrak{P}$ is exposed, if F'' = F.

For each $S \subset \mathfrak{P}$ one can define a dual face $S' \subset \mathfrak{P}^\circ$ by

$$S' = \{Z \in \mathfrak{P}^\circ : \langle Z, \phi \rangle_{\mathrm{d}} = 0\}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Similarly, one defines dual faces for subsets of \mathscr{P}° .

Definition

We say that a face $F \subset \mathfrak{P}$ is exposed, if F'' = F. A map $\phi \in \mathfrak{P}$ is exposed if $\{\phi\}'' = \mathbb{R}_+\phi$.

For each $S \subset \mathfrak{P}$ one can define a dual face $S' \subset \mathfrak{P}^\circ$ by

 $S' = \{ Z \in \mathfrak{P}^{\circ} : \langle Z, \phi \rangle_{\mathrm{d}} = 0 \}$

Similarly, one defines dual faces for subsets of \mathscr{P}° .

Definition

We say that a face $F \subset \mathfrak{P}$ is exposed, if F'' = F. A map $\phi \in \mathfrak{P}$ is exposed if $\{\phi\}'' = \mathbb{R}_+\phi$.

Theorem (Straszewicz, 1935)

If a set $K \subset \mathbb{R}^n$ is closed and convex then cl(Exp K) = Ext K.

ション (日本) (日本) (日本) (日本) (日本)

For each $S \subset \mathfrak{P}$ one can define a dual face $S' \subset \mathfrak{P}^\circ$ by

 $S' = \{ Z \in \mathfrak{P}^{\circ} : \langle Z, \phi \rangle_{\mathrm{d}} = 0 \}$

Similarly, one defines dual faces for subsets of \mathscr{P}° .

Definition

We say that a face $F \subset \mathfrak{P}$ is exposed, if F'' = F. A map $\phi \in \mathfrak{P}$ is exposed if $\{\phi\}'' = \mathbb{R}_+\phi$.

Theorem (Straszewicz, 1935)

If a set $K \subset \mathbb{R}^n$ is closed and convex then cl(Exp K) = Ext K.

It follows from the above theorem that the problem of the description of positive maps can be reduced to the problem of characterization of exposed positive maps.

Examples

• (MM'2011) For finite dimensional dimensional *K* and *H* and any $A: K \rightarrow H$, the maps

 $\operatorname{Ad}_A: X \mapsto AXA^*$, $\operatorname{Ad}_A \circ t: X \mapsto AX^tA^*$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

are exposed.

Examples

• (MM'2011) For finite dimensional dimensional *K* and *H* and any $A: K \rightarrow H$, the maps

 $\operatorname{Ad}_A: X \mapsto AXA^*, \qquad \operatorname{Ad}_A \circ t: X \mapsto AX^tA^*$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

are exposed.

• Choi map is an extremal **non**exposed positive map.

Examples

• (MM'2011) For finite dimensional dimensional *K* and *H* and any $A: K \rightarrow H$, the maps

 $\operatorname{Ad}_A: X \mapsto AXA^*, \qquad \operatorname{Ad}_A \circ t: X \mapsto AX^tA^*$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

are exposed.

- Choi map is an extremal **non**exposed positive map.
- Other examples are due to Cruściński and Sarbicki, Ha and Kye, and others..

Miller and Olkiewicz ('14) considered the following example of a bistochastic map.

 $S\colon B(\mathbb{C}^3)\to B(\mathbb{C}^3)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Miller and Olkiewicz ('14) considered the following example of a bistochastic map.

$$S: B(\mathbb{C}^3) \to B(\mathbb{C}^3)$$

$$S\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(x_{11} + x_{22}) & 0 & \frac{1}{\sqrt{2}}x_{13} \\ 0 & \frac{1}{2}(x_{11} + x_{22}) & \frac{1}{\sqrt{2}}x_{32} \\ \frac{1}{\sqrt{2}}x_{31} & \frac{1}{\sqrt{2}}x_{23} & x_{33} \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Miller and Olkiewicz ('14) considered the following example of a bistochastic map.

$$S: B(\mathbb{C}^3) \to B(\mathbb{C}^3)$$

$$S\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(x_{11} + x_{22}) & 0 & \frac{1}{\sqrt{2}}x_{13} \\ 0 & \frac{1}{2}(x_{11} + x_{22}) & \frac{1}{\sqrt{2}}x_{32} \\ \frac{1}{\sqrt{2}}x_{31} & \frac{1}{\sqrt{2}}x_{23} & x_{33} \end{pmatrix}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Miller and Olkiewicz ('14) considered the following example of a bistochastic map.

$$S: B(\mathbb{C}^3) \to B(\mathbb{C}^3)$$

$$S\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(x_{11} + x_{22}) & 0 & \frac{1}{\sqrt{2}}x_{13} \\ 0 & \frac{1}{2}(x_{11} + x_{22}) & \frac{1}{\sqrt{2}}x_{32} \\ \frac{1}{\sqrt{2}}x_{31} & \frac{1}{\sqrt{2}}x_{23} & x_{33} \end{pmatrix}$$

Theorem (Miller, Olkiewicz)

S is a bistochastic, exposed and nondecomposable (even atomic) map.

◆□▶ ◆□▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ● ●

Rutkowski, Sarbicki and Chruściński proposed the following generalization of the map *S*:

Rutkowski, Sarbicki and Chruściński proposed the following generalization of the map *S*:

 $\Lambda_d: B(\mathbb{C}^{d+1}) \to B(\mathbb{C}^{d+1})$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Rutkowski, Sarbicki and Chruściński proposed the following generalization of the map *S*:

 $\Lambda_d: B(\mathbb{C}^{d+1}) \to B(\mathbb{C}^{d+1})$

ション (日本) (日本) (日本) (日本) (日本)

Rutkowski, Sarbicki and Chruściński proposed the following generalization of the map *S*:

 $\Lambda_d: B(\mathbb{C}^{d+1}) \to B(\mathbb{C}^{d+1})$

Theorem (Rutkowski et al.)

 Λ_d is a bistochastic positive, nondecomposable and optimal map.

For
$$V = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, consider 'denormalized' version of S

 $\phi(X) = VS(X)V^*$

For
$$V = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, consider 'denormalized' version of S

 $\phi(X) = VS(X)V^*$

$$\phi \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} x_{11} + x_{22} & 0 & x_{13} \\ 0 & x_{11} + x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

For
$$V = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, consider 'denormalized' version of S

 $\phi(X) = VS(X)V^*$

$$\phi \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} x_{11} + x_{22} & 0 & x_{13} \\ 0 & x_{11} + x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix}$$

 $\phi = \phi_{\rm ess} + \phi_{\rm diag}$

・ロト・四ト・モート モー シュウ

For
$$V = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, consider 'denormalized' version of S

 $\phi(X) = VS(X)V^*$

$$\phi \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} x_{11} + x_{22} & 0 & x_{13} \\ 0 & x_{11} + x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix}$$

$$\phi = \phi_{\rm ess} + \phi_{\rm diag}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$\phi_{\text{ess}}: X \mapsto \begin{pmatrix} x_{11} & 0 & x_{13} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix},$$

For
$$V = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, consider 'denormalized' version of S

 $\phi(X) = VS(X)V^*$

$$\phi \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} x_{11} + x_{22} & 0 & x_{13} \\ 0 & x_{11} + x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix}$$

$$\phi = \phi_{\rm ess} + \phi_{\rm diag}$$

$$\phi_{\text{ess}}: X \mapsto \begin{pmatrix} x_{11} & 0 & x_{13} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix}, \quad \phi_{\text{diag}}: X \mapsto \begin{pmatrix} x_{22} & 0 & 0 \\ 0 & x_{11} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□▶ ◆○◆

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

identity

▶ identity

$$\phi_{\text{ess}} : \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \mapsto \begin{pmatrix} x_{11} & 0 & x_{13} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$\phi_{ess} : \begin{pmatrix} x_{11} & x_{13} \\ & & \\ & x_{31} & x_{33} \end{pmatrix} \mapsto \begin{pmatrix} x_{11} & x_{13} \\ & & \\ & x_{31} & x_{33} \end{pmatrix}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$\phi_{\text{ess}} : \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \mapsto \begin{pmatrix} x_{11} & 0 & x_{13} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$\phi_{\text{ess}} : \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \mapsto \begin{pmatrix} x_{11} & 0 & x_{13} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix}$$

transposition

$$\phi_{ess} : \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \mapsto \begin{pmatrix} x_{11} & 0 & x_{13} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix}$$

transposition

$$\phi_{\text{ess}} : \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \mapsto \begin{pmatrix} x_{11} & 0 & x_{13} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\phi_{\text{ess}} : \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \mapsto \begin{pmatrix} x_{11} & 0 & x_{13} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix}$$

transposition

$$\phi_{\text{ess}}: \begin{pmatrix} x_{22} & x_{23} \\ x_{32} & x_{33} \end{pmatrix} \mapsto \begin{pmatrix} x_{22} & x_{32} \\ x_{23} & x_{33} \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\phi_{\text{ess}} : \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \mapsto \begin{pmatrix} x_{11} & 0 & x_{13} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix}$$

transposition

$$\phi_{\text{ess}} : \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \mapsto \begin{pmatrix} x_{11} & 0 & x_{13} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$\phi_{\text{ess}} : \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \mapsto \begin{pmatrix} x_{11} & 0 & x_{13} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix}$$

transposition

$$\phi_{\text{ess}} : \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \mapsto \begin{pmatrix} x_{11} & 0 & x_{13} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix}$$

merging of identity and transposition

$$\tilde{S}_{ess} : \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \mapsto \begin{pmatrix} x_{11} & 0 & x_{13} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{23} & x_{33} \end{pmatrix}$$

Merging of positive maps

Let K_1, K_2, H_1, H_2 be Hilbert spaces and

 $\phi_1: B(K_1) \to B(H_1), \qquad \phi_2: B(K_2) \to B(H_2)$

be positive maps.

Merging of positive maps

Let K_1, K_2, H_1, H_2 be Hilbert spaces and

 $\phi_1: B(K_1) \to B(H_1), \qquad \phi_2: B(K_2) \to B(H_2)$

be positive maps. Let $K_3 = H_3 = \mathbb{C}$, and consider spaces

$$K = K_1 \oplus K_2 \oplus K_3, \qquad H = H_1 \oplus H_2 \oplus H_3$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Merging of positive maps

Let K_1, K_2, H_1, H_2 be Hilbert spaces and

 $\phi_1: B(K_1) \to B(H_1), \qquad \phi_2: B(K_2) \to B(H_2)$

be positive maps.

Let $K_3 = H_3 = \mathbb{C}$, and consider spaces

$$K = K_1 \oplus K_2 \oplus K_3, \qquad H = H_1 \oplus H_2 \oplus H_3$$

Each element $X \in B(K)$ can be represented in the matrix form

$$X = \begin{pmatrix} X_{11} & X_{12} & X_{13} \\ \overline{X_{21}} & \overline{X_{22}} & \overline{X_{23}} \\ \overline{X_{31}} & \overline{X_{32}} & \overline{X_{33}} \end{pmatrix}$$

where $X_{ij} \in B(K_j, K_i)$. In particular

 $X_{i3} \in B(\mathbb{C},K_i) = K_i, \qquad X_{3j} \in B(K_j,\mathbb{C}) = K_j^*, \qquad X_{33} \in \mathbb{C}.$

Consider a ϕ : $B(K) \rightarrow B(H)$ given by

$$\phi(X) = \begin{pmatrix} \phi_1(X_{11}) + \omega_2(X_{22})P_1 & 0 & B_1X_{13} + C_1X_{31}^t \\ 0 & \phi_2(X_{22}) + \omega_1(X_{11})P_2 & B_2X_{23} + C_2X_{31}^t \\ 0 & X_{31}B_1^{\bar{*}} + X_{13}^{\bar{t}}C_1^{\bar{*}} & X_{32}B_2^{\bar{*}} + X_{23}^{\bar{t}}C_2^{\bar{*}} & X_{33}^{\bar{t}} \end{pmatrix}$$

where

- ► $B_i, C_i : K_i \rightarrow H_i$, i = 1, 2, linear operators
- $\omega_i : B(K_i) \to \mathbb{C}, \quad i = 1, 2, \text{ positive functionals}$
- ▶ $P_i \in B(H_i)$, i = 1, 2, projection onto the range of $\phi_i(\mathbb{I}_{B(K_i)})$

Definition

We say that the map ϕ is a merging of ϕ_1 , ϕ_2 by means of ingredients B_i , C_i , ω_i .

Question: Is a merging of positive maps ϕ_1 and ϕ_2 positive?

Question: Is a merging of positive maps ϕ_1 and ϕ_2 positive?

Question: Is a merging of positive maps ϕ_1 and ϕ_2 positive? Let $\eta_i \in K_i$, $y_i \in H_i$. Define

$$\mu_{i}(\eta_{i}, y_{i}) = \sqrt{\langle y_{i}, \phi_{i}(\eta_{i}\eta_{i}^{*})y_{i} \rangle} \qquad \varepsilon_{i}(\eta_{i}, y_{i}) = |\langle y_{i}, B_{i}\eta_{i} \rangle| + |\langle y_{i}, C_{i}\overline{\eta_{i}} \rangle|$$

$$\delta_{i}(\eta_{i}, y_{i}) = \sqrt{\mu_{i}(\eta_{i}, y_{i})^{2} - \varepsilon_{i}(\eta_{i}, y_{i})^{2}} \qquad \sigma_{i}(\eta_{i}, y_{i'}) = \sqrt{\omega_{i}(\eta_{i}\eta_{i}^{*})} \|P_{i'}y_{i'}\|$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Question: Is a merging of positive maps ϕ_1 and ϕ_2 positive? Let $\eta_i \in K_i$, $y_i \in H_i$. Define

$$\mu_{i}(\eta_{i}, y_{i}) = \sqrt{\langle y_{i}, \phi_{i}(\eta_{i}\eta_{i}^{*})y_{i} \rangle} \qquad \varepsilon_{i}(\eta_{i}, y_{i}) = |\langle y_{i}, B_{i}\eta_{i} \rangle| + |\langle y_{i}, C_{i}\overline{\eta_{i}} \rangle|$$

$$\delta_{i}(\eta_{i}, y_{i}) = \sqrt{\mu_{i}(\eta_{i}, y_{i})^{2} - \varepsilon_{i}(\eta_{i}, y_{i})^{2}} \qquad \sigma_{i}(\eta_{i}, y_{i'}) = \sqrt{\omega_{i}(\eta_{i}\eta_{i}^{*})} \|P_{i'}y_{i'}\|$$

Theorem

The merging ϕ of positive maps ϕ_1 , ϕ_2 by means of B_i , C_i , ω_i is a positive map if and only if the following conditions are satisfied

- (i) $\varepsilon_i(\eta_i, y_i) \le \mu_i(\eta_i, y_i)$ for $i = 1, 2, \eta_i \in K_i, y_i \in H_i$,
- (*ii*) for every $\eta_1 \in K_1$, $\eta_2 \in K_2$, $y_1 \in H_1$, $y_2 \in H_2$,

 $\delta_1(\eta_1, y_1) \delta_2(\eta_2, y_2) + \sigma_1(\eta_1, y_2) \sigma_2(\eta_2, y_1) \ge \varepsilon_1(\eta_1, y_1) \varepsilon_2(\eta_2, y_2)$

Examples: ϕ_{A_1,A_2}

$$\phi_1(X) = A_1 X A_1^*, \qquad \phi_2(X) = A_2 X^t A_2^*$$

$$B_1 = A_1, \quad B_2 = 0, \quad C_1 = 0, \quad C_2 = A_2$$

$$\omega_1(X) = \operatorname{Tr}(A_1 X A_2^*), \quad \omega_2(X) = \operatorname{Tr}(A_2 X^t A_2^*)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Examples: ϕ_{A_1,A_2}

$$\phi_1(X) = A_1 X A_1^*, \qquad \phi_2(X) = A_2 X^t A_2^*$$

$$B_1 = A_1, \quad B_2 = 0, \quad C_1 = 0, \quad C_2 = A_2$$

$$\omega_1(X) = \operatorname{Tr}(A_1 X A_2^*), \quad \omega_2(X) = \operatorname{Tr}(A_2 X^t A_2^*)$$

$$\phi(X) = \begin{pmatrix} A_1 X_{11} A_1^* + \text{Tr}(A_2 X_{22}^{\mathsf{t}} A_2^*) E_1 & 0 & A_1 X_{13} \\ 0 & A_2 X_{22}^{\mathsf{t}} A_2^* + \text{Tr}(A_1 X_{11} A_1^*) E_2 & A_2 X_{32}^{\mathsf{t}} \\ 0 & A_2 X_{23}^{\mathsf{t}} A_2^* & A_2 X_{23}^{\mathsf{t}} A_2^* \\ 0 & A_2 X_{31}^{\mathsf{t}} A_1^* & A_3 X_{23}^{\mathsf{t}} A_2^* & A_3 X_{33}^{\mathsf{t}} \end{pmatrix}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Examples: ϕ_{A_1,A_2}

$$\phi_1(X) = A_1 X A_1^*, \qquad \phi_2(X) = A_2 X^t A_2^*$$
$$B_1 = A_1, \quad B_2 = 0, \quad C_1 = 0, \quad C_2 = A_2$$
$$\omega_1(X) = \operatorname{Tr}(A_1 X A_2^*), \quad \omega_2(X) = \operatorname{Tr}(A_2 X^t A_2^*)$$

$$\phi(X) = \begin{pmatrix} A_1 X_{11} A_1^* + \operatorname{Tr}(A_2 X_{22}^* A_2^*) E_1 & 0 & A_1 X_{13} \\ 0 & A_2 X_{22}^* A_2^* + \operatorname{Tr}(A_1 X_{11} A_1^*) E_2 & A_2 X_{13}^* \\ 0 & A_2 X_{13}^* A_1^* & X_{23}^* A_2^* & X_{33}^* \end{pmatrix}$$

where

- ► $A_i: K_i \rightarrow H_i$ are Hilbert-Schmidt operators, i = 1, 2.
- E_i is the projection in $B(H_i)$ onto the range of A_i for i = 1, 2.

・ロト・日本・日本・日本・日本・日本

$$\phi(X) = \begin{pmatrix} A_1 X_{11} A_1^* + \text{Tr}(A_2 X_{22}^* A_2^*) E_1 & 0 & A_1 X_{13} \\ 0 & A_2 X_{22}^* A_2^* + \text{Tr}(A_1 X_{11} A_1^*) E_2 & A_2 X_{32}^* \\ 0 & X_{31} A_1^* & X_{23}^* A_2^* & X_{23}^* A_2^* \\ 0 & X_{31} A_1^* & X_{33}^* & X_{33}^* \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\phi(X) = \begin{pmatrix} A_1 X_{11} A_1^* + \text{Tr}(A_2 X_{22}^t A_2^*) E_1 & 0 & A_1 X_{13} \\ \hline 0 & A_2 X_{22}^t A_2^* + \text{Tr}(A_1 X_{11} A_1^*) E_2 & A_2 X_{32}^t \\ \hline X_{31} A_1^* & X_{23}^t A_2^* & X_{23}^t A_2^* \\ \hline & X_{23} A_2^* & X_{33} \end{pmatrix}$$

$$\begin{aligned} &\mu_1(\eta_1, y_1) = |\langle y_1, A_1 \eta_1 \rangle|, \\ &\varepsilon_1(\eta_1, y_1) = |\langle y_1, A_1 \eta_1 \rangle|, \\ &\delta_1(\eta_1, y_1) = 0, \\ &\sigma_1(\eta_1, y_2) = \|A_1 \eta_1\| \|y_2\|, \end{aligned}$$

$$\begin{aligned} \mu_2(\eta_2, y_2) &= |\langle y_2, A_2 \overline{\eta_2} \rangle|, \\ \varepsilon_2(\eta_2, y_2) &= |\langle y_2, A_2 \overline{\eta_2} \rangle|, \\ \delta_2(\eta_2, y_2) &= 0, \\ \sigma_2(\eta_2, y_1) &= \|A_2 \overline{\eta_2}\| \|y_1\|. \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\phi(X) = \begin{pmatrix} A_1 X_{11} A_1^* + \text{Tr}(A_2 X_{22}^t A_2^*) E_1 & 0 & A_1 X_{13} \\ \hline 0 & A_2 X_{22}^t A_2^* + \text{Tr}(A_1 X_{11} A_1^*) E_2 & A_2 X_{32}^t \\ \hline X_{31} A_1^* & X_{33}^t A_2^* & X_{33}^t \end{pmatrix}$$

$$\begin{split} \mu_1(\eta_1, y_1) &= |\langle y_1, A_1 \eta_1 \rangle|, & \mu_2(\eta_2, y_2) = |\langle y_2, A_2 \overline{\eta_2} \rangle|, \\ \varepsilon_1(\eta_1, y_1) &= |\langle y_1, A_1 \eta_1 \rangle|, & \varepsilon_2(\eta_2, y_2) = |\langle y_2, A_2 \overline{\eta_2} \rangle|, \\ \delta_1(\eta_1, y_1) &= 0, & \delta_2(\eta_2, y_2) = 0, \\ \sigma_1(\eta_1, y_2) &= \|A_1 \eta_1\| \|y_2\|, & \sigma_2(\eta_2, y_1) = \|A_2 \overline{\eta_2}\| \|y_1\|. \end{split}$$

 $\delta_1 \delta_2 + \sigma_1 \sigma_2 \ge \varepsilon_1 \varepsilon_2$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Hence ϕ is positive.

Examples: Ω_{K_1,K_2}

$$\phi_1(X) = \text{Tr}(X)\mathbb{I}_{B(K_1)}, \qquad \phi_2(X) = X^t$$

$$B_1 = \text{id}_{K_1}, \quad B_2 = 0, \quad C_1 = 0, \quad C_2 = \text{id}_{K_2}$$

$$\omega_1(X) = \text{Tr}(X), \quad \omega_2(X) = \text{Tr}(X)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Examples: Ω_{K_1,K_2}

$$\phi_1(X) = \operatorname{Tr}(X)\mathbb{I}_{B(K_1)}, \qquad \phi_2(X) = X^t$$
$$B_1 = \operatorname{id}_{K_1}, \quad B_2 = 0, \quad C_1 = 0, \quad C_2 = \operatorname{id}_{K_2}$$
$$\omega_1(X) = \operatorname{Tr}(X), \quad \omega_2(X) = \operatorname{Tr}(X)$$

$$\Omega(X) = \begin{pmatrix} (\mathrm{Tr}(X_{11}) + \mathrm{Tr}(X_{22}))\mathbb{I}_{B(K_1)} & 0 & X_{13} \\ 0 & \overline{X_{31}} & \overline{X_{22}} + \overline{\mathrm{Tr}(X_{11})}\mathbb{I}_{B(K_2)} & \overline{X_{32}} \\ \overline{X_{23}} & \overline{X_{23}} & \overline{X_{33}} \end{pmatrix}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Examples: Ω_{K_1,K_2}

$$\phi_1(X) = \operatorname{Tr}(X)\mathbb{I}_{B(K_1)}, \qquad \phi_2(X) = X^t$$
$$B_1 = \operatorname{id}_{K_1}, \quad B_2 = 0, \quad C_1 = 0, \quad C_2 = \operatorname{id}_{K_2}$$
$$\omega_1(X) = \operatorname{Tr}(X), \quad \omega_2(X) = \operatorname{Tr}(X)$$

$$\Omega(X) = \begin{pmatrix} (\mathrm{Tr}(X_{11}) + \mathrm{Tr}(X_{22})) \mathbb{I}_{B(K_1)} & 0 & X_{13} \\ 0 & \overline{X_{31}} & \overline{X_{22}} + \overline{\mathrm{Tr}(X_{11})} \mathbb{I}_{B(K_2)} & \overline{X_{32}} \\ \overline{X_{23}} & \overline{X_{23}} & \overline{X_{33}} \end{pmatrix}$$

$$\begin{split} & \mu_1(\eta_1, y_1) = \|y_1\| \|\eta_1\|, \\ & \varepsilon_1(\eta_1, y_1) = |\langle y_1, \eta_1 \rangle|, \\ & \delta_1(\eta_1, y_1) = \sqrt{\|y_1\|^2 \|\eta_1\|^2}, \\ & \sigma_1(\eta_1, y_2) = \|\eta_1\| \|y_2\|, \end{split}$$

 $\mu_2(\eta_2, y_2) = |\langle y_2, \overline{\eta_2} \rangle|,$ $\varepsilon_2(\eta_2, y_2) = |\langle y_2, \overline{\eta_2} \rangle|,$

 $\delta_2(\eta_2, y_2) = 0,$

 $\sigma_2(\eta_2, y_1) = \|\overline{\eta_2}\| \|y_1\|.$

(ロ)

Properties of merging

 $\phi_i : B(K_i) \rightarrow B(H_i), \quad B_i, C_i : K_i \rightarrow H_i, \quad i = 1, 2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Properties of merging

 $\phi_i : B(K_i) \to B(H_i), \quad B_i, C_i : K_i \to H_i, \quad i = 1, 2$

Define $\psi_i : B(K_i) \to B(H_i)$ and $\chi_i : B(K_i) \to B(H_i)$ by

$$\psi_i(X) = B_i X B_i^*, \qquad \chi_i(X) = C_i X^t C_i^*, \qquad X \in B(K_i).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary

If the merging of positive maps ϕ_1 , ϕ_2 by means of B_i , C_i , ω_i is positive, then $\psi_i + \chi_i \le \phi_i$ for i = 1, 2.

Properties of merging

 $\phi_i: B(K_i) \to B(H_i), \quad B_i, C_i: K_i \to H_i, \quad i = 1, 2$

Define $\psi_i : B(K_i) \to B(H_i)$ and $\chi_i : B(K_i) \to B(H_i)$ by

$$\psi_i(X) = B_i X B_i^*, \qquad \chi_i(X) = C_i X^t C_i^*, \qquad X \in B(K_i).$$

Corollary

If the merging of positive maps ϕ_1 , ϕ_2 by means of B_i , C_i , ω_i is positive, then $\psi_i + \chi_i \le \phi_i$ for i = 1, 2.

No notrivial merging of two extremal nondecomposable maps produces a positive map. Therefore, in order to get some nontrivial positive map by the merging procedure one should consider maps ϕ_1 and ϕ_2 with some 'regularity' properties. However, for properly chosen 'regular' maps there is a possibility for nontrivial merging. Surprisingly, merging of 'regular' maps can produce highly 'nonregular' positive maps. Theorem

If ϕ_1 is 2-positive and ϕ_2 is 2-copositive, then there are operators B_i , C_i and functionals ω_i such that merging of ϕ_1 and ϕ_2 by means of C_i , D_i , ω_i is a positive nondecomposable map.

Corollary

Consequently, for each pair of positive maps satisfying assumptions of the above theorem, there is a merging which is an entanglement witness for some PPT state

・ロト・一部・・ヨト・ヨト ヨー うらつ

3×3 example of PPT entagled state

By considering EW from the previous slide we obtain the following example of (unnormalized) PPT entangled matrix

where $\gamma > 0$, $b_1, c_1 \in \mathbb{C}$,

$$s_i = \max\{|b_i|, |c_i|\}, \quad s = \max\{\sqrt{|b_1|^2 + |b_2|^2}, \sqrt{|c_1|^2 + |c_2|^2}\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Exposed positive maps

Theorem (M,Rutkowski)

For $A_i: K_i \to H_i$, i = 1, 2, the map $\phi_{A_1, A_2}: B(K_1 \oplus K_2 \oplus \mathbb{C}) \to B(H_1 \oplus H_2 \oplus \mathbb{C})$ given by

$$X \mapsto \begin{pmatrix} A_1 X_{11} A_1^* + \operatorname{Tr}(A_2 X_{22}^t A_2^*) E_1 & 0 & A_1 X_{13} \\ \hline 0 & A_2 X_{22}^t A_2^* + \operatorname{Tr}(A_1 X_{11} A_1^*) E_2 & A_2 X_{32}^t \\ \hline 0 & X_{31} A_1^* & X_{23}^t A_2^* & X_{23}^t A_2^* \\ \hline X_{23}^t A_2^t & X_{33}^t \end{pmatrix}$$

is exposed in the cone of positive maps.

Remark

Strong spanning property was shown by Chruscinski and Sarbicki to be a useful sufficient condition for exposedness. Note, that ϕ_{A_1,A_2} does not satisfy this property for general choice of A_1, A_2 .

A positive map ϕ : $B(K) \rightarrow B(H)$ is called optimal if there is no CP map ψ such that $\psi \leq \phi$.

A positive map $\phi : B(K) \to B(H)$ is called optimal if there is no CP map ψ such that $\psi \le \phi$. Equivalently: The face Face(ϕ) does not contain CP maps.

A positive map ϕ : $B(K) \rightarrow B(H)$ is called optimal if there is no CP map ψ such that $\psi \leq \phi$. Equivalently: The face Face(ϕ) does not contain CP maps.

Spanning property: There are vectors $\eta_k \in K$ and $y_k \in H$, k = 1, ..., N, such that

(ロ)

- $\langle y_k, \phi(\eta_k \eta_k^*) y_k \rangle = 0$ for $k = 1, \dots, N$,
- span{ $\eta_k \otimes y_k : k = 1, ..., N$ } = $K \otimes H$.

A positive map ϕ : $B(K) \rightarrow B(H)$ is called optimal if there is no CP map ψ such that $\psi \leq \phi$. Equivalently: The face Face(ϕ) does not contain CP maps.

Spanning property: There are vectors $\eta_k \in K$ and $y_k \in H$, k = 1, ..., N, such that

(ロ)

- $\langle y_k, \phi(\eta_k \eta_k^*) y_k \rangle = 0$ for $k = 1, \dots, N$,
- span{ $\eta_k \otimes y_k : k = 1, ..., N$ } = $K \otimes H$.

Kye: Spanning property is equivalent to $\{\phi\}'' \cap CP = \emptyset$.

A positive map ϕ : $B(K) \rightarrow B(H)$ is called optimal if there is no CP map ψ such that $\psi \leq \phi$. Equivalently: The face Face(ϕ) does not contain CP maps.

Spanning property: There are vectors $\eta_k \in K$ and $y_k \in H$, k = 1, ..., N, such that

- $\langle y_k, \phi(\eta_k \eta_k^*) y_k \rangle = 0$ for $k = 1, \dots, N$,
- span{ $\eta_k \otimes y_k : k = 1, ..., N$ } = $K \otimes H$.

Kye: Spanning property is equivalent to $\{\phi\}'' \cap CP = \emptyset$.

Theorem (M,Rutkowski)

The map Ω_{K_1,K_2} : $B(K_1 \oplus K_2 \oplus \mathbb{C}) \rightarrow B(H_1 \oplus H_2 \oplus \mathbb{C})$ given by

$$X \mapsto \begin{pmatrix} (\mathrm{Tr}(X_{11}) + \mathrm{Tr}(X_{22})) \mathbb{I}_{B(K_1)} & 0 & X_{13} \\ 0 & \overline{X_{31}} & \overline{X_{22}^{\mathsf{t}}} + \mathrm{Tr}(X_{11}) \mathbb{I}_{B(K_2)} & \overline{X_{32}^{\mathsf{t}}} \\ \overline{X_{33}} & \overline{X_{33}} & \overline{X_{33}} \end{pmatrix}$$

satisfies spanning property.

The general form of ϕ : $M_3(\mathbb{C}) \rightarrow M_3(\mathbb{C})$:

$$\phi \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} f_1 x_{11} + w_2 x_{22} & 0 & b_1 x_{13} + c_1 x_{31} \\ 0 & f_2 x_{22} + w_1 x_{11} & b_2 x_{23} + c_2 x_{32} \\ \overline{b_1} x_{31} + \overline{c_1} x_{13} & \overline{b_2} x_{32} + \overline{c_2} x_{23} & x_{33} \end{pmatrix}.$$

The general form of $\phi : M_3(\mathbb{C}) \to M_3(\mathbb{C})$:

$$\phi \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} f_1 x_{11} + w_2 x_{22} & 0 & b_1 x_{13} + c_1 x_{31} \\ 0 & f_2 x_{22} + w_1 x_{11} & b_2 x_{23} + c_2 x_{32} \\ \overline{b_1} x_{31} + \overline{c_1} x_{13} & \overline{b_2} x_{32} + \overline{c_2} x_{23} & x_{33} \end{pmatrix}$$

٠

$$\mu_i = f_i^{1/2}, \quad \sigma_i = w_i^{1/2}, \quad \varepsilon_i = |b_i| + |c_i|, \quad \delta_i = (\mu_i^2 - \varepsilon_i^2)^{1/2}.$$

The general form of $\phi : M_3(\mathbb{C}) \to M_3(\mathbb{C})$:

$$\phi \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} f_1 x_{11} + w_2 x_{22} & 0 & b_1 x_{13} + c_1 x_{31} \\ 0 & f_2 x_{22} + w_1 x_{11} & b_2 x_{23} + c_2 x_{32} \\ \overline{b_1} x_{31} + \overline{c_1} x_{13} & \overline{b_2} x_{32} + \overline{c_2} x_{23} & x_{33} \end{pmatrix}$$

$$\mu_i = f_i^{1/2}, \quad \sigma_i = w_i^{1/2}, \quad \varepsilon_i = |b_i| + |c_i|, \quad \delta_i = (\mu_i^2 - \varepsilon_i^2)^{1/2}.$$

$$\phi(X) = \begin{pmatrix} (\varepsilon_1^2 + \delta_1^2)x_{11} + \sigma_2^2 x_{22} & 0 & b_1 x_{13} + c_1 x_{31} \\ 0 & (\varepsilon_2^2 + \delta_2^2)x_{22} + \sigma_1^2 x_{11} & b_2 x_{23} + c_2 x_{32} \\ \hline \overline{b_1} x_{31} + \overline{c_1} x_{13} & \overline{b_2} x_{32} + \overline{c_2} x_{23} & x_{33} \end{pmatrix}$$

•

The general form of $\phi : M_3(\mathbb{C}) \to M_3(\mathbb{C})$:

$$\phi \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} f_1 x_{11} + w_2 x_{22} & 0 & b_1 x_{13} + c_1 x_{31} \\ 0 & f_2 x_{22} + w_1 x_{11} & b_2 x_{23} + c_2 x_{32} \\ \overline{b_1} x_{31} + \overline{c_1} x_{13} & \overline{b_2} x_{32} + \overline{c_2} x_{23} & x_{33} \end{pmatrix}$$

$$\mu_i = f_i^{1/2}, \quad \sigma_i = w_i^{1/2}, \quad \varepsilon_i = |b_i| + |c_i|, \quad \delta_i = (\mu_i^2 - \varepsilon_i^2)^{1/2}.$$

$$\phi(X) = \begin{pmatrix} (\varepsilon_1^2 + \delta_1^2)x_{11} + \sigma_2^2 x_{22} & 0 & b_1 x_{13} + c_1 x_{31} \\ 0 & (\varepsilon_2^2 + \delta_2^2)x_{22} + \sigma_1^2 x_{11} & b_2 x_{23} + c_2 x_{32} \\ \hline b_1 x_{31} + \overline{c_1} x_{13} & \overline{b_2} x_{32} + \overline{c_2} x_{23} & x_{33} \end{pmatrix}$$

Proposition

The above map is positive if and only if $\sigma_1 \sigma_2 + \delta_1 \delta_2 \ge \varepsilon_1 \varepsilon_2$ *.*

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

Case 3 × 3 – *complete* (*co*)*positivity*

$$\phi(X) = \begin{pmatrix} (\varepsilon_1^2 + \delta_1^2)x_{11} + \sigma_2^2 x_{22} & 0 & b_1 x_{13} + c_1 x_{31} \\ 0 & (\varepsilon_2^2 + \delta_2^2)x_{22} + \sigma_1^2 x_{11} & b_2 x_{23} + c_2 x_{32} \\ \hline b_1 x_{31} + \overline{c_1} x_{13} & \overline{b_2} x_{32} + \overline{c_2} x_{23} & x_{33} \end{pmatrix}$$

•

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Case 3 × 3 – *complete* (*co*)*positivity*

$$\phi(X) = \begin{pmatrix} (\varepsilon_1^2 + \delta_1^2)x_{11} + \sigma_2^2 x_{22} & 0 & b_1 x_{13} + c_1 x_{31} \\ 0 & (\varepsilon_2^2 + \delta_2^2)x_{22} + \sigma_1^2 x_{11} & b_2 x_{23} + c_2 x_{32} \\ \hline \overline{b_1} x_{31} + \overline{c_1} x_{13} & \overline{b_2} x_{32} + \overline{c_2} x_{23} & x_{33} \end{pmatrix}$$

Proposition

The following conditions are equivalent:

(*i*) ϕ is completely positive (respectively completely copositive);

・ロト・一部・・ヨト・ヨト ヨー うらつ

(*ii*) ϕ is 2-positive (respectively 2-copositive);

(iii) $c_1 = c_2 = 0$ *(respectively* $b_1 = b_2 = 0$ *) and* $\delta_1 \delta_2 \ge \varepsilon_1 \varepsilon_2$.

Case 3 × 3 – *decomposability vs. nondecomposability*

$$\phi(X) = \begin{pmatrix} (\varepsilon_1^2 + \delta_1^2) x_{11} + \sigma_2^2 x_{22} & 0 & b_1 x_{13} + c_1 x_{31} \\ 0 & (\varepsilon_2^2 + \delta_2^2) x_{22} + \sigma_1^2 x_{11} & b_2 x_{23} + c_2 x_{32} \\ \hline \overline{b_1} x_{31} + \overline{c_1} x_{13} & \overline{b_2} x_{32} + \overline{c_2} x_{23} & x_{33} \end{pmatrix}.$$

Case 3 × 3 – *decomposability vs. nondecomposability*

$$\phi(X) = \begin{pmatrix} (\varepsilon_1^2 + \delta_1^2)x_{11} + \sigma_2^2 x_{22} & 0 & b_1 x_{13} + c_1 x_{31} \\ 0 & (\varepsilon_2^2 + \delta_2^2)x_{22} + \sigma_1^2 x_{11} & b_2 x_{23} + c_2 x_{32} \\ \hline b_1 x_{31} + \overline{c_1} x_{13} & \overline{b_2} x_{32} + \overline{c_2} x_{23} & x_{33} \end{pmatrix}$$
$$\vec{b} = (|b_1|, |b_2|)^t, \quad \vec{c} = (|c_1|, |c_2|)^t, \quad s_i = \max\{|b_i|, |c_i|\}, i = 1, 2, \\ s = \max\{\|\vec{b}\|, \|\vec{c}\|\}, \quad \delta = (\delta_1^2 + \delta_2^2)^{1/2}, \quad \varepsilon = (\varepsilon_1^2 + \varepsilon_2^2)^{1/2} \end{pmatrix}$$

Proposition

If b and c are linearly dependent, then φ is decomposable.
 If s(ε² + δ²)^{1/2} < ||b||² + ||c||², then φ is nondecomposable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Case 3 × 3 – decomposability vs. nondecomposability

$$\phi(X) = \begin{pmatrix} (\varepsilon_1^2 + \delta_1^2)x_{11} + \sigma_2^2 x_{22} & 0 & b_1 x_{13} + c_1 x_{31} \\ 0 & (\varepsilon_2^2 + \delta_2^2)x_{22} + \sigma_1^2 x_{11} & b_2 x_{23} + c_2 x_{32} \\ \hline b_1 x_{31} + \overline{c_1} x_{13} & \overline{b_2} x_{32} + \overline{c_2} x_{23} & x_{33} \end{pmatrix}$$
$$\vec{b} = (|b_1|, |b_2|)^t, \quad \vec{c} = (|c_1|, |c_2|)^t, \quad s_i = \max\{|b_i|, |c_i|\}, i = 1, 2, \\ s = \max\{\|\vec{b}\|, \|\vec{c}\|\}, \quad \delta = (\delta_1^2 + \delta_2^2)^{1/2}, \quad \varepsilon = (\varepsilon_1^2 + \varepsilon_2^2)^{1/2} \end{pmatrix}$$

Proposition

If b and c are linearly dependent, then φ is decomposable.
 If s(ε² + δ²)^{1/2} < ||b||² + ||c||², then φ is nondecomposable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If $\|\vec{b}\| = \|\vec{c}\|$, then the inequality in 2. is equivalent to linear independence of \vec{b} and \vec{c} .

Case 3 × 3 - *extremality*

Theorem

The following are equivalent:

- 1. ϕ is exposed,
- 2. ϕ is extremal,
- 3. each of the following conditions is satisfied

◆□▶ ◆□▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ● ●

3.1 $\vec{b} \neq 0$ and $\vec{c} \neq 0$, 3.2 $\delta_1 = \delta_2 = 0$, 3.3 $\sigma_1 \sigma_2 = \varepsilon_1 \varepsilon_2$, 3.4 $\langle \vec{b}, \vec{c} \rangle = 0$.

Case 3 × 3 - *optimality*

Theorem

The following are equivalent:

1. ϕ is optimal,

2. ϕ satisfies spanning property,

3. each of the following conditions is satisfied

・ロト・一部・・ヨト・ヨト ヨー うらつ

3.1
$$\vec{b} \neq 0$$
 and $\vec{c} \neq 0$,
3.2 $\sigma_1 \sigma_2 + \delta_1 \delta_2 = \varepsilon_1 \varepsilon_2$
3.3 $\langle \vec{b}, \vec{c} \rangle = 0$.

1. Concrete: construction of a new family of PPT entangled states.

Applications

- *1.* Concrete: construction of a new family of PPT entangled states.
- 2. Possible: construction of NPT bound entangled states (?) work in progress

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Main idea of the proof

• $K = K_1 \oplus K_2 \oplus \mathbb{C}, H = H_1 \oplus H_2 \oplus \mathbb{C}$

$$\blacktriangleright \mathcal{Z} = \{(\xi, \eta) \in K \times H \colon \langle \eta, \phi(\xi\xi^*)\eta \rangle = 0$$

Main idea of the proof

• $K = K_1 \oplus K_2 \oplus \mathbb{C}, H = H_1 \oplus H_2 \oplus \mathbb{C}$

$$\blacktriangleright \mathcal{Z} = \{ (\xi, \eta) \in K \times H \colon \langle \eta, \phi(\xi\xi^*) \eta \rangle = 0$$

▶ By Kye's characterization of exposed faces, $\phi : B(K) \rightarrow B(H)$ is exposed iff

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\forall \, \psi \in \mathfrak{P} \colon \; (\forall \, (\xi,\eta) \in \mathcal{Z} : \langle \eta, \psi(\xi\xi^*)\eta\rangle = 0) \quad \Rightarrow \quad \psi \in \mathbb{R}^+\phi.$

Main idea of the proof

• $K = K_1 \oplus K_2 \oplus \mathbb{C}, H = H_1 \oplus H_2 \oplus \mathbb{C}$

$$\blacktriangleright \mathcal{Z} = \{ (\xi, \eta) \in K \times H \colon \langle \eta, \phi(\xi\xi^*)\eta \rangle = 0 \}$$

▶ By Kye's characterization of exposed faces, $\phi : B(K) \to B(H)$ is exposed iff $\forall \psi \in \mathfrak{P} : (\forall (\xi, \eta) \in \mathcal{Z} : \langle \eta, \psi(\xi\xi^*)\eta \rangle = 0) \implies \psi \in \mathbb{R}^+ \phi.$

•
$$\langle \eta, \phi(\xi\xi^*)\eta \rangle$$
 is equal to

$$\|A_{1}\xi_{1}\|^{2}\|E_{2}\eta_{2}\|^{2} + \|A_{2}\overline{\xi_{2}}\|^{2}\|E_{1}\eta_{1}\|^{2} + |\langle\eta_{1},A_{1}\xi_{1}\rangle|^{2} + |\langle\eta_{2},A_{2}\overline{\xi_{2}}\rangle|^{2}$$

if $\alpha = 0$, and

$$\begin{aligned} |\alpha|^{-2} \left(\left\| |\alpha|^2 \overline{\beta} + \overline{\alpha} \langle \eta_1, A_1 \xi_1 \rangle + \alpha \langle \eta_2, A_2 \overline{\xi_2} \rangle \right\|^2 \\ + \left\| \alpha E_1 \eta_1 \otimes A_2 \overline{\xi_2} - \overline{\alpha} A_1 \xi_1 \otimes E_2 \eta_2 \right\|^2 \right), \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

if $\alpha \neq 0$.

• Thus $(\xi, \eta) \in \mathcal{Z}$ iff one of the following conditions holds

$$\begin{aligned} \alpha &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} = 0 \\ \alpha &= 0, A_{1}\xi_{1} \neq 0, A_{2}\overline{\xi_{2}} = 0 \text{ and } \eta_{1} \perp A_{1}\xi_{1}, E_{2}\eta_{2} = 0 \\ \alpha &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } E_{1}\eta_{1} = 0, \eta_{2} \perp A_{2}\overline{\xi_{2}} \\ \alpha &= 0, A_{1}\xi_{1} \neq 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } E_{1}\eta_{1} = 0, E_{2}\eta_{2} = 0 \\ \alpha &\neq 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} = 0 \text{ and } \beta = 0 \\ \alpha &\neq 0, A_{1}\xi_{1} \neq 0, A_{2}\overline{\xi_{2}} = 0 \text{ and } \zeta A_{1}\xi_{1}, \eta_{1} \rangle = -\overline{\alpha}\beta, E_{2}\eta_{2} = 0 \\ \alpha &\neq 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } E_{1}\eta_{1} = 0, \langle A_{2}\overline{\xi_{2}}, \eta_{2} \rangle = -\alpha\beta \\ \alpha &\neq 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } E_{1}\eta_{1} = 0, \langle A_{2}\overline{\xi_{2}}, \eta_{2} \rangle = -\alpha\beta \\ \alpha &\neq 0, A_{1}\xi_{1} \neq 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } E_{1}\eta_{1} = 0, \langle A_{2}\overline{\xi_{2}}, \eta_{2} \rangle = -\alpha\beta \\ \zeta &= 0, A_{1}\xi_{1} \neq 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } E_{1}\eta_{1} = 0, \langle A_{2}\overline{\xi_{2}}, \eta_{2} \rangle = -\alpha\beta \\ \zeta &= 0, A_{1}\xi_{1} \neq 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } E_{1}\eta_{1} = 0, \langle A_{2}\overline{\xi_{2}}, \eta_{2} \rangle = -\alpha\beta \\ \zeta &= 0, A_{1}\xi_{1} \neq 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } E_{1}\eta_{1} = 0, \langle A_{2}\overline{\xi_{2}}, \eta_{2} \rangle = -\alpha\beta \\ \zeta &= 0, A_{1}\xi_{1} \neq 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } Z = 0 \\ \zeta &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } Z = 0 \\ \zeta &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } Z = 0 \\ \zeta &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } Z = 0 \\ \zeta &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } Z = 0 \\ \zeta &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } Z = 0 \\ \zeta &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } Z = 0 \\ \zeta &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } Z = 0 \\ \zeta &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } Z = 0 \\ \zeta &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } Z = 0 \\ \zeta &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } Z = 0 \\ \zeta &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } Z = 0 \\ \zeta &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } Z = 0 \\ \zeta &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } Z = 0 \\ \zeta &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} \neq 0 \text{ and } Z = 0 \\ \zeta &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} = 0 \\ \zeta &= 0, A_{1}\xi_{1} = 0, A_{2}\overline{\xi_{2}} = 0 \\ \zeta &$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

► Now, assume $\langle \eta, \psi(\xi\xi^*)\eta \rangle = 0$ for all $(\xi, \eta) \in \mathcal{Z}$.

- ► Now, assume $\langle \eta, \psi(\xi\xi^*)\eta \rangle = 0$ for all $(\xi, \eta) \in \mathcal{Z}$.
- One shows that there are sesquilinear vector valued forms

 $\Psi_{kl}: (K_1 \oplus K_2) \times (K_1 \oplus K_2) \rightarrow B(H_l, H_k), \quad k, l = 1, 2$

and linear maps R_k , $Q_k : K_1 \oplus K_2 \to H_k$ for k = 1, 2 such that $\psi(\xi\xi^*)$ is equal to

$$\begin{pmatrix} \Psi_{11}(\xi_0,\xi_0) & \Psi_{12}(\xi_0,\xi_0) & \overline{\alpha}R_1\xi_0 + \alpha Q_1\overline{\xi_0} \\ \Psi_{21}(\xi_0,\xi_0) & \Psi_{22}(\xi_0,\xi_0) & \overline{\alpha}R_2\xi_0 + \alpha Q_2\overline{\xi_0} \\ \alpha(R_1\xi_0)^* + \overline{\alpha}(Q_1\overline{\xi_0})^* & \alpha(R_2\xi_0)^* + \overline{\alpha}(Q_2\overline{\xi_0})^* & \lambda|\alpha|^2 \end{pmatrix}$$

・ロト・一部・・ヨト・ヨト ヨー うらつ

for any $\xi \in K$ where $\xi = \xi_0 + \alpha e$ for a unique $\xi_0 = \xi_1 + \xi_2 \in K_1 \oplus K_2$ and $\alpha \in \mathbb{C}$.

- ► Now, assume $\langle \eta, \psi(\xi\xi^*)\eta \rangle = 0$ for all $(\xi, \eta) \in \mathcal{Z}$.
- One shows that there are sesquilinear vector valued forms

 $\Psi_{kl}: (K_1 \oplus K_2) \times (K_1 \oplus K_2) \rightarrow B(H_l, H_k), \quad k, l = 1, 2$

and linear maps R_k , $Q_k : K_1 \oplus K_2 \to H_k$ for k = 1, 2 such that $\psi(\xi \xi^*)$ is equal to

$$\begin{pmatrix} \Psi_{11}(\xi_0,\xi_0) & \Psi_{12}(\xi_0,\xi_0) & \overline{\alpha}R_1\xi_0 + \alpha Q_1\overline{\xi_0} \\ \Psi_{21}(\xi_0,\xi_0) & \Psi_{22}(\xi_0,\xi_0) & \overline{\alpha}R_2\xi_0 + \alpha Q_2\overline{\xi_0} \\ \alpha(R_1\xi_0)^* + \overline{\alpha}(Q_1\overline{\xi_0})^* & \alpha(R_2\xi_0)^* + \overline{\alpha}(Q_2\overline{\xi_0})^* & \lambda|\alpha|^2 \end{pmatrix}$$

for any $\xi \in K$ where $\xi = \xi_0 + \alpha e$ for a unique $\xi_0 = \xi_1 + \xi_2 \in K_1 \oplus K_2$ and $\alpha \in \mathbb{C}$.

Finally, by a sequence of reasonings using linearity-antilinearity interplay, one that all ingredients are multiples by λ of respective terms of φ.

References

- M. Marciniak, On extremal positive maps between type I factors, Banach Center Publ. 89, 201–221 (2010).
- M. Marciniak, Rank properties of exposed positive maps, Lin. Multilin. Alg. 61, 970–975 (2013).
- M. Marciniak and A. Rutkowski, Merging of positive maps: a construction of various classes of positive maps on matrix algebras, preprint arXiv:1605.02219.
- M. Miller and R. Olkiewicz, Stable subspaces of positive maps of matrix algebras, Open Syst. Inf. Dyn. 22, 1550011 (2015).
- A. Rutkowski, G. Sarbicki and D. Chruściński, A class of bistochastic positive optimal maps in M_d, Open Syst. Inf. Dyn. 22, 1550016 (2015).

ション (日本) (日本) (日本) (日本) (日本)