代数学 Ⅱ 演習問題(1)

今回の問題は線形代数の問題 (即ち数学 IV の範囲の問題) がほとんどなので, よくわかっていると思ったらやらなくていいです.

- 1. K を体, V を K 上のベクトル空間とする. また $x \in V$ とする.
 - (a) $0_K \cdot x = \mathbf{0}$ (V の零ベクトル) が成り立つことをきちんと証明せよ.
 - (b) $(-1_K)x = -x$ (x の逆ベクトル) が成り立つことをきちんと証明せよ.
 - (c) $a, b, c \in V$ について、「 $a + c = b + c \Longrightarrow a = b$ 」が成り立つことをきちんと証明せよ.
- 2. K を体, V を K 上のベクトル空間とする. $a \in K$, $x \in V$ に対し, $\lceil ax = 0 \implies a = 0_K$ または x = 0」が成り立つことを**きちんと**証明せよ.
- $3. \theta$ を実数とする.
 - (a) $\cos 2\theta$, $\cos^2 \theta$, 1 は \mathbb{Q} 上一次従属であることを証明せよ.
 - (b) $\cos 2\theta$, $\sin^2 \theta$, 1 は \mathbb{Q} 上一次従属であることを証明せよ.
- 4. Kを体, Vを K上のベクトル空間とする.
 - (a) 「 $x \in V$ が K 上一次独立 $\iff x \neq 0$ 」であることを証明せよ.
 - (b) $\forall x \in V$ に対し, x, x は K 上一次従属であることを証明せよ.
 - (c) $\forall x \in V$ に対し, x, 0 は K 上一次従属であることを証明せよ.
- 5. K を体とし, $x_1, \ldots, x_n \in K$ とする. $n \ge 2$ ならば x_1, \ldots, x_n は K 上一次従属であることを証明せよ.
- 6. x を実数とする. この時「x は無理数 \iff 1, x は \mathbb{Q} 上一次独立」が成り立つことを 証明せよ.
- 7. x を複素数とする. この時「x は虚数 \iff 1, x は \mathbb{R} 上一次独立」が成り立つことを証明せよ.
- 8. K を体, V を $\dim_K V = 1$ を満たす K ベクトル空間とする. この時 $x \in V$ が零ベクトルでなければ, x は V の基底であることを証明せよ.
- 9. $n \in \mathbb{N}$ する. n 次実正方行列全体の集合 $M_n(\mathbb{R})$ は通常の行列の加法, スカラー倍に関しベクトル空間になるのだった.

$$V_1 := \{A \in M_n(\mathbb{R}) \mid {}^tA = A\}$$
 (実対称行列全体),
 $V_2 := \{A \in M_n(\mathbb{R}) \mid {}^tA = -A\}$ (実交代行列全体),
 $V_3 := \{A \in M_n(\mathbb{R}) \mid \operatorname{Tr}(A) = 0\}$

とおく.

- (a) V_1 , V_2 , V_3 は $M_n(\mathbb{R})$ の部分空間であることを証明せよ.
- (b) $\dim_{\mathbb{R}} V_1$, $\dim_{\mathbb{R}} V_2$, $\dim_{\mathbb{R}} V_3$ を求めよ.
- 10. K を体, R を環, $f: K \to R$ を準同型写像とする. この時 R に加法, スカラー倍を定義して K ベクトル空間にせよ.
 - **注意**. 環は乗法単位元を持つ環とする. また準同型写像は乗法単位元を乗法単位元 に写すとする.
- 11. S を n (\in \mathbb{N}) 個の元からなる集合, K を体とし, V を S から K への写像全体の集合とする. V に加法, スカラー倍を定義して K ベクトル空間にせよ. また $\dim_K V$ を求めよ.
- 12. V を体 K 上のベクトル空間, また W を集合とする. 全単射 $f:V\to W$ が存在することを仮定する. この時 W に加法, スカラー倍を定義し, W が K ベクトル空間, f が V から W への同型写像となるようにせよ.
- 13. Lを体とし, V を L ベクトル空間とする. K が L の部分体である時, V に加法, スカラー倍を定義して K ベクトル空間にせよ. またその時 $\dim_L V \subseteq \dim_K V$ であることを証明せよ.
- 14. \mathbb{R} 係数の多項式全体の集合を $\mathbb{R}[X]$ とする. $\mathbb{R}[X]$ は通常の加法, スカラー倍に関し \mathbb{R} 上のベクトル空間であることを証明せよ. また $\dim_{\mathbb{R}} \mathbb{R}[X] = \infty$ であることを証明 せよ.
- 15. K を体, V を K ベクトル空間とする. また W を集合とする.
 - (a) W が V の部分空間であることと, 以下の 3 条件が成り立つことは同値であることを証明せよ:
 - (1) $W \subset V$, $W \neq \emptyset$
 - (2) $\boldsymbol{x}, \boldsymbol{y} \in W \Longrightarrow \boldsymbol{x} \boldsymbol{y} \in W$
 - (3) $a \in K, \mathbf{x} \in W \Longrightarrow a\mathbf{x} \in W$
 - (b) W が V の部分空間であることと、以下の 3 条件が成り立つことは同値であることを証明せよ:
 - (1) $W \subset V, W \neq \emptyset$
 - $(2)' \boldsymbol{x}, \boldsymbol{y} \in W \Longrightarrow \boldsymbol{x} + \boldsymbol{y} \in W$
 - (3) $a \in K, \mathbf{x} \in W \Longrightarrow a\mathbf{x} \in W$
- 16. G は加法 + に関するアーベル群で、全ての $x \in G$ が 2x (:= x + x) = 0_G (0_G は G の 単位元) を満たすとする.この時 G は自然に $\mathbb{Z}/2\mathbb{Z}$ 上のベクトル空間とみなせる.これはどういうことか説明せよ.