Compactness characterization of operators in the Toeplitz algebra

Wolfram Bauer

Leibniz Universität, Hannover

Joint work with J. Isralowitz and L.A. Coburn

Himeji conference on PDE

W. Bauer Compactness of operators in the Toeplitz algebra

- 1. Definition and notation
- 2. Lipschitz approximation and TO on the Fock space
- 3. TO on Bergman spaces over BSDs
- 4. Compactness in the Toeplitz algebra

Consider \mathbb{C}^n with Gaussian probability measure

$$d\mu(z) = \pi^{-n} e^{-|z|^2} d\nu(z),$$

- $|z|^2 = z \cdot \overline{z}$ and $z \cdot \overline{w} = z_1 \cdot \overline{w_1} + \cdots + z_n \cdot \overline{w_n}$.
- $dv = Lebesgue \ volume \ form \ on \ \mathbb{C}^n \cong \mathbb{R}^{2n}$.

Segal-Bargmann space

The Segal-Bargmann space (or Fock space) ^a is the Hilbert space

$$H^2(\mathbb{C}^n,d\mu):=L^2(\mathbb{C}^n,d\mu)\cap \underbrace{\mathcal{H}(\mathbb{C}^n)}$$

entire functions

of entire L^2 -functions with reproducing kernel function:

$$K: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}: K(z, w) = \exp\{z \cdot \overline{w}\}.$$

^aV. BARGMANN, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14 (1961), 187-214.

W. Bauer Compactness of operators in the Toeplitz algebra

Reproducing kernel property:

For all $z \in \mathbb{C}^n$ and all $f \in H^2(\mathbb{C}^n, d\mu)$ it holds

$$f(z) = \delta_z(f) = \left\langle f, K(\cdot, z) \right\rangle_{L^2(\mathbb{C}^n, d\mu)}$$

In the following also the normalized reproducing kernels play a role:

$$k_w(z) := rac{K(z,w)}{\|K(\cdot,w)\|} = \exp\Big\{z\cdot\overline{w} - rac{|w|^2}{2}\Big\}.$$

Note: The distance induces by the Bergman metric

$$g_{ij}(z) = rac{\partial^2}{\partial z_i \partial \overline{z_j}} \log K(z, z), \qquad z \in \mathbb{C}^n$$

(up to a factor) coincides with the usual Euclidean distance:

d(z,w):=|z-w|.

On \mathbb{C}^n we consider functions spaces:

- Lip(\mathbb{C}^n)="Lipschitz continuous functions w.r.t. d".
- UC(\mathbb{C}^n)="uniformly continuous functions".

Note

Both spaces contain unbounded functions and

$$\operatorname{Lip}(\mathbb{C}^n) \subset \operatorname{UC}(\mathbb{C}^n).$$
 (*)

Define:

• BUC(\mathbb{C}^n) ="bounded functions in UC(\mathbb{C}^n)".

We add a remark on the inclusion (*) in a more general framework:

W. Bauer Compactness of operators in the Toeplitz algebra

Definition (Metrically convex space)

A metric space (X, d) is called metrically convex if **(MC)** is true:

(MC):

Two closed balls B(x, s) and B(y, t) around $x \in X$ and $y \in X$ and with radii $s \ge 0$ and $t \ge 0$ intersect if and only if $d(x, y) \le s + t$.

Example:

Any complete Riemannian manifold is a metrically convex space. The following is known: ¹

Theorem

Let (X, d) be metrically convex. Then the space of all Lipschitz functions Lip(X) is uniformly dense in UC(X).

¹e.g. see: Y. BENYAMINI, J. LINDENSTRAUSS, *Geometric non-linear functional analysis*, AMS Colloquium Publication vol. 48, 2000.

Definition (heat transform)

Let t > 0, then the heat transform of (suitable) $f : \mathbb{C}^n \to \mathbb{C}$ is defined by:

$$\widetilde{f}^{(t)}(w) := \frac{1}{(4\pi t)^n} \int_{\mathbb{C}^n} f(w-z) e^{-\frac{|z|^2}{4t}} dv(z)$$

= "solution of the heat equation".

Semi-group-property: $\widetilde{\{\widetilde{f}^{(s)}\}}^{(t)} = \widetilde{f}^{(t+s)}$, (if defined).

Definition:

The mean oscillation of the function f at time t > 0 is given by the non-negative function:

$$MO_t(f, w) := \widetilde{|f|^2}^{(t)}(w) - |\widetilde{f}^{(t)}(w)|^2$$
$$= \left\{ |f - \widetilde{f}^{(t)}(w)|^2 \right\}^{(t)}(w).$$

W. Bauer Compactness of operators in the Toeplitz algebra

Definition

The functions having bounded mean oscillation are given by:

$$\mathsf{BMO}_t^2(\mathbb{C}^n) := \Big\{ f : \|f\|_{\mathsf{BMO}_t} := \sup_{z \in \mathbb{C}^n} \mathsf{MO}_t(f, z)^{\frac{1}{2}} < \infty \Big\}.$$
 (*)

Remarks:

- The spaces (*) are linear and independent of t > 0. Hence we denote them by BMO²(ℂⁿ).
- $\|\cdot\|_{BMO_t}$ depend on t > 0 and only define semi-norms.
- The following inclusions hold:

 $\mathsf{BUC}(\mathbb{C}^n) \subset \mathsf{UC}(\mathbb{C}^n) \subset \mathsf{BMO}^2(\mathbb{C}^n) \subset L^2(\mathbb{C}^n, d\mu).$

In particular: $BMO^2(\mathbb{C}^n)$ contains unbounded functions.

Definition $(BO(\mathbb{C}^n))$

A continuous function $f \in C(\mathbb{C}^n)$ is of bounded oscillation if there is C > 0 such that for all $z, w \in \mathbb{C}^n$:

$$|f(z)-f(w)| \leq C+C|z-w|.$$

The relation between $BMO^2(\mathbb{C}^n)$ and $BO(\mathbb{C}^n)$ is as follows:

Lemma

The inclusion
$$BO(\mathbb{C}^n) \subset BMO^2(\mathbb{C}^n)$$
 holds. More precisely,

$$\mathsf{BMO}^2(\mathbb{C}^n) = \mathsf{BO}(\mathbb{C}^n) + F(\mathbb{C}^n) : f = \widetilde{f}^{(t)} + (f - \widetilde{f}^{(t)}),$$

where
$$F(\mathbb{C}^n) := \{ f \in \mathsf{BMO}^2(\mathbb{C}^n) : |\widetilde{f}|^{(t)} \text{ is bounded} \}.$$

We obtain the inclusions:

$$\mathsf{BUC}(\mathbb{C}^n) \subset \mathsf{UC}(\mathbb{C}^n) \subset \mathsf{BO}(\mathbb{C}^n) \subset \mathsf{BMO}^2(\mathbb{C}^n) \subset L^2(\mathbb{C}^n, d\mu).$$

W. Bauer Compactness of operators in the Toeplitz algebra

Observation:

If $f \in BMO^2(\mathbb{C}^n)$, then $\tilde{f}^{(t)} \in Lip(\mathbb{C}^n)$: it holds for all $z, w \in \mathbb{C}^n$:

 $\left|\widetilde{f}^{(t)}(z) - \widetilde{f}^{(t)}(w)\right| \leq 2\|f\|_{\mathsf{BMO}_t}|z - w|.$

Roughly: Lip(\mathbb{C}^n) forms the "difference" of UC(\mathbb{C}^n) and BUC(\mathbb{C}^n):

Lemma

Let t > 0 and $f \in UC(\mathbb{C}^n)$, then

•
$$\widetilde{f}^{(t)} \in \operatorname{Lip}(\mathbb{C}^n)$$
,

•
$$f - \tilde{f}^{(t)} \in \mathsf{BUC}(\mathbb{C}^n).$$

Hence we have the decomposition:

 $UC(\mathbb{C}^n) = Lip(\mathbb{C}^n) + BUC(\mathbb{C}^n).$

In particular: If a function $f \in UC(\mathbb{C}^n)$ is unbounded, then the heat transform $\tilde{f}^{(t)}$ is unbounded for all t > 0 as well.

Theorem (W.B. and L.A. Coburn, 2012)

Let $f \in UC(\mathbb{C}^n)$, then the heat transform $\{\tilde{f}^{(t)}\}_{t>0}$ defines a flow of real analytic functions in $Lip(\mathbb{C}^n)$ with

$$\lim_{t\to 0}\tilde{f}^{(t)}=f$$

uniformly on \mathbb{C}^n . The Lipschitz constant of $\tilde{f}^{(t)}$ is dominated by

$$C_t := t^{-\frac{1}{2}} \| f(\cdot 2\sqrt{t}) \|_{\mathrm{BMO}_{1/4}}.$$

In particular, the inclusion $\operatorname{Lip}(\mathbb{C}^n) \cap C^{\omega}(\mathbb{C}^n) \subset \operatorname{UC}(\mathbb{C}^n)$ is dense.

Remark:

There is a completely analogous version of the theorem with \mathbb{C}^n replaced by \mathbb{R}^n .

W. Bauer Compactness of operators in the Toeplitz algebra

Toeplitz operators on the Segal-Bargmann space

Consider the orthogonal projection

$$\mathsf{P}: L^2(\mathbb{C}^n, d\mu) o H^2(\mathbb{C}^n, d\mu).$$

Fix a function

$$f \in \mathcal{T}(\mathbb{C}^n) :=$$

= $\Big\{ f \in L^2(\mathbb{C}^n, d\mu) : f(w + \cdot) \in L^2(\mathbb{C}^n, d\mu) \text{ for all } w \in \mathbb{C}^n \Big\}.$

Definition: Toeplitz operator

The assignment

$$T_f: H^2(\mathbb{C}^n, d\mu) \supset \mathcal{D} \rightarrow H^2(\mathbb{C}^n, d\mu): g \mapsto P(fg)$$

is called Toeplitz operator with symbol f and domain

$$\mathcal{D} := \operatorname{span} \Big\{ K(\cdot, w) \ : \ w \in \mathbb{C}^n \} \stackrel{\operatorname{dense}}{\subset} H^2(\mathbb{C}^n, d\mu).$$

Problems:

- (A) Characterize boundedness of T_f in terms of the symbol f and provide norm estimates.
- (B) Characterize compactness or Schatten-*p*-properties of T_f in terms of f.
- (C) For which symbols are the following characterizations true:
 - T_f bounded if and only if f bounded.
 - T_f compact if and only if f vanishes at infinity?

Example: Let n = 1 and with $\lambda \in \mathbb{C}$ consider the functions

 $f_{\lambda}(z) := e^{\lambda |z|^2}.$

- $f_{\lambda} \in \mathcal{T}(\mathbb{C}^n)$ iff $\operatorname{Re}(\lambda) < \frac{1}{2}$.
- $T_{f_{\lambda}}$ is diagonal with eigenvalue sequence $\{\gamma_j\}_{j=0,1,\cdots}$, where

$$\gamma_j := \frac{1}{(1-\lambda)^j}$$

W. Bauer Compactness of operators in the Toeplitz algebra

Boundedness and compactness of $T_{f_{\lambda}}$

Theorem, (W.-B., L.A. Coburn, J. Isralowitz, 2010)

Let $f \in BMO^2(\mathbb{C}^n)$:

- (i) If T_f is bounded if and only if the heat transform $\tilde{f}^{(t)}$ is bounded for all t > 0.
- (ii) If T_f is compact if and only if $\tilde{f}^{(t)} \in C_0(\mathbb{C}^n)^a$ for all t > 0.

^awith the notation $C_0(\mathbb{C}^n) :=$ continuous functions vanishing at infinity.

Example: Again consider the functions $f_{\lambda}(z) = \exp(\lambda |z|^2)$. We calculate the heat transform:

$$\widetilde{f_{\lambda}}^{(t)}(z) = rac{1}{1-4t\lambda} \exp\left\{rac{\lambda-4t|\lambda|^2}{|1-4t\lambda|^2}|z|^2
ight\}.$$

Observation: If $\text{Re}(\lambda) > 0$ and $|\text{Im}(\lambda)| >> 0$, then the Real part of the exponent change sign as $t \downarrow 0$.

Moreover: $T_{f_{\lambda}}$ is compact for $\operatorname{Re}(\lambda) < \frac{1}{2}$ and $\operatorname{Im}(\lambda) >> 0$.

W. Bauer Compactness of operators in the Toeplitz algebra

We address question (C):

Theorem, (W.-B., L.A. Coburn, 2014)

Let $f \in UC(\mathbb{C}^n)$, then

(a) T_f is bounded if and only if f is bounded on \mathbb{C}^n .

(b) T_f is compact if and only if $f \in C_0(\mathbb{C}^n)$.

Proof of (b): The implication " \Leftarrow " is standard. We omit it. " \Rightarrow ": Let T_f be compact. Since $UC(\mathbb{C}^n) \subset BMO^2(\mathbb{C}^n)$ we

conclude from the last Theorem:

 $\widetilde{f}^{(t)} \in C_0(\mathbb{C}^n), \quad ext{ for all } t > 0.$

Since $f \in UC(\mathbb{C}^n)$ we have the uniform convergence

$$\lim_{t\to 0}\widetilde{f}^{(t)}=f$$

and therefore $f \in C_0(\mathbb{C}^n)$.

Remark: The theorem fails if one replaces $UC(\mathbb{C}^n)$ by $BMO^2(\mathbb{C}^n)$.

Let $\Omega \subset \mathbb{C}^n$ be a bounded domain.

Definition (BSD)

 Ω is called a bounded symmetric domain (BSD) if each $w \in \Omega$ is an isolated fixpoint of an involutive holomorphic diffeomorphism of Ω onto itself.^{*a*}

^aA BSD is a Hermitian space of non-compact type

Harish-Chandra realization of Ω :

- Ω contains 0 and is invariant under the dilation $z \mapsto \lambda z$ where $\lambda \in \mathbb{C}$ with $|\lambda| = 1$.
- There is a polydisc *D^r* such that

$$\Omega = KD^r$$
, $r = rank of \Omega$,

where $K \subset Aut(\Omega)$ is the isotropy subgroup of 0.

W. Bauer Compactness of operators in the Toeplitz algebra

Example:

Let $\Omega := \{z \in \mathbb{C}^n : |z| < 1\}$ be the open unit ball. Then r = 1.

Remark:

The action of the Lie group $Aut(\Omega)$ on Ω is transitive. For each $w \in \Omega$ there is $\varphi_w \in Aut(\Omega)$ such that

 $\varphi_w \circ \varphi_w = \mathrm{id}$ and $\varphi_w(0) = w.$

Bergman metric on Ω :

Let dv be the usual Lebesgue measure on Ω normalized to one, i.e. $v(\Omega) = 1$. Consider the Bergman space:

$$H^2(\Omega, dv) := \Big\{ f \in L^2(\Omega, dv) : f \text{ is holomorphic on } \Omega \Big\}.$$

Note: $H^2(\Omega, dv)$ forms a Hilbert sub-space of $L^2(\Omega, dv)$ with reproducing kernel $K : \Omega \times \Omega \to \mathbb{C}$: for $w \in \Omega$ and $f \in H^2(\Omega, dv)$:

$$f(w) = \int_{\Omega} f(z) K(w, z) dv(z)$$

Properties of K

- $K(\cdot, w) \in H^2(\Omega, dv)$ for all $w \in \Omega$ and $K(z, w) = \overline{K(w, z)}$,
- $K(z,0) = K(0,z) \equiv 1$,
- K(z,z) > 0 and $\lim_{z \to \partial \Omega} K(z,z) = \infty$.

Example: Let $\Omega := \{z \in \mathbb{C}^n : |z| < 1\}$ be the open unit ball.

The Bergman kernel of Ω is given by:

$$K(z,w)=\frac{1}{(1-z\cdot\bar{w})^{n+1}}.$$

In particular,

$$\lim_{z\to\partial\mathbb{B}^n}K(z,z)=\lim_{z\to\partial\mathbb{B}^n}\frac{1}{(1-|z|^2)^{n+1}}=\infty.$$

/. Bauer Compactness of operators in the Toeplitz algebra

Definition (Bergman metric)

The function $z \mapsto K(z, z)$ induces a complete Riemannian metric (Bergman metric) on Ω , via

$$g_{ij} = rac{\partial^2}{\partial z_i \partial \overline{z_j}} \log K(z, z),$$

where $i, j = 1, \cdots, n$ and $z \in \Omega$.

The Bergman metric induces a distance function

$$\beta(\cdot, \cdot): \Omega \times \Omega \to \mathbb{R}_+.$$

Remark:

The β -metric topology on Ω is equivalent to the usual Euclidean topology inherited from \mathbb{C}^n .

Example

Let $\Omega = \mathbb{D} \subset \mathbb{C}$ be the unit disc. Then Aut $(\mathbb{D}) =$ Möbius tranforms and it is known that:

 $\beta(0,z) = \frac{1}{\sqrt{2}} \log \left(\frac{1+|z|}{1-|z|} \right) =$ hyperbolic metric.

For BSDs $\Omega \subset \mathbb{C}^n$ more is known about the Bergman kernel K: There is a function (Jordan triple determinant)

$$h = h(z, w) : \mathbb{C}^n imes \mathbb{C}^n o \mathbb{C}$$

such that $h(\cdot, w)$ is a polynomial and:

- h(z,0) = 1 and $h(z,w) = \overline{h(w,z)}$ for all $z, w \in \mathbb{C}^n$.
- h(z,z) > 0 for all $z \in \Omega$ and h(z,z) = 0 for all $z \in \partial \Omega$.

W. Bauer Compactness of operators in the Toeplitz algebra

Lemma

Let p > 0 be the genus of the BSD $\Omega \subset \mathbb{C}^n$, then the reproducing kernel K of Ω has the form

$$K(z,w) = h(z,w)^{-p}, \qquad z,w \in \Omega.$$

With $\lambda > p - 1$ we define the norm:

$$\|f\|_{\lambda}^2 := c_{\lambda} \int_{\Omega} |f(z)|^2 h(z,z)^{\lambda-\rho} dv(z).$$

Here the constant $c_{\lambda} > 0$ is chosen with $||e||_{\lambda} = 1$ where $e(z) \equiv 1$.

Note: The norm $\|\cdot\|_p$ coincides with the $L^2(\Omega, d\nu)$ -norm.

Lemma

The normalizing constant $c_{\lambda} > 0$ in the definition of $\|\cdot\|_{\lambda}$ has the explicit form

$$c_{\lambda} = \frac{1}{\pi^n} \frac{\Gamma_{\Omega}(\lambda)}{\Gamma_{\Omega}(\lambda - \frac{n}{r})},$$

where $\Gamma_{\Omega}(\lambda)$ is the Gindikin Gamma function.

Next goal:

In the above framework we aim to define suitable replacements of the function spaces

- $UC(\mathbb{C}^n) \Longrightarrow UC(\Omega)$,
- $\operatorname{Lip}(\mathbb{C}^n) \Longrightarrow \operatorname{Lip}(\Omega)$,
- $BO(\mathbb{C}^n) \Longrightarrow BO(\Omega)$,
- $\mathsf{BMO}^2(\mathbb{C}^n) \Longrightarrow \mathsf{BMO}^2(\Omega)$,
- • •

W. Bauer Compactness of operators in the Toeplitz algebra

Lipschitz approximation and Berezin-Harish Chandra flow

Definition

Let $UC(\Omega)$ and $Lip(\Omega)$ be the spaces of uniformly continuous and Lipschitz functions on Ω with respect to the Bergman metric β .

To define the space

$BMO^2(\Omega)$

we need a "good replacement" for the heat transform on \mathbb{C}^n .

Definition (weighted Bergman space)

The weighted Bergman space with weight $\lambda > p - 1$ is defined by:

 $H^2_{\lambda}(\Omega, dv) = \Big\{ f \in \mathcal{H}(\Omega) \; : \; \|f\|_{\lambda} < \infty \Big\}.$

In particular, these include the unweighted Bergman space:

 $H_p^2(\Omega, dv) = H^2(\Omega, dv)$

Lemma

The weighted Bergman space $H^2_{\lambda}(\Omega, dv)$ with $\lambda > p-1$ has a reproducing kernel of the form

$$K_{\lambda}(z,w) = h(z,w)^{-\lambda}.$$

Let $g \in L^1(\Omega, dv)$ and $\varphi_w \in Aut(\Omega)$ with $w \in \Omega$ be an involutive automorphism with

$$\varphi_w(0) = w.$$

Definition (Berezin-Harish-Chandra flow)

Assume that $\lambda \ge p$ and $w \in \Omega$. We define a family of integral transforms of g by

$$B_{\lambda}(g)(w) := c_{\lambda} \int_{\Omega} g \circ \varphi_w(z) h(z,z)^{\lambda-p} dv(z).$$

W. Bauer Compactness of operators in the Toeplitz algebra

Lemma

Let $g \in L^1(\Omega, dv)$ and $\lambda \ge p$. The Berezin-Harish Chandra flow can also be expressed in the form

$$B_{\lambda}(g)(w) = c_{\lambda} \int_{\Omega} g(z) |k_w^{\lambda}(z)|^2 h(z,z)^{\lambda-p} dv(z),$$

where $k_w^{\lambda} \in H^2_{\lambda}(\Omega, dv)$ with $w \in \Omega$ is the normalized reproducing kernel:

$$k_w^\lambda(z) = rac{\mathcal{K}_\lambda(z,w)}{\|\mathcal{K}_\lambda(\cdot,w)\|_\lambda} = rac{h(z,w)^{-\lambda}}{h(w,w)^{-rac{\lambda}{2}}}.$$

Moreover, $B_{\lambda}(g)(w)$ is a real analytic function on Ω .

Remark: The same construction for $\Omega = \mathbb{C}^n$ leads to the heat transform, i.e. in this case

$$B_{\lambda}(g) = \widetilde{g}^{(\lambda)}.$$

Example

Let $\Omega = \mathbb{B}^n :=$ Euclidean unit ball in \mathbb{C}^n . Then

- The rank of \mathbb{B}^n is r = 1 and the genus p = n + 1.
- The Gindikin Gamma function Γ_Ω(λ) coincides with the usual Gamma function Γ(λ).
- If $\lambda = n + 1 + \alpha$ where $\alpha \ge 0$, then

$$B_{n+1+\alpha}(g)(w) = \\ = \frac{1}{\pi^n} \frac{\Gamma(n+1+\alpha)}{\Gamma(\alpha+1)} \int_{\mathbb{B}^n} g(z) \frac{(1-|w|^2)^{n+1+\alpha}(1-|z|^2)^{\alpha}}{|1-z\cdot\overline{w}|^{2(n+1+\alpha)}} dv(z).$$

Remark

In this setting $B_{n+1+\alpha}(g)$ also is called α -Berezin transform of g.

W. Bauer Compactness of operators in the Toeplitz algebra

Definition (Mean oscillation)

Let $\lambda \ge p$ and $f \in L^2(\Omega, d\nu)$ where Ω is a BSD. The λ -mean oscillation of f is defined by

$$egin{aligned} \mathsf{MO}_\lambda(f,z) &= B_\lambda(|f|^2)(z) - |B_\lambda(f)(z)|^2 \ &= B_\lambda\Big(|f-B_\lambda(f)(z)|^2\Big)(z) \geq 0. \end{aligned}$$

Moreover, we form the semi-norms

$$\|f\|_{\mathsf{BMO}_{\lambda}} := \sup_{z \in \Omega} \sqrt{\mathsf{MO}_{\lambda}(f, z)}.$$

The functions of bounded λ -mean oscillation are given by:

 $\mathsf{BMO}_{\lambda}^2(\Omega) := \left\{ f \in L^2(\Omega, dv) \; : \; \|f\|_{\mathsf{BMO}_{\lambda}} < \infty
ight\}$

Definition (bounded oscillation on Ω)

A function $f \in C(\Omega)$ is said to be of bounded oscillation with respect to the Bergman metric β and we write

 $f \in BO(\Omega)$,

if and only if there is C > 0 such that

$$|f(z) - f(w)| \leq C(1 + \beta(z, w))$$

for all $z, w \in \Omega$.

Let $\lambda \geq p$ then one can prove the following inclusions:

 $\operatorname{Lip}(\Omega) \subset \operatorname{UC}(\Omega) \subset \operatorname{BO}(\Omega) \subset \operatorname{BMO}^2_\lambda(\Omega).$

W. Bauer Compactness of operators in the Toeplitz algebra

Remark:

The space $UC(\Omega)$ contains unbounded functions. However, we always have the inclusions

$$\mathsf{UC}(\Omega)\subset igcap_{r>0} L^r(\Omega,dv)$$

and therefore $B_{\lambda}(f)$ is defined for all $f \in UC(\Omega)$ and $\lambda \geq p$.

Completely analogous to the Euclidean case we have:

Lemma (W.-B. and L.A. Coburn, 2012)

Let $f \in UC(\Omega)$, then $\lim_{\lambda\to\infty} B_{\lambda}(f) = f$ uniformly on Ω .

The following questions remain:

- Is it true that $B_{\lambda}(f) \in \operatorname{Lip}(\Omega)$ for all $\lambda \geq p$?
- How do the Lipschitz constants behave as $\lambda \to \infty$?

Theorem (W.-B. and L.A. Coburn, 2012)

Let $\Omega \subset \mathbb{C}^n$ be a BSD of genus p equipped with the Bergman metric and let $f \in UC(\Omega)$.

Then the integral transforms $\{B_{\lambda}(f)\}_{\lambda \ge p}$ define a flow of real analytic functions in $\operatorname{Lip}(\Omega)$ with

$$\lim_{\lambda\to\infty}B_\lambda(f)=f$$

uniformly on Ω . The Lipschitz constant of $B_{\lambda}(f)$ is dominated by

$$C_{\lambda} := 2\sqrt{\frac{\lambda}{p}} \|f\|_{\mathsf{BMO}_{\lambda}}.$$

In particular, the inclusion $Lip(\Omega) \cap C^{\omega}(\Omega) \subset UC(\Omega)$ is dense.

Idea: Study the family of Bergman metrics coming from the reproducing kernels of the weighted Bergman spaces.

W. Bauer Compactness of operators in the Toeplitz algebra

Application to Toeplitz operators

Consider the orthogonal projection:

$$P: L^2(\Omega, dv) \longrightarrow H^2(\Omega, dv)$$

Definition: Toeplitz operator (TO)

Let $f \in L^2(\Omega, dv)$, then the TO with symbol f is defined by:

$$T_f: H^2(\Omega, dv) \supset \mathcal{D} \longrightarrow H^2(\Omega, dv): g \mapsto P(gf) = T_f(g)$$

with dense domain

$$\mathcal{D} := \operatorname{span}\Big\{K(\cdot, w) : w \in \Omega\Big\}.$$

In other words: T_f is the integral operator:

$$[T_fg](z) = \int_{\Omega} f(w)g(w)K(z,w)dv(w).$$

Theorem (H. Issa, 2011)

Let $\lambda > p - 1$. Then there is $C > 0^{a}$ such that for all $\lambda > C$ there is $D_{\lambda} > 0$ with

$$\|B_{\lambda}(g)\|_{\infty} \leq D_{\lambda}\|T_{g}\|$$
 (*)

for all $g \in L^2(\Omega, dv)$.

In particular:

If T_g is a bounded operator, then $B_{\lambda}(g)$ is a bounded function for sufficiently large weight $\lambda > 0$.

 ^{a}C depends on the type of the domain Ω

Idea: Express the left hand side of (*) as an operator trace

$$B_{\lambda}(g)(z) = \operatorname{trace}(T_g S_{\lambda,z})$$

and use the trace estimate

 $|\mathbf{trace}(AB)| \le ||A|| ||B||_1.$

W. Bauer Compactness of operators in the Toeplitz algebra

Theorem (W.-B., L. A. Coburn (2014)

Let $f \in UC(\Omega)$, then we have

(i) T_f is compact if and only if $f \in C_0(\Omega)$.

Proof: (i): The implication " \Leftarrow " is standard.

" \implies ": Assume that T_f is compact and let $\varepsilon > 0$. From the above Theorems we can choose $C_{\varepsilon} > 0$ such that for $\lambda > C_{\varepsilon}$:

$$egin{cal} \{(a): \ \|f-B_\lambda(f)\|_\infty < arepsilon \ (b): \ \|B_\lambda(f)\|_\infty < D_\lambda \|T_f\|_\infty \end{cases}$$

Moreover, choose $f_{\varepsilon} \in C_{c}(\Omega)$ with

$$\|T_f - T_{f_{\varepsilon}}\| \leq \frac{\varepsilon}{D_{\lambda}} \implies \|B_{\lambda}(f - f_{\varepsilon})\|_{\infty} \stackrel{(b)}{\leq} D_{\lambda} \cdot \frac{\varepsilon}{D_{\lambda}} = \varepsilon.$$

Finally, use $B_{\lambda}(f_{\varepsilon}) \in C_0(\Omega)$ and

 $\|f - B_{\lambda}(f_{\varepsilon})\|_{\infty} \leq \|f - B_{\lambda}(f)\|_{\infty} + \|B_{\lambda}(f - f_{\varepsilon})\|_{\infty} < 2\varepsilon.$

W. Bauer Compactness of operators in the Toeplitz algebra

Compactness and the Toeplitz algebra

Theorem .	(WB., L.A.	Coburn, J.	Isralowitz,	2010)
-----------	------------	------------	-------------	-------

Let $g \in \mathcal{T}(\mathbb{C}^n)$, then

A: If T_g is compact, then it holds for all $\frac{1}{2} < s < 2$:

$$\widetilde{g}^{(s)}\in \mathcal{C}_0(\mathbb{C}^n).$$

B: The Toeplitz operator T_g is compact if for some $0 < s < \frac{1}{2}$

 $\widetilde{g}^{(s)} \in C_0(\mathbb{C}^n).$

Question: Is the following true:

 T_g compact if and only if $\widetilde{g}^{(\frac{1}{2})} \in C_0(\mathbb{C}^n)$?

Problem:

How to obtain a compactness characterization for a larger class of bounded operators on the Fock space?

Observation: We can express the heat transform of a function g at time t = 1 as follows:

$$\widetilde{g}^{(1)}(z) = \left\langle T_g k_z, k_z \right\rangle,$$

where $k_z =$ "normalized reproducing kernel." for $z \in \mathbb{C}$.

Definition

Let A be a bounded operator on $H^2(\mathbb{C}^n, d\mu)$, then we define the Berezin transform of A by

$$\widetilde{A}(z) := \left\langle Ak_z, k_z \right\rangle.$$

W. Bauer Compactness of operators in the Toeplitz algebra

Lemma

The following assignment is **one-to-one**:

$$\mathcal{L}(H^2(\mathbb{C}^n,d\mu)) \ni A \mapsto \widetilde{A} \in C^\omega_b(\mathbb{C}^n).$$

Recall: With some restriction of the symbol class we obtain:

Theorem (L. Coburn, J. Isralowitz, B. Li)

Assume that $g \in BMO^2(\mathbb{C}^n)$, then T_g is compact if and only if $\widetilde{T_g} = \widetilde{g}^{(1)} \in C_0(\mathbb{C}^n)$.

Question: $A \in \mathcal{L}(H^2(\mathbb{C}^n, d\mu))$ compact iff $\widetilde{A} \in C_0(\mathbb{C}^n)$?

Example:

Consider the reflection [Rf](z) := f(-z), then R is unitary and

 $\widetilde{R}(z) = e^{-2|z|^2} \in C_0(\mathbb{C}^n).$

Consider the Toeplitz algebra

 $\mathcal{A} :=$ norm closure of the algebra generated by $\{T_f : f \in L^{\infty}\}$.

Theorem (W. B., J. Isralowitz (2012))

Let $A \in \mathcal{L}(H^2(\mathbb{C}^n, d\mu))$ then (i) and (ii) are equivalent:

(i) A is compact.

(ii) $A \in \mathcal{A}$ and $\widetilde{A} \in C^{\omega}(\mathbb{C}^n)$ vanishes at infinity.

Example: It follows that the reflection operator R with

[Rf](z) := f(-z), and $\widetilde{R}(z) = e^{-2|z|^2} \in C_0(\mathbb{C}^n)$

is not in \mathcal{A} . Moreover, it is known that

$$\inf\left\{ \left\| T_{f}-R
ight\| \,:\, f\in L^{\infty}
ight\} \geq 1.$$

W. Bauer Compactness of operators in the Toeplitz algebra

Some ideas of the proof:

Put $H := H^2(\mathbb{C}^n, d\mu)$ and for $z \in \mathbb{C}^n$ consider the weighted shift:

 $W_z f := k_z \cdot f(\cdot + z), \qquad f \in H.$

We obtain a map:

 $\mathbb{C}^n \ni z \mapsto W_z \in \mathcal{U}(H) = unitary operators on H.$

Given $S \in \mathcal{L}(H)$ write:

$$\Psi_S: \mathbb{C}^n \longrightarrow \mathcal{L}(H): \Psi_S(z):=S_z=W_zSW_z^{-1}.$$

Aim:

Extend Ψ_S to a suitable compactification of \mathbb{C}^n and relate its "boundary values" to the essential spectrum of S.

Consider the Banach algebra $\mathcal{B} \subset L^{\infty}(\mathbb{C}^n)$ defined by

 $\mathcal{B} :=$ bounded uniformly continuous functions on \mathbb{C}^n .

We obtain the inclusion

 $\mathbb{C}^n \subset M_{\mathcal{B}} = character space of \mathcal{B}.$

Proposition

Assume that $S \in \mathcal{A}$ (=Toeplitz algebra) with $\|A\| < 1$, then

$$\Psi_{S}:\mathbb{C}^{n}
ightarrow\left(ext{unit ball of }\mathcal{L}(H), ext{SOT}
ight)$$

has a continuous extension from \mathbb{C}^n to $M_{\mathcal{B}}$.

W. Bauer Compactness of operators in the Toeplitz algebra

End of the proof

Use the following results:

W. Bauer, L.A. Coburn,

Toeplitz operators with uniformly continuous symbols, preprint 2014

- W. Bauer, L.A. Coburn, Heat flow, weighted Bergman spaces and real analytic Lipschitz approximation, to appear in Crelle Journal (Journal für reine und angewandte Mathematik).
- W. Bauer, L.A. Coburn, J. Isralowitz, Heat flow, BMO, and the compactness of Toeplitz operators, J. Funct. Anal. 259(1), (2010) 57-78.
- W. Bauer, J. Isralowitz,

Compactness characterization of operators in the Toeplitz algebra of the Fock space F^p_{α} , J. Funct. Anal. 263(5), (2012) 1323-1355.

W. Bauer Compactness of operators in the Toeplitz algebra

Thank you for your attention!