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ZOOM Information

[1]16 Dec., 2022(The first day)

https://ritsumei-ac-jp.zoom.us/j/92959759040?pwd=R05QQllFSlRSc3RkQXNNUmNkSmNVdz09

MeetingID: 929 5975 9040

Passcode: 805847

[2]17 Dec., 2022 (The second day)

https://ritsumei-ac-jp.zoom.us/j/95887515946?pwd=dmRxOW02cWlKaVdmaGZraVlITW5WZz09

MeetingID: 958 8751 5946

Passcode: 828758

[3]18 Dec., 2022 (The third day)

https://ritsumei-ac-jp.zoom.us/j/95689678992?pwd=S0czZHZRU0FpMmJ6MHJjenFXTGJ2QT09
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シンポジウム・ワークショップ

2022年12月16日(金) — 18日(日)　ワークショップ

2022.08.22 Mon up

Workshop “2022 Japan-China International Conference on matrix theory with

applications”

Date : December 16 (Friday)  – December 18 (Sunday), 2022

Place: Colloquium Room, West Wing Building 6F 
 Biwako Kusatsu Campus, Ritsumeikan University
 Kusatsu City, Shiga, Japan
 No. 9 Building in <http://www.ritsumei.ac.jp/campusmap/bkc/>

Holding form : Hybrid format
Chinese side will give a lecture only online

 

Please click the registration bar below to register the workshop
Note that the deadline of the registration is 15 December, 2022
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Tentative Schedule of talks 

 

2022 Japan-China International Conference on matrix theory with applications 

Ritsumeikan University (Japan), December 16, 2022 – December 18, 2022 

 

The time used here is Japanese time. 

Shanghai time ＝Japanese time -1 

 

I.Dec. 16, 2022 

Time   Speaker 

9:30 am ~10:30 am Plenary talk Lee Jaeha  

10:30 am~11:00 am Question, Break time  

11:00 am~12:00 am Plenary talk Michael Ng 

12:00 pm ~ 13:30 pm Question and Lunch   

13:30 pm ~ 14:00 pm General talk Ryo Takakura  

14:00 pm ~ 14:20 pm Question, Break time  

14:20 pm ~ 14:50 pm General talk Jinchuan Hou 

14:50 pm ~ 15:10 pm Question, Break time  

15:10 pm ~ 15:40 pm General talk Yoichi Udagawa  

15:40 pm ~ 15:50 pm Question, Break time  

15:50 pm ~ 16:20 pm  General talk Kan He 

16:20 pm ~ 16:30 pm Question, Break time  

16:30 pm ~ 17:00 pm General talk Michiya Mori  

17:00 pm ~ 17:10 pm Question  

17:30 pm ~ 19:00 pm Discussions  

 

 

 

 

 

 

 

 

 

 

 



II.Dec. 17, 2022 

Time   Speaker  

9:30 am ~10:30 am Plenary talk Qing-Wen Wang 

10:30 am~11:00 am Question, Break time  

11:00 am~12:00 am Plenary talk Etsuo Segawa  

12:00 pm ~ 13:30 pm Question and Lunch   

13:30 pm ~ 14:00 pm General talk Bing Zheng 

14:00 pm ~ 14:20 pm Question, Break time  

14:20 pm ~ 14:50 pm General talk Tomohiro Hayase  

14:50 pm ~ 15:10 pm Question, Break time  

15:10 pm ~ 15:40 pm General talk Jianzhou Liu 

15:40 pm ~ 15:50 pm Question, Break time  

15:50 pm ~ 16:20 pm  General talk Tie-Xiang Li 

16:20 pm ~ 16:30 pm Question, Break time  

16:30 pm ~ 17:00 pm General talk Zhi-Gang Jia 

17:00 pm ~ 17:10 pm Question and Break  

17:10 pm ~ 17:40 pm General talk Guang-Jing Song 

17:40 pm ~ 18:00 pm Question  

 

III.Dec. 18, 2022 

Time  Speaker  

10:00 am ~ 10:30 am General Talk Toshikazu Abe  

10:30 am ~ 10:40 am Question and Break  

10:40 am ~ 11:10 am General Talk Xiaomin Pan 

11:10 am ~ 11:20 am Question and Break  

11:20 am ~ 11:50 am General talk Shiho Oi  

11:50 am ~ 12:00 am Question and Break  

 



A Universal Formulation of Uncertainty Relations in
Quantum Theory

Jaeha Lee (IIS, The University of Tokyo)∗

Abstract
The uncertainty principle [1], advocated by Heisenberg in 1927, is widely con-
sidered as one of the basic tenets of quantum theory, characterising the indeter-
ministic nature of the microscopic world. The principle, originally derived from
heuristic arguments with the aid of several Gedankenexperiments, has undergone
much theoretical elaboration over the following century or so, thereby resulting in
various relations [2–6], each of which accounting for certain realms of its diverse
forms of manifestation. In this talk, a universal formulation [7, 8] of uncertainty
relations is presented, which is established upon conceivably the simplest and
most general framework of measurement of statistical nature. Quite assuringly,
the new formulation entails several renowned previous results as corollaries to
its special cases. Notably, it attains a seamless connection between two of the
most prominent realms of quantum uncertainty, namely the uncertainty involving
quantum measurements and that regarding the intrinsic indeterminacy inherent in
quantum states.

1. A universal formulation [7, 8] of uncertainty relations
Let S(H) denote the linear space of all the bounded self-adjoint operators on a Hilbert space
H, and Z(H) denote the convex set of all the density operators on H. In a parallel manner, let
R(Ω) denote the linear space of all the real bounded measurable functions on a measurable
space (Ω,A), and W (Ω) denote the convex set of all the probability measures on (Ω,A).

For each quantum state ρ ∈ Z(H), define the Hilbert space of localised quantum ob-
servables Sρ(H) := S(H)/∼ρ by the completion of the quotient space under the equivalence
relation A ∼ρ B ⇐⇒ ‖A − B‖ρ = 0, A,B ∈ S(H), regarding the state-dependent
seminorm ‖A‖ρ := (Tr[A2ρ])1/2. Similarly, for each classical state p ∈ W (Ω), define the
Hilbert space of localised classical observables Rp(Ω) := R(Ω)/∼p by the completion of the
quotient space under the equivalence relation f ∼ρ g ⇐⇒ ‖f − g‖p = 0, f, g ∈ R(Ω),
regarding the state-dependent seminorm ‖f‖ρ := (

∫
Ω
|f(ω)|2 dp(ω))1/2.

An affine map M : Z(H) → W (Ω), which shall be referred to as a quantum measure-
ment, entails a natural dual map M ′ : R(Ω) → S(H). The Kadison–Schwarz inequality
reveals that the dual map passes to the quotient, whereby a quantum measurement is found
to locally induce a pair of dual linear maps between the space of localised observables.

Proposition 1.1 (Pullback and Pushforward of a Measurement [7, 8]). A quantum measure-
ment M : Z(H) → W (Ω) induces a pair of non-expansive dual linear maps

M∗
ρ : RMρ(Ω) → Sρ(H), Mρ∗ : Sρ(H) → RMρ(Ω), (1)

respectively termed the pullback and the pushforward of M at ρ ∈ Z(H), between the spaces
of localised observables.

This work was supported by KAKENHI (JP18K13468, JP20H01906, and JP22K13970).
2000 Mathematics Subject Classification: 81P15, 81Q10.
Keywords: Uncertainty principle, uncertainty relation, quantum measurement.
∗ e-mail: lee@iis.u-tokyo.ac.jp



Given the above result, define the error of the measurement M of A over ρ by the amount
of contraction

ερ(A;M) :=
√

‖A‖2ρ − ‖Mρ∗A‖2ρ (2)

induced by the pushforward. Note that the error is non-negative by construction.

Theorem 1.2 (Universal Uncertainty Relation [7,8]). Let M : Z(H) → W (Ω) be a quantum
measurement. For any A,B ∈ Sρ(H), ρ ∈ Z(H), the inequality

ερ(A;M) ερ(B;M) ≥
√
R2 + I2 (3)

holds with

R :=

〈
{A,B}

2

〉
ρ

−
〈
Mρ∗A, Mρ∗B

〉
Mρ

, (4)

I :=

〈
[A,B]

2i

〉
ρ

−
〈
[M∗

ρ Mρ∗A,B]

2i

〉
ρ

−
〈
[A,M∗

ρ Mρ∗B]

2i

〉
ρ

(5)

being the two contributors to the lower bound.

2. The uncertainty principle as an impossibility theorem [7, 8]
The above relation reveals a universal impossibility theorem (alias no-go theorem), which
marks a fundamental incompatibility inherent in quantum theory.

Theorem 2.1 (Universal Uncertainty Principle [7, 8]). Let M be a quantum measurement
performed on a quantum system H. Then, the implication〈

[A,B]

2i

〉
ρ

6= 0 =⇒ ερ(A;M) 6= 0 or ερ(B;M) 6= 0 (6)

holds for any A,B ∈ Sρ(H), ρ ∈ Z(H).

A stronger impossibility theorem, the form of which is shared in common in many of the
traditional formulations of the principle, is then found to be valid under a certain constraint.

Theorem 2.2 (Traditional Uncertainty Principle [8]). Let M be a quantum measurement
performed on a quantum system H. Then, the implication〈

[A,B]

2i

〉
ρ

6= 0 =⇒ ερ(A;M) 6= 0 and ερ(B;M) 6= 0 (7)

holds for any A,B ∈ ranM∗
ρ = (kerMρ∗)

⊥, ρ ∈ Z(H).

References
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Title: Quaternion Matrix Computation 

 
Speaker: Michael Ng (University of Hong Kong) 
 

Abstract: In this talk, I share some recent results of quaternion matrix 
computation. Numerical examples and related applications are reported to 
illustrate our results. 

 
 



Overviews of generalized probabilistic theories 
and specific results for regular polygon theories 

 
Ryo Takakura (Kyoto University) 

 
Quantum theory, whose foundation is formed by matrix theory (Hilbert space 
theory), is the most successful theory that describes nature. Among many of its 
remarkable predictions such as the existence of superposition or entanglement, 
probably the most drastic one is that nature is probabilistic: Even if we conduct a 
perfect preparation of a physical system and measurement, we do not always 
obtain one determined outcome. Generalized probabilistic theories (GPTs) are a 
mathematical framework that describes most intuitively these probabilistic 
behaviors of nature. While positive operators on a Hilbert space are needed in 
quantum theory, elements of a vector space and its dual (called states and effects 
corresponding to preparations of systems and measurements respectively) are 
tools for calculating probabilities in GPTs. The only requirement is the convexity for 
states and effects, and there is in general not assumed any Hilbert space structure 
or operator algebraic property. In this sense, GPTs are operationally the broadest 
framework to describe nature, and have been studied actively in recent years in 
the context of quantum foundations [1,2,3], followed by the intuition that seeing 
quantum theory from a broader perspective will contribute to elucidating its 
essence.  
 
In this presentation, I explain the mathematical formulation of GPTs to show how 
they give the most intuitive description of nature. It will be revealed that its two 
basic assumptions: physical experiments consist of three procedures - preparing 
an object system, performing a measurement, and obtaining statistics – and their 
probabilistic mixtures are allowed, can be mathematically represented in terms of 
ordered vector spaces (more precisely, a base norm space and order unit space). 
In the embedding of these physical objects into ordered vector spaces, the 
requirement of the validity of probabilistic mixtures is reflected as the convexity of 
the sets of those objects (the state space and effect space) in the vector spaces. 
The mathematical formulation of GPTs through this embedding theorem is a 
generalization of that of quantum theory, where the preparation and measurement 



procedures are represented respectively as density operators and positive 
operators bounded by the identity operator (or POVMs) in the vector space of 
positive operators. 
 
In addition to the fundamental description of GPTs, I also present results for one of 
the simplest classes of GPTs called regular polygon theories. Regular polygon 
theories are GPTs whose state spaces are in the shape of regular polygons, and 
are often regarded naturally as generalizations of the two-level quantum system 
(the qubit system). I explain whether or how several quantum behaviors such as 
uncertainty relations, the violation of Bell inequality, and the existence of 
thermodynamical entropy are observed also in regular polygon theories [3]. These 
observations may contribute to finding what is peculiar to quantum theory. 
 
 
[1] L. Lami, arXiv:1803.02902 (2018) 
[2] M. Plávala, arXiv:2103.07469 (2021) 
[3] R. Takakura, arXiv:2202.13834 (2022) 



 

Title: Inequalities of positive matrices and application to quantifying multipartite Gaussian 
correlations 
 

Speaker: Jinchuan Hou (Taiyuan University of Technology) 
 

Abstract: In this talk, we give several inequalities concerning positive-definite matrices and 
their determinants, and apply them to prove that the non-negative functional ${\mathcal 
M}^{(k)}$ defined by ${\mathcal M}^{(k)}(\rho_{A_1,A_2,\ldots,A_k})=1-
\frac{\det(\Gamma_{\rho_{A_1,A_2\ldots,A_k}})}{\Pi_{j=1}^k\det(\Gamma_{\rho_{A_j}})}$ i
s a $k$-partite multi-mode Gaussian correlation measure for continuous-variable systems 
satisfying the unification condition, hierarchy condition, complete monogamy relation and 
tight monogamy relation, where $\rho_{A_1,A_2\ldots,A_k}$ is a $k$-partite  
$n_1+n_2+\cdots+n_k$-mode Gaussian state with $k\geq 2$ and $n_j\geq 1$ positive 
integers, $\rho_{A_j}$ is the reduced state of $\rho_{A_1,A_2\ldots,A_k}$ in the $j$th 
subsystem $A_j$ and $\Gamma_\rho$ is the covariance matrix of Gaussian state $\rho$. 
 



Operator monotone functions and operator

inequalities

Yoichi Udagawa

Let B(H)+ be a set of all positive elements of B(H). A continuous
function f(x) defined on an interval I in R is called an operator monotone
function if A ≤ B ⇒ f(A) ≤ f(B) for every pair A,B ∈ B(H) with spectra
in I. In [1], Kubo and Ando showed that for any operator mean M(·, ·),
there uniquely exists an operator monotone function f ≥ 0 on [0,∞) with
f(1) = 1 such that f(x)I = M(I, xI). Moreover, they found that M(A,B)

has explicit form M(A,B) = A
1
2 f(A

−1
2 BA

−1
2 )A

1
2 when A > 0. The function

f is called the representing function of M, and in the following, Mf denotes
the operator mean whose representing function is f . It is well-known that an
operator monotone function f ≥ 0 on [0,∞) with f(1) = 1 has an integral
representation

f(x) =

∫
[0,1]

[
(1− t) + tx−1

]−1
dµ(t), (⋆)

where µ is a probability measure on [0, 1]. Note that f has an analytic
continuation to the cut plane C\ (−∞, 0]. By this representation, we obtain

Mf (A,B) =

∫
[0,1]

[
(1− t)A−1 + tB−1

]−1
dµ(t).

We introduce the accretive operator version of an operator mean, and give
some properties of it. We also establish the reverse Arithmetic-Geometric-
Harmonic inequality for A = X + iY, B = X − iY (X > 0, Y = Y ∗)[2].

References

[1] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann.,
246 (1979/80), 205–224.

[2] Y. Udagawa, Accretive operator means and the reverse Arithmetic-
Geometric-Harmonic inequality, Adv. Oper. Theory., 7–2 (2022), No.
19, 11pp.
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Title：QUANTUM TOMOGRAPHY WITH GAUSSIAN NOISE 
 

Speaker: Kan He (Taiyuan University of Technology) 
 

Abstract：We introduce a framework for quantum tomography with Gaussian noise. 
The measurement scheme is based on the symmetric informationally complete positive 
operator-valued measure. To make the framework realistic, we impose the Gaussian 
noise on the measured states numbers. The precision of framework is presented on 
graphs through numerical simulations. 
 



Loewner’s theorem for maps on operator domains

Michiya Mori (University of Tokyo)

This talk is based on a joint work [2] with Peter Šemrl (Ljubljana). In this talk,
we consider the Loewner order of bounded self-adjoint operators on a complex Hilbert
space (or hermitian matrices): For a pair of bounded self-adjoint operators X,Y , the
symbol X ≤ Y means that Y −X is positive semidefinite.

A real function f defined on an open interval (a, b) is said to be matrix monotone
of order n if for every pair of n× n hermitian matrices X,Y whose eigenvalues belong
to (a, b) we have X ≤ Y ⇒ f(X) ≤ f(Y ). If f is a matrix monotone function of
order n for all positive integers n, we say that f is operator monotone. The study of
operator monotone functions was initiated by Loewner [1]. His famous theorem states
that a function f : (a, b) → R is operator monotone if and only if f has an analytic
continuation to the upper half-plane Π which maps Π into itself, and this is true if and
only if f has an analytic extension to (C \R)∪ (a, b) which maps the upper half-plane
Π into itself, and the extension to the lower half-plane is obtained by the reflection
across the real line. A number of alternative proofs can be found in Simon’s book [3].

We are going to give a variant of Loewner’s theorem. Let H be a complex Hilbert
space. To avoid trivialities, we assume that H has dimension at least 2. We denote by
B(H) the algebra of all bounded linear operators on H, and by S(H) the subset of all
self-adjoint operators. Let U, V be subsets of S(H). A map ϕ : U → V preserves order
(in one direction) if for every pair X,Y ∈ U we have X ≤ Y ⇒ ϕ(X) ≤ ϕ(Y ), and it is
an order embedding (or preserves order in both directions) if for every pair X,Y ∈ U
we have X ≤ Y ⇐⇒ ϕ(X) ≤ ϕ(Y ). It is easy to see that an order embedding is
injective. If ϕ is a bijective order embedding, it is called an order isomorphism.

A nonempty subset U ⊂ S(H) will be called an operator domain if it is open and
connected. Here, the topology on B(H) is induced by the operator norm. Let U be
an operator domain. A map ϕ : U → S(H) is defined to be a local order isomorphism
if for every X ∈ U there are operator domains V,W with X ∈ V ⊂ U,W ⊂ S(H),
such that ϕ(V ) = W and ϕ : V → W is an order isomorphism. The generalized
upper half-plane Π(H) is the collection of all operators of the form X + iY , where
X ∈ S(H) and Y is a positive invertible operator in S(H). The generalized lower
half-plane Π(H)∗ = {X∗ : X ∈ Π(H)} is the set of all bounded operators on H whose
imaginary part is negative and invertible.

We are now ready to formulate our main theorem.

Theorem 1. Let U ⊂ S(H) be an operator domain. The following conditions are
equivalent for a map ϕ : U → S(H).

• The map ϕ is a local order isomorphism.

• The map ϕ has a unique continuous extension to U ∪ Π(H) that maps Π(H)
biholomorphically onto itself.

• There exist open connected sets U ,V ⊂ B(H) such that U ∪Π(H)∪Π(H)∗ ⊂ U
and ϕ has an extension to a biholomorphic map from U onto V that maps Π(H)
onto itself and Π(H)∗ onto itself.

The author is supported by JSPS KAKENHI (22K13934).



Biholomorphy in our statement replaces holomorphy in the classical Loewner theory,
and local order isomorphisms appear in the place of operator monotone functions. This
is inevitable. It is not difficult to construct order preserving maps on operator domains
that do not have holomorphic extensions to the generalized upper half-plane even under
the additional assumptions of bijectivity and continuity.

We have a much better result in the matrix case. We denote by Mn the set of
all n × n complex matrices and by Sn the set of all n × n hermitian matrices. The
corresponding generalized upper half-plane Πn is the collection of all n × n complex
matrices whose imaginary part is a positive invertible matrix. To avoid unnecessary
repetition we present a version with only the generalized upper half-plane involved.

Theorem 2. Let n ≥ 2 and U ⊂ Sn be a matrix domain. A map ϕ : U → Sn is an
order embedding if and only if ϕ has a unique continuous extension to U ∪ Πn that
maps Πn biholomorphically onto itself.

In this talk, I will also give explicit formulae for biholomorphic automorphisms
of the generalized upper half-plane and local order isomorphisms, and explain basic
properties of such maps.
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Title：Systems of Sylvester-like matrix equations 
Speaker：Professor Qing-Wen Wang (Shanghai University) 
Abstract： In this talk, we mainly introduce some new results on systems of Sylvester-type 
matrix equation over the quaternion algebra. 



Circuit equation for quantum walks

Etsuo Segawa
(Yokohama National University)

1 Introduction
Irreducible and non-periodic random walks converge to a stationary state [1]. This is very essential to give fruitful
aspect of random walks, for example the cut off phenomena and connection to the electric circuit. Quantum walks are
introduced as quantum analogue of random walks (see [2] and its references therein.) Then it is natural to consider the
corresponding property of quantum walks. However since the eigenvalues of the time evolution operator of quantum
walks live on the unit circle in the complex plane, it is hard to obtain the stationary state directly. A relation between
the quantum walk and the traditional stationary Schrödinger equation on L∞(Z) is discussed [3]. Then we found that
the extension of the squared summable Hilbert space to the uniformly bounded functional state as the total space of the
time evolution is one of the useful idea to obtain the stationary state of quantum walks [4]. To this end, we attach the
semi-infinite lines, on which the walk is free, to the finite graph and set the initial state on the tails, which is uniformly
bounded but no longer square summable, so that a quantum walker penetrates into the internal graph at every time
step. Note that since the dynamics on the tails are free, once a quantum walker goes out to the tails, then it never come
back to the internal graph, which can be interpreted as the outflow from the internal graph. It is mathematically shown
that this dynamical system converges to a fixed point as the stationary state due to the balance between the inflow and
outflow [4].

In this talk, we introduce a generalized Laplacian matrix Lz which has the information on the boundary with
parameter z ∈ C. We show that the study on the unitary operator of this model can be switched to that of the finite
generalized Laplacian matrix expresses the stationary state.

2 Setting
Let G = (V, A) be a connected and finite graph with the vertex set V and the symmetric arc set A. Set the boundary
δV ⊂ V and connect the semi-infinite path to the each boundary vertex. The resulting graph is denoted by G̃ = (Ṽ , Ã).

Definition 1 (Grover walk).

(1) Total state space: CÃ

(2) Time evolution: Let Ψn ∈ C
Ã be the n-th iteration such that Ψn+1 = UΨn. Let the set of the arcs whose terminal

vertices are u ∈ Ṽ = {a1, . . . , ad̃(u)}. Then the time evolution U is denoted by
Ψn+1(ā1)

...
Ψn+1(ād̃(u))

 = Gr(d̃(u))


Ψn(a1)
...

Ψn(ad̃(u))


Here ā ∈ Ã is the inverse arc of a ∈ Ã.

(3) The initial state: let |z| = 1.

Ψ0(a) =

z−dist(t(a),G) : a ∈ tail, dist(o(a),G) > dist(t(a),G)
0 : otherwise

where t(a) and o(a) are the terminal and origin vertices of a ∈ Ã.
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Let Ψn(z) := znΨn. Then it is shown that Φz(a) := ∃ limn→∞Φn(a) for any a ∈ Ã by [4]. Let χ : CÃ → CA by
(χψ)(a) = ψ(a) for any a ∈ A. Let us focus on our interest to the internal ϕz := χΦz. To characterize ϕz, we introduce
the following generalized Laplacian matrix.

Definition 2 (Generalized Laplacian matrix). Set j±(z) = (z ± z−1)/2. The generalized Laplacian is defined by

Lz = M − j+(z)D + j−(z)ΠδV .

Here M and D are the adjacency and the degree matrices of G and ΠδV is the projection matrix of δV.

3 Results
Theorem 3.1 (Circuit equation). The stationary state restricted to G, ϕz, is expressed as follows. There exists a
potential function νz ∈ C

V such that
j−(z)ϕz(a) = z νz(t(a)) − νz(o(a)). (1)

The potential function νz satisfies the following Poisson equation.

Lzνz = j−(z) αin. (2)

Let B∗ := {z , 0 : det(Lz) = 0} ∪ {±1}.

Theorem 3.2. Let EPON be the principal submatirx of U with respect to A0; that is, EPON = χUχ∗. Let us denote the
set spec⋆(EPON) as

spec⋆(EPON) := {z−1 | z ∈ spec(EPON) \ {0}}.

Then we have
spec⋆(EPON) ∪ {±1} = B∗. (3)

In particular,
B∗ ∩ δD = j−1

+ (σper) ∪ {±1}. (4)

Here
σper := {λ ∈ spec(P0) | { f : supp( f ) ⊂ V0 \ δV} ∩ ker(λ − P0) , ∅}.

Since ϕn can be expressed by the polynomial of EPON , we can show the following.

Theorem 3.3 (Stationary state). Let λmax with |λmax| < 1 be the eigenvalue of EPON whose distance to the unit circle
is closest. Let ∂∗z : CV → CA such that (∂∗z f )(a) = z f (t(a)) − f (o(a)). The function

ϕ(z) := ∂∗z L−1
z αin

can be extended to {z ∈ C : |z| < 1/|λmax|} in the entrywise. In particular, the stationary state with the inflow eiξ is
expressed by ϕ(eiθ).

In particular, taking z → 1, we show that the stationary state describes the electric circuit [5] using Kato’s pertur-
bation theory [6].
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Title: A completely self-scaling G-transformation for weighted least square 
problems 

Speaker: Bing Zheng (Lanzhou University) 

 

Abstract: 
The G-transformation is an efficient method for solving the weighted least squares 
problems. However, the underflows and overflows were not considered in the original 
G-transformation. In order to keep its stability, some specified scaling strategies has been 
proposed for guarding  against the underflows. Note that these specific strategies are not 
easy to be implemented in actual operations, in this talk, we present a completely 
self-scaling G-transformation (CSSGT) which not only avoids these specified scaling 
strategies, but maintain the stability of operations. Complexity analysis of our self-scaling 
G-transformation shows that its cost of computation is less than that of the 
G-transformation, which implies the high efficiency of our proposed SSGT. The stability of 
the SSGT was theoretically confirmed by a detailed error analysis. Some numerical 
experiments are performed to illustrate the effects of the self-scaling strategy. 



Title: Asymptotic Freeness of Layerwise Jacobians Caused by Invariance of Multilayer Per-

ceptron 
 
Speaker: Tomohiro Hayase (Cluster Inc.) 
 
Abstract: Free Probability Theory provides rich knowledge for handling mathematical 

difficulties caused by random matrices that appear in research related to deep neural net-
works, such as the dynamical isometry, Fisher information matrix, and training dynam-
ics.  The asymptotic freeness assumption plays a fundamental role when propagating 
spectral distributions through the layers. In this talk, we introduce the asymptotic freeness 
of layerwise Jacobians of multilayer perceptron initialized with Haar orthogonal matrices.   
 



 
Title: Iterative Algorithms for Reducing Inversion of Discrete Algebraic Riccati Matrix Equation 

 
Speaker: Jianzhou Liu (Xiangtan University) 
 
Joining work with Zheng Wang, Zhiming Xie and Li Wang 
 
Abstract: In practical engineering, many control problems usually can be transformed into 
solutions of the discrete algebraic Riccati equation (DARE) which has two matrix inverse 
operations formally. In this talk, first, by the relationship between properties of the matrix Schur 
complement and partitioned representation of inverse matrix, we change the DARE with twice 
inversions into an equivalent form with once inversion, and propose a corresponding iterative 
algorithm. Next, for a special case of DARE, we deformed this DARE into a new equivalent one. 
For the equivalent form, we propose a new iterative algorithm in an inversion free way. 
Furthermore, for these algorithms, we prove their monotone convergence, and give the analysis 
of their errors. Last, comparing with some existing work on this topic, corresponding numerical 
examples are given to illustrate the superiority and effectiveness of our results. 
 



Title: Fast Algorithm for Maxwell’s Equations for 3D Photonic Crystals  

Speaker: Tiexiang Li (Southeast University)  
 

Abstract: In this talk, we propose a Fast Algorithm for Maxwell's Equations (FAME) 
package for solving Maxwell's equations for modeling three-dimensional (3D) photonic 
crystals, especially those with nonorthogonal Bravais lattices. Yee's scheme assisted by 
linear interpolation can handle anisotropic media, by which the frequency domain 
Maxwell's equations are discretized into a standard eigenvalue problem (SEP). FAME 
combines the null-space free method with fast Fourier transform (FFT)-based matrix-
vector multiplications to solve the SEP. We successfully use FAME on a single V100 
GPU to solve a set of GEPs with more than 19 million dimensions in 127 to 191 seconds 
per problem. These results demonstrate the potential of our proposed package to enable 
large-scale numerical simulations for novel physical discoveries and engineering 
applications of photonic crystals. 
 
 



Title: Non-Local Robust Quaternion Matrix Completion for Large-Scale Color Image and Video 
Inpainting 
 
Speaker: Zhigang Jia ( Jiangsu Normal University) 
       
Abstract: The image nonlocal self-similarity (NSS) prior refers to the fact that a local patch often has 
many nonlocal similar patches to it across the image and has been widely applied in many recently 
proposed machining learning algorithms for image processing. However, there is no theoretical 
analysis on its working principle in the literature. In this talk, we discover a potential causality 
between NSS and low-rank property of color images, which is also available to grey images. A new 
patch group based NSS prior learning scheme is proposed to learn explicit NSS models of natural 
color images. The numerical low-rank property of patched matrices is also rigorously proved. The 
NSS-based QMC algorithm computes an optimal low-rank approximation to the high-rank color 
image, resulting in high PSNR and SSIM measures and particularly the better visual quality. A new 
tensor NSS-based QMC method is also presented to solve the color video inpainting problem 
based on quaternion tensor representation. The numerical experiments on large-scale color images 
and videos indicate the advantages of NSS-based QMC over the state-of-the-art methods. 



Title：Nonnegative Low Rank Tensor Approximation and its Application to 
Multidimensional Images 
 
Speaker: Guangjing Song (Weifang University) 
 
Abstract：The main aim of this talk is to develop a new algorithm for computing 
Non-negative Low Rank Tensor (NLRT) approximation for nonnegative tensors that arise 
in many multi-dimensional imaging applications. Nonnegativity is one of the important 
property as each pixel value refer to nonzero light intensity in image data acquisition. Our 
approach is different from classical nonnegative tensor fac-torization (NTF) which has 
been studied for many years. For a given nonnegative tensor, the classical NTF approach 
is to determine nonnegative low rank tensor by computing factor matrices or tensors (for 
example, CPD finds factor matrices while Tucker decomposition finds core tensor and 
factor matrices), such that the distance between this nonnegative low rank tensor and 
given tensor is as small as possible. The proposed NLRT approach is different from the 
classical NTF. It determines a nonnegative low rank tensor without using decompositions 
or factorization methods. The minimized distance by the proposed NLRT method can be 
smaller than that by the NTF method, and it implies that the proposed NLRT method can 
obtain a better low rank tensor approximation. The proposed NLRT approximation 
algorithm is derived by using the alternating averaged projection on the product of low 
rank matrix manifolds and non-negativity property. We show the convergence of the 
alternating projection algorithm. Experimental results for synthetic data and 
multi-dimensional images are presented to demonstrate the performance of the proposed 
NLRT method is better than that of existing NTF methods. 
 



Algebraic midpoints and Means

Toshikazu Abe （Ibaraki Univesity）

1 Introduction

We say that a n×n matrix A is positive if 〈x, Ax〉 ≥ 0 for all x ∈ Cn. We denote by Pn the set
of n×n positive invertible matrices. For A,B ∈ Pn, we use the notation A ≥ B to mean that the
matrix A− B is positive. In particular, P1 = R+ is the set of all positive real numbers.

The map M : Pn × Pn → Pn is called a mean, if the following conditions (M1) to (M5) are
fulfilled.

(M1) If a ≤ b, then a ≤M(a, b) ≤ b.

(M2) M(a, b) =M(b, a).

(M3) M(a, b) is monotone increasing in a, b.

(M4) M(x∗ax, x∗bx) = x∗M(a, b)x for all a, b ∈ Pn and nonsingular x ∈ Mn(C).

(M5) M(a, b) is continuous in a, b.

In this talk, we study the relationship between algebraic midpoints and means.

2 Binary operations and algebraic midpoints

A magma (S,⊕) is a set S with a binary operation ⊕. We say that (S,⊕) is uniquely 2-divisible
if, for any a ∈ S there exists a unique element b ∈ S such that a = b⊕ b. The element b is called
the half of a. In this talka, for uniquely 2-divisible magma (S,⊕), we denote by 1

2
⊗ a the half of

a ∈ S.

Definition 1. A magma (G,⊕) is called a gyrogroup if it satisfies the following (G1) to (G5).

(G1) (G,⊕) has the identity e.

(G2) For any a ∈ (G,⊕), a has the inverse 	a.

(G3) For any a, b, c ∈ G, there exists a unique element gyr[a, b]c such that

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c.

(G4) For any a, b ∈ G, the map gyr[a, b] : G → G defined by c 7→ gyr[a, b]c for any c is an
automorphism of the magma (G,⊕), that is gyr[a, b] ∈ Aut(G,⊕). The map gyr[a, b] is
called a gyroautomorphism of (G,⊕) generated by a and b.

(G5) For any a, b ∈ G, gyr[a⊕ b, b] = gyr[a, b].

A gyrogroup (G,⊕) is gyrocommutative if the following (G6) is satisfied.



(G6) For any a, b ∈ G, a⊕ b = gyr[a, b](b⊕ a).

Definition 2. Let (G,⊕) be a uniquely 2-divisible gyrocommutative gyrogroup. For a, b ∈ G,
1
2
⊗ (a⊕ gyr[a,	b]b) is called the gyromidpoint of a and b.

Definition 3. Let (S,⊕) be a uniquely 2-divisible commutative semi-group. For a, b ∈ S, 1
2
⊗(a⊕b)

is called the semi-group midpoint of a and b.

3 Means and algebraic midpoints

Theorem 4. Let (Pn,⊕) be a uniquely 2-divisible commutative semi-group. IfM(a, b) = 1
2
⊗(a⊕b)

is a mean, then the following conditions (i) and (ii) are equivalent to each other.

(i) (Pn,⊕) is (left and right) cancellative.

(ii) b 6= c implies M(a, b) 6=M(a, c).

Theorem 5. Let (R+,⊕) be a uniquely 2-divisible gyrocommutative gyrogroup. If M(a, b) =
1
2
⊗ (a ⊞ b) is a mean on R+, then (R+,⊕) is a group. In particular, (R+,⊕) is isomorphic to

(R,+).
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Title: Monolithic projection-based method with staggered time discretization for solving non-
Oberbeck-Boussinesq natural convection flows 

 
Speaker: Xiaomin Pan (Shanghai University) 
 
Joining work with Ki-Ha Kim (Yonsei University) and Jung-Il Choi (Yonsei University) 

 
Abstract： In this talk we present an efficient monolithic projection-based method with 
staggered time discretization (MPM-STD) to examine the non-Oberbeck-Boussinesq (NOB) 
effects in several natural convection problems involving dramatic temperature-dependent 
changes in fluid properties. The proposed approach employs the Crank-Nicolson scheme 
along with staggered time discretization to discretize the momentum and energy equations. 
The momentum and energy equations are decoupled by evaluating the velocity vector at 
integral time levels (n+1) whereas the scalar variables (pressure and temperature) at half-
integral time levels (n+1/2). The observed density variations in all terms result in a variable-
coefficient Poisson equation, which is difficult to solve efficiently. The convergence is 
accelerated via adoption of an appropriate pressure-correction scheme that transforms the 
aforementioned Poisson equation to a constant-coefficient form. The numerical simulations 
concerning two-dimensional (2D) periodic NOB Rayleigh-Bénard convection (RBC) in glycerol 
confirmed the second-order temporal and spatial accuracies of the proposed method. By 
simulating the 2D differentially heated cavity problem in air and the RBC problem in liquid 
(water or glycerol) considering NOB effects, it is concluded that the proposed MPM-STD 
significantly mitigates the time-step restriction, thereby increasing the computational efficiency, 
which exceeds that of existing semi-implicit and explicit schemes. Moreover, the potential of 
the proposed approach with regard to solving challenging three-dimensional turbulent 
problems is demonstrated by performing direct simulations of turbulent RBCs under NOB 
effects involving temperature differences up to 60 K with corresponding Rayleigh number. 
 



Surjective isometries and Hermitian operators
on vector-valued Lipschitz algebras

Shiho Oi (Niigata University)*

1. Introduction
Let (X, d) be a compact metric space and (E, ∥ · ∥E) be a complex Banach space. A
map F : X → E is said to be Lipschitz if

L(F ) := sup
x̸=y∈X

{
∥F (x)− F (y)∥E

d(x, y)

}
<∞.

We denote a space of all Lipschitz maps from X into E by Lip(X,E). When E = C,
we simply write Lip(X). The Lipschitz space Lip(X,E) is a Banach space with

∥F∥L = sup
x∈X

∥F (x)∥E + L(F ), F ∈ Lip(X,E).

In particular, Lip(X,E) endowed with ∥ · ∥L is a Banach algebra if E is a Banach
algebra. When a Banach algebra E has the unit 1E, then Lip(X,E) has the unit,
which is a constant map 1(x) = 1E for any x ∈ X. When no confusion is caused, we
denote unity of a unital Banach algebra by 1.

In this talk, we consider surjective complex linear isometries on Lip(X,A), where
A is a unital C∗-algebra. It would be interesting to see whether every surjective linear
isometry on algebras is closely related to a Jordan ∗-isomorphism.

2. Hermitian operators on Lip(X,E)
In order to study a representation of surjective complex linear isometries on the vector-
valued Lipschitz algebras, we study hermitian operators on Lip(X,E). Lumer [3] de-
fined Hermitian operators on Banach space with respect to semi-inner product. For a
complex Banach space (E, ∥ · ∥E), if a map [·, ·] : E × E → C satisfies

1. [λx+ y, z] = λ[x, z] + [y, z],

2. [x, x] = ∥x∥2,

3. |[x, y]|2 ≤ [x, x][y, y],

for any x, y, z ∈ E and λ ∈ C, a map [·, ·] is said to be semi-inner product on E
compatible with the norm of E. A bounded linear operator T on E is called a Hermitian
operator if there is a semi-inner product on E compatible with the norm of E such
that [T (a), a] ∈ R for any a ∈ E. For more details on Hermitian operators, we refer
the reader to [2] and [3].

We give a characterization of Hermitian operators on Lip(X,E) as the following.
This is the generalization of [1].
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Theorem 2.1. Let X be a compact metric space and E a complex Banach space.
Then T : Lip(X,E) → Lip(X,E) is a Hermitian operator if and only if there exists a
Hermitian operator ϕ : E → E such that

TF (x) = ϕ(F (x)), F ∈ Lip(X,E), x ∈ X.

For each a ∈ A, a left multiplication operator Ma : A → A is defined by Mab = ab
for every b ∈ A. We denote the set of all hermitian elements of A by H(A). For any
h ∈ H(A), we define a multiplication operator M1⊗h : Lip(X,A) → Lip(X,A) by

M1⊗h(F ) = (1⊗ h)F, F ∈ Lip(X,A).

For any ∗-derivation D : A → A, we define a map D̂ : Lip(X,A) → Lip(X,A) by

D̂(F )(x) = D(F (x)), F ∈ Lip(X,A), x ∈ X.

As a corollary of Theorem 2.1 and [6], we obtain the following.

Corollary 2.2. Suppose that T : Lip(X,A) → Lip(X,A) is a map. Then T is a
Hermitian operator if and only if there exists h ∈ H(A) and a ∗-derivation D on A
such that

T =M1⊗h + iD̂.

3. Surjective linear isometries on Lip(X,A)
Let Bj be Banach algebras for j = 1, 2. Suppose that U is a surjective complex linear
isometry from B1 onto B2 and T is a Hermitian operator on B1. It is well-known fact
that the map UTU−1 is a Hermitian operator on B2. By applying this fact, we get the
main theorem. This theorem is a generalization of [4].

Theorem 3.1. Let Xi be compact metric spaces and Ai unital factor C
∗-algebras for

i = 1, 2. The map U : Lip(X1,A1) → Lip(X2,A2) is a surjective complex linear
isometry such that U(1) = 1 if and only if there exist a unital surjective complex linear
isometry ψ : A1 → A2 and a surjective isometry φ : X2 → X1 such that

UF (y) = ψ(F (φ(y))), F ∈ Lip(X1,A1), y ∈ X2.
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