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Segal-Bargmann space

Consider Cn with Gaussian probability measure

dµ(z) = π−ne−|z|
2
dv(z),

• |z |2 = z · z and z · w = z1 · w1 + · · ·+ zn · wn.

• dv = Lebesgue volume form on Cn ∼= R2n.

Segal-Bargmann space

The Segal-Bargmann space (or Fock space) a is the Hilbert space

H2(Cn, dµ) := L2(Cn, dµ) ∩ H(Cn)︸ ︷︷ ︸
entire functions

.

of entire L2-functions with reproducing kernel function:

K : Cn × Cn → C : K (z ,w) = exp
{

z · w
}
.

aV. Bargmann, On a Hilbert space of analytic functions and an associated
integral transform, Comm. Pure Appl. Math. 14 (1961), 187-214.
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Reproducing kernel property:

For all z ∈ Cn and all f ∈ H2(Cn, dµ) it holds

f (z) = δz(f ) =
〈

f ,K (·, z)
〉
L2(Cn,dµ)

.

In the following also the normalized reproducing kernels play a role:

kw (z) :=
K (z ,w)

‖K (·,w)‖
= exp

{
z · w − |w |

2

2

}
.

Note: The distance induces by the Bergman metric

gij(z) =
∂2

∂zi∂zj
log K (z , z), z ∈ Cn

(up to a factor) coincides with the usual Euclidean distance:

d(z ,w) := |z − w |.
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The spaces UC (Cn) and BMO2(Cn)

On Cn we consider functions spaces:

• Lip(Cn)=”Lipschitz continuous functions w.r.t. d”.

• UC(Cn)=”uniformly continuous functions”.

Note

Both spaces contain unbounded functions and

Lip(Cn) ⊂ UC(Cn). (∗)

Define:

• BUC(Cn) =”bounded functions in UC(Cn)”.

We add a remark on the inclusion (∗) in a more general framework:
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Definition (Metrically convex space)

A metric space (X , d) is called metrically convex if (MC) is true:

(MC):

Two closed balls B(x , s) and B(y , t) around x ∈ X and y ∈ X and
with radii s ≥ 0 and t ≥ 0 intersect if and only if d(x , y) ≤ s + t.

Example:

Any complete Riemannian manifold is a metrically convex space.

The following is known: 1

Theorem

Let (X , d) be metrically convex. Then the space of all Lipschitz
functions Lip(X ) is uniformly dense in UC(X ).

1e.g. see: Y. Benyamini, J. Lindenstrauss, Geometric non-linear
functional analysis, AMS Colloquium Publication vol. 48, 2000.
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Definition (heat transform)

Let t > 0, then the heat transform of (suitable) f : Cn → C is
defined by:

f̃ (t)(w) : =
1

(4πt)n

∫
Cn

f (w − z)e−
|z|2
4t dv(z)

= ”solution of the heat equation”.

Semi-group-property: {̃f̃ (s)}
(t)

= f̃ (t+s), (if defined).

Definition:

The mean oscillation of the function f at time t > 0 is given by
the non-negative function:

MOt(f ,w) : = |̃f |2
(t)

(w)− |f̃ (t)(w)|2

=
{
|f − f̃ (t)(w)|2

}̃(t)

(w).
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Definition

The functions having bounded mean oscillation are given by:

BMO2
t (Cn) :=

{
f : ‖f ‖BMOt := sup

z∈Cn
MOt(f , z)

1
2 <∞

}
. (∗)

Remarks:

• The spaces (∗) are linear and independent of t > 0. Hence we
denote them by BMO2(Cn).

• ‖ · ‖BMOt depend on t > 0 and only define semi-norms.

• The following inclusions hold:

BUC(Cn) ⊂ UC(Cn) ⊂ BMO2(Cn) ⊂ L2(Cn, dµ).

In particular: BMO2(Cn) contains unbounded functions.
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Definition (BO(Cn))

A continuous function f ∈ C (Cn) is of bounded oscillation if there
is C > 0 such that for all z ,w ∈ Cn:

|f (z)− f (w)| ≤ C + C |z − w |.

The relation between BMO2(Cn) and BO(Cn) is as follows:

Lemma

The inclusion BO(Cn) ⊂ BMO2(Cn) holds. More precisely,

BMO2(Cn) = BO(Cn) + F (Cn) : f = f̃ (t) + (f − f̃ (t)),

where F (Cn) := {f ∈ BMO2(Cn) : |̃f |
(t)

is bounded}.

We obtain the inclusions:

BUC(Cn) ⊂ UC(Cn) ⊂ BO(Cn) ⊂ BMO2(Cn) ⊂ L2(Cn, dµ).
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Observation:

If f ∈ BMO2(Cn), then f̃ (t) ∈ Lip(Cn): it holds for all z ,w ∈ Cn:∣∣f̃ (t)(z)− f̃ (t)(w)
∣∣ ≤ 2‖f ‖BMOt |z − w |.

Roughly: Lip(Cn) forms the ”difference” of UC(Cn) and BUC(Cn):

Lemma

Let t > 0 and f ∈ UC(Cn), then

f̃ (t) ∈ Lip(Cn),

f − f̃ (t) ∈ BUC(Cn).

Hence we have the decomposition:

UC(Cn) = Lip(Cn) + BUC(Cn).

In particular: If a function f ∈ UC(Cn) is unbounded, then the
heat transform f̃ (t) is unbounded for all t > 0 as well.
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Theorem (W.B. and L.A. Coburn, 2012)

Let f ∈ UC(Cn), then the heat transform {f̃ (t)}t>0 defines a flow
of real analytic functions in Lip(Cn) with

lim
t→0

f̃ (t) = f

uniformly on Cn. The Lipschitz constant of f̃ (t) is dominated by

Ct := t−
1
2 ‖f (· 2

√
t)‖BMO1/4

.

In particular, the inclusion Lip(Cn) ∩ Cω(Cn) ⊂ UC(Cn) is dense.

Remark:

There is a completely analogous version of the theorem with Cn

replaced by Rn.
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Toeplitz operators on the Segal-Bargmann space

Consider the orthogonal projection

P : L2(Cn, dµ)→ H2(Cn, dµ).

Fix a function

f ∈ T (Cn) :=

=
{

f ∈ L2(Cn, dµ) : f (w + ·) ∈ L2(Cn, dµ) for all w ∈ Cn
}
.

Definition: Toeplitz operator

The assignment

Tf : H2(Cn, dµ) ⊃ D → H2(Cn, dµ) : g 7→ P(fg)

is called Toeplitz operator with symbol f and domain

D := span
{

K (·,w) : w ∈ Cn}
dense
⊂ H2(Cn, dµ).
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Problems:

(A) Characterize boundedness of Tf in terms of the symbol f and
provide norm estimates.

(B) Characterize compactness or Schatten-p-properties of Tf in
terms of f .

(C) For which symbols are the following characterizations true:

• Tf bounded if and only if f bounded.
• Tf compact if and only if f vanishes at infinity?

Example: Let n = 1 and with λ ∈ C consider the functions

fλ(z) := eλ|z|
2
.

• fλ ∈ T (Cn) iff Re(λ) < 1
2 .

• Tfλ is diagonal with eigenvalue sequence {γj}j=0,1,···, where

γj :=
1

(1− λ)j
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Boundedness and compactness of Tfλ

x

y

1

R1

R1

R2

R3

f
λ
(z)=exp(λ|z|2)

Range of λ
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Theorem, (W.-B., L.A. Coburn, J. Isralowitz, 2010)

Let f ∈ BMO2(Cn):

(i) If Tf is bounded if and only if the heat transform f̃ (t) is
bounded for all t > 0.

(ii) If Tf is compact if and only if f̃ (t) ∈ C0(Cn) a for all t > 0.

awith the notation C0(Cn) := continuous functions vanishing at infinity.

Example: Again consider the functions fλ(z) = exp(λ|z |2). We
calculate the heat transform:

f̃λ
(t)

(z) =
1

1− 4tλ
exp

{
λ− 4t|λ|2

|1− 4tλ|2
|z |2
}
.

Observation: If Re(λ) > 0 and |Im(λ)| >> 0, then the Real part
of the exponent change sign as t ↓ 0.

Moreover: Tfλ is compact for Re(λ) < 1
2 and Im(λ) >> 0.
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We address question (C):

Theorem, (W.-B., L.A. Coburn, 2014)

Let f ∈ UC(Cn), then

(a) Tf is bounded if and only if f is bounded on Cn.

(b) Tf is compact if and only if f ∈ C0(Cn).

Proof of (b): The implication ”⇐=” is standard. We omit it.

”=⇒”: Let Tf be compact. Since UC(Cn) ⊂ BMO2(Cn) we
conclude from the last Theorem:

f̃ (t) ∈ C0(Cn), for all t > 0.

Since f ∈ UC(Cn) we have the uniform convergence

lim
t→0

f̃ (t) = f

and therefore f ∈ C0(Cn). �

Remark: The theorem fails if one replaces UC(Cn) by BMO2(Cn).
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Toeplitz operators on Bergman spaces over BSDs

Let Ω ⊂ Cn be a bounded domain.

Definition (BSD)

Ω is called a bounded symmetric domain (BSD) if each w ∈ Ω is
an isolated fixpoint of an involutive holomorphic diffeomorphism of
Ω onto itself. a

aA BSD is a Hermitian space of non-compact type

Harish-Chandra realization of Ω:

Ω contains 0 and is invariant under the dilation z 7→ λz where
λ ∈ C with |λ| = 1.

There is a polydisc Dr such that

Ω = KDr , r = rank of Ω,

where K ⊂ Aut(Ω) is the isotropy subgroup of 0.
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Example:

Let Ω := {z ∈ Cn : |z | < 1} be the open unit ball. Then r = 1.

Remark:

The action of the Lie group Aut(Ω) on Ω is transitive. For each
w ∈ Ω there is ϕw ∈ Aut(Ω) such that

ϕw ◦ ϕw = id and ϕw (0) = w .

Bergman metric on Ω:

Let dv be the usual Lebesgue measure on Ω normalized to one, i.e.
v(Ω) = 1. Consider the Bergman space:

H2(Ω, dv) :=
{

f ∈ L2(Ω, dv) : f is holomorphic on Ω
}
.
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Note: H2(Ω, dv) forms a Hilbert sub-space of L2(Ω, dv) with
reproducing kernel K : Ω× Ω→ C: for w ∈ Ω and f ∈ H2(Ω, dv):

f (w) =

∫
Ω

f (z)K (w , z)dv(z)

Properties of K

K (·,w) ∈ H2(Ω, dv) for all w ∈ Ω and K (z ,w) = K (w , z),

K (z , 0) = K (0, z) ≡ 1,

K (z , z) > 0 and limz→∂Ω K (z , z) =∞.

Example: Let Ω := {z ∈ Cn : |z | < 1} be the open unit ball.

The Bergman kernel of Ω is given by:

K (z ,w) =
1

(1− z · w̄)n+1
.

In particular,

lim
z→∂Bn

K (z , z) = lim
z→∂Bn

1

(1− |z |2)n+1
=∞.
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Definition (Bergman metric)

The function z 7→ K (z , z) induces a complete Riemannian metric
(Bergman metric) on Ω, via

gij =
∂2

∂zi∂zj
log K (z , z),

where i , j = 1, · · · , n and z ∈ Ω.

The Bergman metric induces a distance function

β(·, ·) : Ω× Ω→ R+.

Remark:

The β-metric topology on Ω is equivalent to the usual Euclidean
topology inherited from Cn.
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Example

Let Ω = D ⊂ C be the unit disc. Then Aut(D) =Möbius tranforms
and it is known that:

β(0, z) =
1√
2

log

(
1 + |z |
1− |z |

)
= hyperbolic metric.

For BSDs Ω ⊂ Cn more is known about the Bergman kernel K :

There is a function (Jordan triple determinant)

h = h(z ,w) : Cn × Cn → C

such that h(·,w) is a polynomial and:

h(z , 0) = 1 and h(z ,w) = h(w , z) for all z ,w ∈ Cn.

h(z , z) > 0 for all z ∈ Ω and h(z , z) = 0 for all z ∈ ∂Ω.
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Lemma

Let p > 0 be the genus of the BSD Ω ⊂ Cn, then the reproducing
kernel K of Ω has the form

K (z ,w) = h(z ,w)−p, z ,w ∈ Ω.

With λ > p − 1 we define the norm:

‖f ‖2
λ := cλ

∫
Ω
|f (z)|2h(z , z)λ−pdv(z).

Here the constant cλ > 0 is chosen with ‖e‖λ = 1 where e(z) ≡ 1.

Note: The norm ‖ · ‖p coincides with the L2(Ω, dv)-norm.

W. Bauer Compactness of operators in the Toeplitz algebra



Lemma

The normalizing constant cλ > 0 in the definition of ‖ · ‖λ has the
explicit form

cλ =
1

πn
ΓΩ(λ)

ΓΩ(λ− n
r )
,

where ΓΩ(λ) is the Gindikin Gamma function.

Next goal:

In the above framework we aim to define suitable replacements of
the function spaces

• UC(Cn) =⇒ UC(Ω),

• Lip(Cn) =⇒ Lip(Ω),

• BO(Cn) =⇒ BO(Ω),

• BMO2(Cn) =⇒ BMO2(Ω),

• · · ·
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Lipschitz approximation and Berezin-Harish Chandra flow

Definition

Let UC(Ω) and Lip(Ω) be the spaces of uniformly continuous and
Lipschitz functions on Ω with respect to the Bergman metric β.

To define the space
BMO2(Ω)

we need a “good replacement” for the heat transform on Cn.

Definition (weighted Bergman space)

The weighted Bergman space with weight λ > p − 1 is defined by:

H2
λ(Ω, dv) =

{
f ∈ H(Ω) : ‖f ‖λ <∞

}
.

In particular, these include the unweighted Bergman space:

H2
p(Ω, dv) = H2(Ω, dv)
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Lemma

The weighted Bergman space H2
λ(Ω, dv) with λ > p − 1 has a

reproducing kernel of the form

Kλ(z ,w) = h(z ,w)−λ.

Let g ∈ L1(Ω, dv) and ϕw ∈ Aut(Ω) with w ∈ Ω be an involutive
automorphism with

ϕw (0) = w .

Definition (Berezin-Harish-Chandra flow)

Assume that λ ≥ p and w ∈ Ω. We define a family of integral
transforms of g by

Bλ(g)(w) := cλ

∫
Ω

g ◦ ϕw (z)h(z , z)λ−pdv(z).
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Lemma

Let g ∈ L1(Ω, dv) and λ ≥ p. The Berezin-Harish Chandra flow
can also be expressed in the form

Bλ(g)(w) = cλ

∫
Ω

g(z)|kλw (z)|2h(z , z)λ−pdv(z),

where kλw ∈ H2
λ(Ω, dv) with w ∈ Ω is the normalized reproducing

kernel:

kλw (z) =
Kλ(z ,w)

‖Kλ(·,w)‖λ
=

h(z ,w)−λ

h(w ,w)−
λ
2

.

Moreover, Bλ(g)(w) is a real analytic function on Ω.

Remark: The same construction for Ω = Cn leads to the heat
transform, i.e. in this case

Bλ(g) = g̃ (λ).
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Example

Let Ω = Bn :=Euclidean unit ball in Cn. Then

The rank of Bn is r = 1 and the genus p = n + 1.

The Gindikin Gamma function ΓΩ(λ) coincides with the usual
Gamma function Γ(λ).

If λ = n + 1 + α where α ≥ 0, then

Bn+1+α(g)(w) =

=
1

πn
Γ(n + 1 + α)

Γ(α + 1)

∫
Bn

g(z)
(1− |w |2)n+1+α(1− |z |2)α

|1− z · w |2(n+1+α)
dv(z).

Remark

In this setting Bn+1+α(g) also is called α-Berezin transform of g .
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Definition (Mean oscillation)

Let λ ≥ p and f ∈ L2(Ω, dv) where Ω is a BSD. The λ-mean
oscillation of f is defined by

MOλ(f , z) = Bλ(|f |2)(z)− |Bλ(f )(z)|2

= Bλ

(
|f − Bλ(f )(z)|2

)
(z) ≥ 0.

Moreover, we form the semi-norms

‖f ‖BMOλ := sup
z∈Ω

√
MOλ(f , z).

The functions of bounded λ-mean oscillation are given by:

BMO2
λ(Ω) :=

{
f ∈ L2(Ω, dv) : ‖f ‖BMOλ <∞

}
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Definition (bounded oscillation on Ω)

A function f ∈ C (Ω) is said to be of bounded oscillation with
respect to the Bergman metric β and we write

f ∈ BO(Ω),

if and only if there is C > 0 such that∣∣f (z)− f (w)
∣∣ ≤ C

(
1 + β(z ,w)

)
for all z ,w ∈ Ω.

Let λ ≥ p then one can prove the following inclusions:

Lip(Ω) ⊂ UC(Ω) ⊂ BO(Ω) ⊂ BMO2
λ(Ω).
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Remark:

The space UC(Ω) contains unbounded functions. However, we
always have the inclusions

UC(Ω) ⊂
⋂
r>0

Lr (Ω, dv)

and therefore Bλ(f ) is defined for all f ∈ UC(Ω) and λ ≥ p.

Completely analogous to the Euclidean case we have:

Lemma (W.-B. and L.A. Coburn, 2012)

Let f ∈ UC(Ω), then limλ→∞ Bλ(f ) = f uniformly on Ω.

The following questions remain:

Is it true that Bλ(f ) ∈ Lip(Ω) for all λ ≥ p?

How do the Lipschitz constants behave as λ→∞?
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Theorem (W.-B. and L.A. Coburn, 2012)

Let Ω ⊂ Cn be a BSD of genus p equipped with the Bergman
metric and let f ∈ UC(Ω).

Then the integral transforms {Bλ(f )}λ≥p define a flow of real
analytic functions in Lip(Ω) with

lim
λ→∞

Bλ(f ) = f

uniformly on Ω. The Lipschitz constant of Bλ(f ) is dominated by

Cλ := 2

√
λ

p
‖f ‖BMOλ .

In particular, the inclusion Lip(Ω) ∩ Cω(Ω) ⊂ UC(Ω) is dense.

Idea: Study the family of Bergman metrics coming from the
reproducing kernels of the weighted Bergman spaces.
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Application to Toeplitz operators

Consider the orthogonal projection:

P : L2(Ω, dv) −→ H2(Ω, dv)

Definition: Toeplitz operator (TO)

Let f ∈ L2(Ω, dv), then the TO with symbol f is defined by:

Tf : H2(Ω, dv) ⊃ D −→ H2(Ω, dv) : g 7→ P(gf ) = Tf (g)

with dense domain

D := span
{

K (·,w) : w ∈ Ω
}
.

In other words: Tf is the integral operator:[
Tf g

]
(z) =

∫
Ω

f (w)g(w)K (z ,w)dv(w).
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Theorem (H. Issa, 2011)

Let λ > p − 1. Then there is C > 0 a such that for all λ > C there
is Dλ > 0 with

‖Bλ(g)‖∞ ≤ Dλ‖Tg‖ (∗)

for all g ∈ L2(Ω, dv).

In particular:

If Tg is a bounded operator, then Bλ(g) is a bounded function for
sufficiently large weight λ > 0.

aC depends on the type of the domain Ω

Idea: Express the left hand side of (∗) as an operator trace

Bλ(g)(z) = trace
(
TgSλ,z

)
and use the trace estimate

|trace(AB)| ≤ ‖A‖‖B‖1.
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Theorem (W.-B., L. A. Coburn (2014)

Let f ∈ UC(Ω), then we have

(i) Tf is compact if and only if f ∈ C0(Ω).

Proof: (i): The implication ”⇐=” is standard.

”=⇒”: Assume that Tf is compact and let ε > 0. From the above
Theorems we can choose Cε > 0 such that for λ > Cε:{

(a) : ‖f − Bλ(f )‖∞ < ε

(b) : ‖Bλ(f )‖∞ < Dλ‖Tf ‖.

Moreover, choose fε ∈ Cc(Ω) with

‖Tf − Tfε‖ ≤
ε

Dλ
=⇒ ‖Bλ(f − fε)‖∞

(b)

≤ Dλ ·
ε

Dλ
= ε.

Finally, use Bλ(fε) ∈ C0(Ω) and

‖f − Bλ(fε)‖∞ ≤ ‖f − Bλ(f )‖∞ + ‖Bλ(f − fε)‖∞ < 2ε.
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Remarks:

(a) If f ∈ UC(Ω), then we also have the equivalence:

Tf bounded ⇐⇒ f bounded.

(b) Replacing the Bergman metric distance on Ω by the Euclidean
distance d we define

UCd(Ω) := uniformly continuous functions w.r.t. d .

One can check that:

C (Ω)|Ω = UCd(Ω) ( UC(Ω)
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Compactness and the Toeplitz algebra

Theorem (W.-B., L.A. Coburn, J. Isralowitz, 2010)

Let g ∈ T (Cn), then

A: If Tg is compact, then it holds for all 1
2 < s < 2:

g̃ (s) ∈ C0(Cn).

B: The Toeplitz operator Tg is compact if for some 0 < s < 1
2

g̃ (s) ∈ C0(Cn).

Question: Is the following true:

Tg compact if and only if g̃ ( 1
2

) ∈ C0(Cn)?
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Problem:

How to obtain a compactness characterization for a larger class of
bounded operators on the Fock space?

Observation: We can express the heat transform of a function g
at time t = 1 as follows:

g̃ (1)(z) =
〈

Tgkz , kz
〉
,

where kz= ”normalized reproducing kernel.” for z ∈ C.

Definition

Let A be a bounded operator on H2(Cn, dµ), then we define the
Berezin transform of A by

Ã(z) :=
〈

Akz , kz
〉
.
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Lemma

The following assignment is one-to-one:

L(H2(Cn, dµ)) 3 A 7→ Ã ∈ Cω
b (Cn).

Recall: With some restriction of the symbol class we obtain:

Theorem (L. Coburn, J. Isralowitz, B. Li)

Assume that g ∈ BMO2(Cn), then Tg is compact if and only if

T̃g = g̃ (1) ∈ C0(Cn).

Question: A ∈ L(H2(Cn, dµ)) compact iff Ã ∈ C0(Cn)?

Example:

Consider the reflection [Rf ](z) := f (−z), then R is unitary and

R̃(z) = e−2|z|2 ∈ C0(Cn).
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Consider the Toeplitz algebra

A := norm closure of the algebra generated by {Tf : f ∈ L∞}.

Theorem (W. B., J. Isralowitz (2012))

Let A ∈ L(H2(Cn, dµ)) then (i) and (ii) are equivalent:

(i) A is compact.

(ii) A ∈ A and Ã ∈ Cω(Cn) vanishes at infinity.

Example: It follows that the reflection operator R with

[Rf ](z) := f (−z), and R̃(z) = e−2|z|2 ∈ C0(Cn)

is not in A. Moreover, it is known that

inf
{
‖Tf − R‖ : f ∈ L∞

}
≥ 1.
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Some ideas of the proof:

Put H := H2(Cn, dµ) and for z ∈ Cn consider the weighted shift:

Wz f := kz · f (·+ z), f ∈ H.

We obtain a map:

Cn 3 z 7→Wz ∈ U(H) = unitary operators on H.

Given S ∈ L(H) write:

ΨS : Cn −→ L(H) : ΨS(z) := Sz = WzSW−1
z .

Aim:

Extend ΨS to a suitable compactification of Cn and relate its
”boundary values” to the essential spectrum of S .
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Consider the Banach algebra B ⊂ L∞(Cn) defined by

B := bounded uniformly continuous functions on Cn.

We obtain the inclusion

Cn ⊂ MB = character space of B.

Proposition

Assume that S ∈ A (=Toeplitz algebra) with ‖A‖ < 1, then

ΨS : Cn →
(

unit ball of L(H), SOT
)

has a continuous extension from Cn to MB.
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End of the proof

Use the following results:

Lemma

Let S ∈ A, then (a) and (b) are equivalent:

(a) S̃(z)→ 0 as |z | → ∞.

(b) ΨS(z) = 0 for all z ∈ MB \ Cn.

and

Lemma

Let S ∈ A and let ‖S‖e denote the essential norm of S . Then

‖S‖e
∼= sup

z∈MB\Cn

‖ΨS(z)‖.
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Thank you for your attention!
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