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Positive maps

K ,H Hilbert spaces

B(K ),B(H) algebras of bounded operators on K , H

B(K )+, B(H)+ cones of positive operators on K , H

φ : B(K ) → B(H) bounded linear map

Ï φ is positive if φ(B(K )+) ⊂ B(H)+

Ï φ is k-positive (k ∈N) if the map
Mk(B(K )) 3 [Xij] 7→ [φ(Xij)] ∈ Mk(B(H)) is positive.

Ï φ is completely positive (or CP) if it is k-positive for any k ∈N.

Ï φ is decomposable if φ(X) =φ1(X)+φ2(X)t, X ∈ B(K ), where
φ1,φ2 are CP maps.



Positive maps

K ,H Hilbert spaces

B(K ),B(H) algebras of bounded operators on K , H

B(K )+, B(H)+ cones of positive operators on K , H

φ : B(K ) → B(H) bounded linear map

Ï φ is positive if φ(B(K )+) ⊂ B(H)+

Ï φ is k-positive (k ∈N) if the map
Mk(B(K )) 3 [Xij] 7→ [φ(Xij)] ∈ Mk(B(H)) is positive.

Ï φ is completely positive (or CP) if it is k-positive for any k ∈N.

Ï φ is decomposable if φ(X) =φ1(X)+φ2(X)t, X ∈ B(K ), where
φ1,φ2 are CP maps.



Positive maps

K ,H Hilbert spaces

B(K ),B(H) algebras of bounded operators on K , H

B(K )+, B(H)+ cones of positive operators on K , H

φ : B(K ) → B(H) bounded linear map

Ï φ is positive if φ(B(K )+) ⊂ B(H)+

Ï φ is k-positive (k ∈N) if the map
Mk(B(K )) 3 [Xij] 7→ [φ(Xij)] ∈ Mk(B(H)) is positive.

Ï φ is completely positive (or CP) if it is k-positive for any k ∈N.

Ï φ is decomposable if φ(X) =φ1(X)+φ2(X)t, X ∈ B(K ), where
φ1,φ2 are CP maps.



Positive maps

K ,H Hilbert spaces

B(K ),B(H) algebras of bounded operators on K , H

B(K )+, B(H)+ cones of positive operators on K , H

φ : B(K ) → B(H) bounded linear map

Ï φ is positive if φ(B(K )+) ⊂ B(H)+

Ï φ is k-positive (k ∈N) if the map
Mk(B(K )) 3 [Xij] 7→ [φ(Xij)] ∈ Mk(B(H)) is positive.

Ï φ is completely positive (or CP) if it is k-positive for any k ∈N.

Ï φ is decomposable if φ(X) =φ1(X)+φ2(X)t, X ∈ B(K ), where
φ1,φ2 are CP maps.



Positive maps

K ,H Hilbert spaces

B(K ),B(H) algebras of bounded operators on K , H

B(K )+, B(H)+ cones of positive operators on K , H

φ : B(K ) → B(H) bounded linear map

Ï φ is positive if φ(B(K )+) ⊂ B(H)+

Ï φ is k-positive (k ∈N) if the map
Mk(B(K )) 3 [Xij] 7→ [φ(Xij)] ∈ Mk(B(H)) is positive.

Ï φ is completely positive (or CP) if it is k-positive for any k ∈N.

Ï φ is decomposable if φ(X) =φ1(X)+φ2(X)t, X ∈ B(K ), where
φ1,φ2 are CP maps.



Positive maps

K ,H Hilbert spaces

B(K ),B(H) algebras of bounded operators on K , H

B(K )+, B(H)+ cones of positive operators on K , H

φ : B(K ) → B(H) bounded linear map

Ï φ is positive if φ(B(K )+) ⊂ B(H)+

Ï φ is k-positive (k ∈N) if the map
Mk(B(K )) 3 [Xij] 7→ [φ(Xij)] ∈ Mk(B(H)) is positive.

Ï φ is completely positive (or CP) if it is k-positive for any k ∈N.

Ï φ is decomposable if φ(X) =φ1(X)+φ2(X)t, X ∈ B(K ), where
φ1,φ2 are CP maps.



Decomposability of positive maps in low dimensions

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

1. dimK = dimH = 2,

2. dimK = 2 and dimH = 3,

3. dimK = 3 and dimH = 2.

Then every positive map φ : B(K ) → B(H) is decomposable.

Choi gave the first example of nondecomposable positive map
φ : B(C3) → B(C3)

φ

 a11 a12 a13

a21 a22 a23

a31 a32 a33

=
 a11 +a33 −a12 −a13

−a21 a22 +a11 −a23

−a31 −a32 a33 +a22

 .

Another examples of non-decomposable maps were given by
Woronowicz, Tang, Ha, Osaka, Robertson, Kye and others.



Decomposability of positive maps in low dimensions

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

1. dimK = dimH = 2,

2. dimK = 2 and dimH = 3,

3. dimK = 3 and dimH = 2.

Then every positive map φ : B(K ) → B(H) is decomposable.

Choi gave the first example of nondecomposable positive map
φ : B(C3) → B(C3)

φ

 a11 a12 a13

a21 a22 a23

a31 a32 a33

=
 a11 +a33 −a12 −a13

−a21 a22 +a11 −a23

−a31 −a32 a33 +a22

 .

Another examples of non-decomposable maps were given by
Woronowicz, Tang, Ha, Osaka, Robertson, Kye and others.



Decomposability of positive maps in low dimensions

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

1. dimK = dimH = 2,

2. dimK = 2 and dimH = 3,

3. dimK = 3 and dimH = 2.

Then every positive map φ : B(K ) → B(H) is decomposable.

Choi gave the first example of nondecomposable positive map
φ : B(C3) → B(C3)

φ

 a11 a12 a13

a21 a22 a23

a31 a32 a33

=
 a11 +a33 −a12 −a13

−a21 a22 +a11 −a23

−a31 −a32 a33 +a22

 .

Another examples of non-decomposable maps were given by
Woronowicz, Tang, Ha, Osaka, Robertson, Kye and others.



Decomposability of positive maps in low dimensions

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

1. dimK = dimH = 2,

2. dimK = 2 and dimH = 3,

3. dimK = 3 and dimH = 2.

Then every positive map φ : B(K ) → B(H) is decomposable.

Choi gave the first example of nondecomposable positive map
φ : B(C3) → B(C3)

φ

 a11 a12 a13

a21 a22 a23

a31 a32 a33

=
 a11 +a33 −a12 −a13

−a21 a22 +a11 −a23

−a31 −a32 a33 +a22

 .

Another examples of non-decomposable maps were given by
Woronowicz, Tang, Ha, Osaka, Robertson, Kye and others.



Decomposability of positive maps in low dimensions

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

1. dimK = dimH = 2,

2. dimK = 2 and dimH = 3,

3. dimK = 3 and dimH = 2.

Then every positive map φ : B(K ) → B(H) is decomposable.

Choi gave the first example of nondecomposable positive map
φ : B(C3) → B(C3)

φ

 a11 a12 a13

a21 a22 a23

a31 a32 a33

=
 a11 +a33 −a12 −a13

−a21 a22 +a11 −a23

−a31 −a32 a33 +a22

 .

Another examples of non-decomposable maps were given by
Woronowicz, Tang, Ha, Osaka, Robertson, Kye and others.



Extremal positive maps

The set P(K ,H) of all positive maps φ : B(K ) → B(H) is a convex
cone.

We say, that a map φ is extremal if it generates an extremal ray in
that cone, i.e.

∀ψ ∈P : φ−ψ ∈P ⇒ ψ ∈R+φ

Examples:

1. Choi map

2. For A : K → H ,

AdA : B(K ) 3 X 7→ AXA∗ ∈ B(H)

AdA ◦ t : B(K ) 3 X 7→ AX tA∗ ∈ B(H)



Extremal positive maps

The set P(K ,H) of all positive maps φ : B(K ) → B(H) is a convex
cone.
We say, that a map φ is extremal if it generates an extremal ray in
that cone, i.e.

∀ψ ∈P : φ−ψ ∈P ⇒ ψ ∈R+φ

Examples:

1. Choi map

2. For A : K → H ,

AdA : B(K ) 3 X 7→ AXA∗ ∈ B(H)

AdA ◦ t : B(K ) 3 X 7→ AX tA∗ ∈ B(H)



Extremal positive maps

The set P(K ,H) of all positive maps φ : B(K ) → B(H) is a convex
cone.
We say, that a map φ is extremal if it generates an extremal ray in
that cone, i.e.

∀ψ ∈P : φ−ψ ∈P ⇒ ψ ∈R+φ

Examples:

1. Choi map

2. For A : K → H ,

AdA : B(K ) 3 X 7→ AXA∗ ∈ B(H)

AdA ◦ t : B(K ) 3 X 7→ AX tA∗ ∈ B(H)



Extremal positive maps

The set P(K ,H) of all positive maps φ : B(K ) → B(H) is a convex
cone.
We say, that a map φ is extremal if it generates an extremal ray in
that cone, i.e.

∀ψ ∈P : φ−ψ ∈P ⇒ ψ ∈R+φ

Examples:

1. Choi map

2. For A : K → H ,

AdA : B(K ) 3 X 7→ AXA∗ ∈ B(H)

AdA ◦ t : B(K ) 3 X 7→ AX tA∗ ∈ B(H)



Duality for positive maps

Ï T 1(H) – trace class operators on H .
Ï Duality between B(B(K ),B(H)) and B(K )⊗̂T 1(H)

〈Z ,φ〉d =∑
i

Tr
(
φ(Xi)Y T

i

)
Z =∑

i
Xi ⊗Yi, Xi ∈ B(K ), Yi ∈ B(H), φ ∈P

Ï Choi matrix of a map φ:

Cφ =∑
ij

eie
∗
j ⊗φ(eie

∗
j )

Ï C t
φ is a ’density matrix’ of the functional

B(K )⊗B(H) 3 Z 7→ 〈Z ,φ〉d

i.e.
〈Z ,φ〉d = Tr(C t

φZ).
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Ï For S ⊂ B(B(K ),B(H)), consider its dual cone S◦ ⊂ B(K )⊗̂T 1(H)

S◦ = {Z ∈ B(K )⊗̂T 1(H) : 〈Z ,φ〉d ≥ 0 for all φ ∈P}.

Ï P◦ consist of separable positive matrices, i.e.

Z ∈P◦ ⇔ Z =∑
k

Xk ⊗Yk, Xk ≥ 0, Yk ≥ 0.

Ï CP ⊂P completely positive maps, CP◦ = B(K ⊗H)+ (Choi
theorem)

Ï Dec ⊂P decomposable maps, Dec◦ is composed of PPT
positive matrices

Z ∈ Dec◦ ⇔ Z ≥ 0 and ZΓ ≥ 0,

where
(X ⊗Y )Γ = X ⊗Y t .
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Positive maps as entanglement witnesses

Definition

A positive definite matrix Z ∈ B(K ⊗H) is called entangled if it is not
separable

Ï Z is entangled if and only if there is φ ∈P such that 〈Z ,φ〉d < 0.
We say that such φ is an entanglement witness for Z

Ï Z is a PPT matrix if and only if 〈Z ,φ〉d > 0 for every
decomposable φ.

Ï Z is a PPT entangled matrix if and only if there is a
nondecomposable map φ, such that 〈Z ,φ〉d < 0.
This provides also a nice criterion for nondecomposability.
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Duality and exposed positive maps

For each S ⊂P one can define a dual face S′ ⊂P◦ by

S′ = {Z ∈P◦ : 〈Z ,φ〉d = 0}

Similarly, one defines dual faces for subsets of P ◦.

Definition

We say that a face F ⊂P is exposed, if F ′′ = F.
A map φ ∈P is exposed if {φ}′′ =R+φ.

Theorem (Straszewicz, 1935)

If a set K ⊂Rn is closed and convex then cl(ExpK ) = ExtK .

It follows from the above theorem that the problem of the
description of positive maps can be reduced to the problem of
characterization of exposed positive maps.
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Examples

Ï (MM’2011) For finite dimensional dimensional K and H and
any A : K → H , the maps

AdA : X 7→ AXA∗, AdA ◦ t : X 7→ AX tA∗

are exposed.

Ï Choi map is an extremal nonexposed positive map.

Ï Other examples are due to Cruściński and Sarbicki, Ha and
Kye, and others..
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Example of Miller and Olkiewicz

Miller and Olkiewicz (’14) considered the following example of a
bistochastic map.

S : B(C3) → B(C3)

S

 x11 x12 x13

x21 x22 x23

x31 x32 x33

=


1
2 (x11 +x22) 0 1p

2
x13

0 1
2 (x11 +x22) 1p

2
x32

1p
2

x31
1p
2

x23 x33


Theorem (Miller, Olkiewicz)

S is a bistochastic, exposed and nondecomposable (even atomic)
map.
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Generalization by Rutkowski et al.

Rutkowski, Sarbicki and Chruściński proposed the following
generalization of the map S:

Λd : B(Cd+1) → B(Cd+1)

Λd(X) = 1

d



d∑
i=1

xii · · · 0 0
p

dx1,d+1

...
...

...
...

0 · · ·
d∑

i=1
xii 0

p
dxd−1,d+1

0 · · · 0
d∑

i=1
xii

p
dxd+1,d

p
dxd+1,1 · · · p

dxd+1,d−1
p

dxd,d+1 dxd+1,d+1
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Miller-Olkiewicz map as a merging

For V =


p
2 0 0

0
p

2 0
0 0 1

, consider ’denormalized’ version of S

φ(X) = VS(X)V ∗

φ

 x11 x12 x13

x21 x22 x23

x31 x32 x33

=
 x11 +x22 0 x13

0 x11 +x22 x32

x31 x23 x33


φ=φess +φdiag

φess : X 7→
 x11 0 x13

0 x22 x32

x31 x23 x33

 , φdiag : X 7→
 x22 0 0

0 x11 0
0 0 0
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Ï identity
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Merging of positive maps

Let K1,K2,H1,H2 be Hilbert spaces and

φ1 : B(K1) → B(H1), φ2 : B(K2) → B(H2)

be positive maps.

Let K3 = H3 =C, and consider spaces

K = K1 ⊕K2 ⊕K3, H = H1 ⊕H2 ⊕H3

Each element X ∈ B(K ) can be represented in the matrix form

X =

 X11 X12 X13

X21 X22 X23

X31 X32 X33


where Xij ∈ B(Kj,Ki). In particular

Xi3 ∈ B(C,Ki) = Ki, X3j ∈ B(Kj,C) = K∗
j , X33 ∈C.
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Merging of positive maps

Consider a φ : B(K ) → B(H) given by

φ (X) =

 φ1(X11)+ω2(X22)P1 0 B1X13 +C1X t
31

0 φ2(X22)+ω1(X11)P2 B2X23 +C2X t
32

X31B∗
1 +X t

13C∗
1 X32B∗

2 +X t
23C∗

2 X33


where

Ï Bi,Ci : Ki → Hi, i = 1,2, linear operators

Ï ωi : B(Ki) →C, i = 1,2, positive functionals

Ï Pi ∈ B(Hi), i = 1,2, projection onto the range of φi(IB(Ki))

Definition

We say that the map φ is a merging of φ1, φ2 by means of ingredients
Bi,Ci,ωi.



Positivity of merging

Question: Is a merging of positive maps φ1 and φ2 positive?

Let ηi ∈ Ki, yi ∈ Hi. Define

µi(ηi,yi) =
√

〈yi,φi(ηiη
∗
i )yi〉 εi(ηi,yi) = |〈yi,Biηi〉|+ |〈yi,Ciηi〉|

δi(ηi,yi) =
√
µi(ηi,yi)2 −εi(ηi,yi)2 σi(ηi,yi′) =

√
ωi(ηiη

∗
i )‖Pi′yi′‖

Theorem

The merging φ of positive maps φ1, φ2 by means of Bi, Ci, ωi is a
positive map if and only if the following conditions are satisfied

(i) εi(ηi,yi) ≤µi(ηi,yi) for i = 1,2, ηi ∈ Ki, yi ∈ Hi,

(ii) for every η1 ∈ K1, η2 ∈ K2, y1 ∈ H1, y2 ∈ H2,

δ1(η1,y1)δ2(η2,y2)+σ1(η1,y2)σ2(η2,y1) ≥ ε1(η1,y1)ε2(η2,y2)
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Examples: φA1,A2

φ1(X) = A1XA∗
1 , φ2(X) = A2X tA∗

2

B1 = A1, B2 = 0, C1 = 0, C2 = A2

ω1(X) = Tr(A1XA∗
2 ), ω2(X) = Tr(A2X tA∗

2 )

φ(X) =

 A1X11A∗
1 +Tr(A2X t

22A∗
2 )E1 0 A1X13

0 A2X t
22A∗

2 +Tr(A1X11A∗
1 )E2 A2X t

32
X31A∗

1 X t
23A∗

2 X33


where

Ï Ai : Ki → Hi are Hilbert-Schmidt operators, i = 1,2.

Ï Ei is the projection in B(Hi) onto the range of Ai for i = 1,2.
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δ1(η1,y1) = 0, δ2(η2,y2) = 0,

σ1(η1,y2) = ‖A1η1‖‖y2‖, σ2(η2,y1) = ‖A2η2‖‖y1‖.

δ1δ2 +σ1σ2 ≥ ε1ε2

Hence φ is positive.
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Properties of merging

φi : B(Ki) → B(Hi), Bi,Ci : Ki → Hi, i = 1,2

Define ψi : B(Ki) → B(Hi) and χi : B(Ki) → B(Hi) by

ψi(X) = BiXB∗
i , χi(X) = CiX

tC∗
i , X ∈ B(Ki).

Corollary

If the merging of positive maps φ1, φ2 by means of Bi,Ci,ωi is
positive, then ψi +χi ≤φi for i = 1,2.

No notrivial merging of two extremal nondecomposable maps
produces a positive map. Therefore, in order to get some nontrivial
positive map by the merging procedure one should consider maps
φ1 and φ2 with some ’regularity’ properties. However, for properly
chosen ’regular’ maps there is a possibility for nontrivial merging.
Surprisingly, merging of ’regular’ maps can produce highly
’nonregular’ positive maps.
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Nondecomposable merging

Theorem

If φ1 is 2-positive and φ2 is 2-copositive, then there are operators
Bi,Ci and functionals ωi such that merging of φ1 and φ2 by means of
Ci,Di,ωi is a positive nondecomposable map.

Corollary

Consequently, for each pair of positive maps satisfying assumptions
of the above theorem, there is a merging which is an entanglement
witness for some PPT state



3×3 example of PPT entagled state

By considering EW from the previous slide we obtain the following
example of (unnormalized) PPT entangled matrix

Z =



γ · · · · · · · −b1

· · · · · · · · ·
· · 1 · · · −c1 · ·
· · · · · · · · ·
· · · · γ · · · −b2

· · · · · 1 · −c2 ·
· · −c1 · · · s2

1 · ·
· · · · · −c2 · s2

2 ·
−b1 · · · −b2 · · · γ−1s2


where γ> 0, b1,c1 ∈C,

si = max
{|bi|, |ci|

}
, s = max

{√
|b1|2 +|b2|2,

√
|c1|2 +|c2|2

}



Exposed positive maps

Theorem (M,Rutkowski)

For Ai : Ki → Hi, i = 1,2, the map
φA1,A2 : B(K1 ⊕K2 ⊕C) → B(H1 ⊕H2 ⊕C) given by

X 7→

 A1X11A∗
1 +Tr(A2X t

22A∗
2 )E1 0 A1X13

0 A2X t
22A∗

2 +Tr(A1X11A∗
1 )E2 A2X t

32
X31A∗

1 X t
23A∗

2 X33


is exposed in the cone of positive maps.

Remark

Strong spanning property was shown by Chruscinski and Sarbicki to
be a useful sufficient condition for exposedness. Note, that φA1,A2

does not satisfy this property for general choice of A1,A2.



Optimal positive maps maps

A positive map φ : B(K ) → B(H) is called optimal if there is no CP
map ψ such that ψ≤φ.

Equivalently: The face Face(φ) does not
contain CP maps.
Spanning property: There are vectors ηk ∈ K and yk ∈ H , k = 1, . . . ,N ,
such that

Ï 〈yk,φ(ηkη
∗
k)yk〉 = 0 for k = 1, . . . ,N ,

Ï span{ηk ⊗yk : k = 1, . . . ,N} = K ⊗H .

Kye: Spanning property is equivalent to {φ}′′∩CP =;.

Theorem (M,Rutkowski)

The mapΩK1,K2 : B(K1 ⊕K2 ⊕C) → B(H1 ⊕H2 ⊕C) given by

X 7→


(
Tr(X11)+Tr(X22)

)
IB(K1) 0 X13

0 X t
22 +Tr(X11)IB(K2) X t

32
X31 X t

23 X33


satisfies spanning property.
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Case 3×3 – positivity

The general form of φ : M3(C) → M3(C):

φ

 x11 x12 x13

x21 x22 x23

x31 x32 x33

=

 f1x11 +w2x22 0 b1x13 + c1x31

0 f2x22 +w1x11 b2x23 + c2x32

b1x31 + c1x13 b2x32 + c2x23 x33

 .

µi = f 1/2
i , σi = w1/2

i , εi = |bi|+ |ci|, δi = (µ2
i −ε2

i )1/2.

φ (X) =

 (ε2
1 +δ2

1)x11 +σ2
2x22 0 b1x13 + c1x31

0 (ε2
2 +δ2

2)x22 +σ2
1x11 b2x23 + c2x32

b1x31 + c1x13 b2x32 + c2x23 x33

 .

Proposition

The above map is positive if and only if σ1σ2 +δ1δ2 ≥ ε1ε2.
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The above map is positive if and only if σ1σ2 +δ1δ2 ≥ ε1ε2.



Case 3×3 – complete (co)positivity

φ (X) =

 (ε2
1 +δ2

1)x11 +σ2
2x22 0 b1x13 + c1x31

0 (ε2
2 +δ2

2)x22 +σ2
1x11 b2x23 + c2x32

b1x31 + c1x13 b2x32 + c2x23 x33

 .

Proposition

The following conditions are equivalent:

(i) φ is completely positive (respectively completely copositive);

(ii) φ is 2-positive (respectively 2-copositive);

(iii) c1 = c2 = 0 (respectively b1 = b2 = 0) and δ1δ2 ≥ ε1ε2.
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Case 3×3 – decomposability vs. nondecomposability
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s = max{‖~b‖,‖~c‖}, δ= (δ2
1 +δ2

2)1/2, ε= (ε2
1 +ε2

2)1/2

Proposition

1. If~b and~c are linearly dependent, then φ is decomposable.

2. If s(ε2 +δ2)1/2 < ‖~b‖2 +‖~c‖2, then φ is nondecomposable.

If ‖~b‖ = ‖~c‖, then the inequality in 2. is equivalent to linear
independence of~b and~c.
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Case 3×3 - extremality

Theorem

The following are equivalent:

1. φ is exposed,

2. φ is extremal,

3. each of the following conditions is satisfied
3.1 ~b 6= 0 and~c 6= 0,
3.2 δ1 = δ2 = 0,
3.3 σ1σ2 = ε1ε2,
3.4 〈~b,~c〉 = 0.



Case 3×3 - optimality

Theorem

The following are equivalent:

1. φ is optimal,

2. φ satisfies spanning property,

3. each of the following conditions is satisfied
3.1 ~b 6= 0 and~c 6= 0,
3.2 σ1σ2 +δ1δ2 = ε1ε2,
3.3 〈~b,~c〉 = 0.



Applications

1. Concrete: construction of a new family of PPT entangled
states.

2. Possible: construction of NPT bound entangled states (?) -
work in progress
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Main idea of the proof

Ï K = K1 ⊕K2 ⊕C, H = H1 ⊕H2 ⊕C
Ï Z = {(ξ,η) ∈ K ×H : 〈η,φ(ξξ∗)η〉 = 0

Ï By Kye’s characterization of exposed faces, φ : B(K ) → B(H) is
exposed iff
∀ψ ∈P : (∀ (ξ,η) ∈Z : 〈η,ψ(ξξ∗)η〉 = 0) ⇒ ψ ∈R+φ.

Ï 〈η,φ(ξξ∗)η〉 is equal to

‖A1ξ1‖2‖E2η2‖2 +‖A2ξ2‖2‖E1η1‖2 +|〈η1,A1ξ1〉|2 +|〈η2,A2ξ2〉|2

if α= 0, and

|α|−2
(∣∣∣|α|2β+α〈η1,A1ξ1〉+α〈η2,A2ξ2〉

∣∣∣2

+
∥∥∥αE1η1 ⊗A2ξ2 −αA1ξ1 ⊗E2η2

∥∥∥2
)

,

if α 6= 0.
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Sketch of the proof

Ï Thus (ξ,η) ∈Z iff one of the following conditions holds

α= 0, A1ξ1 = 0, A2ξ2 = 0

α= 0, A1ξ1 6= 0, A2ξ2 = 0 and η1 ⊥ A1ξ1, E2η2 = 0

α= 0, A1ξ1 = 0, A2ξ2 6= 0 and E1η1 = 0, η2 ⊥ A2ξ2

α= 0, A1ξ1 6= 0, A2ξ2 6= 0 and E1η1 = 0, E2η2 = 0

α 6= 0, A1ξ1 = 0, A2ξ2 = 0 and β= 0

α 6= 0, A1ξ1 6= 0, A2ξ2 = 0 and 〈A1ξ1,η1〉 =−αβ, E2η2 = 0

α 6= 0, A1ξ1 = 0, A2ξ2 6= 0 and E1η1 = 0, 〈A2ξ2,η2〉 =−αβ

α 6= 0, A1ξ1 6= 0, A2ξ2 6= 0 and


Eη1 =− αβ

‖A1ξ1‖2 +‖A2ξ2‖2
A1ξ1,

Eη2 =− αβ

‖A1ξ1‖2 +‖A2ξ2‖2
A2ξ2



Sketch of the proof

Ï Now, assume 〈η,ψ(ξξ∗)η〉 = 0 for all (ξ,η) ∈Z .

Ï One shows that there are sesquilinear vector valued forms

Ψkl : (K1 ⊕K2)× (K1 ⊕K2) → B(Hl,Hk), k, l = 1,2

and linear maps Rk,Qk : K1 ⊕K2 → Hk for k = 1,2 such that
ψ(ξξ∗) is equal to Ψ11(ξ0,ξ0) Ψ12(ξ0,ξ0) αR1ξ0 +αQ1ξ0

Ψ21(ξ0,ξ0) Ψ22(ξ0,ξ0) αR2ξ0 +αQ2ξ0

α(R1ξ0)∗+α(Q1ξ0)∗ α(R2ξ0)∗+α(Q2ξ0)∗ λ|α|2


for any ξ ∈ K where ξ= ξ0 +αe for a unique
ξ0 = ξ1 +ξ2 ∈ K1 ⊕K2 and α ∈C.
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