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Let (M, g) be a Riemannian manifold of n-dimension, p(qo,q) be
the distance between two points ¢, ¢ € M, and A be the
Laplace-Beltrami operator, and P;(qo, q) be the heat kernel of A.
The celebrated result of Varadhan (1967) reads

. _ 1
[lim ¢ log (P:(90,9)) = =50°(90,9)- (1.1)

This research topic were investigated by many authors. As
t — 0%, Pi(qo, q) has the following expansion
o 02 (;19 ,q)
e 1/2 .
(2nt)% {ao(QmQ) + a1(q0, )t/ + a2(qo, ¢)t + } )
(1.2)
for qo and ¢ are near points such that they are joined by a
finite number of shortest geodesic along which they are not
conjugate. The half-integer power terms vanish for manifold

without boundary.

Pt(QO; q) ~



If qo and ¢ are conjugate to each other along the shortest
geodesic, the asymptotic behavior of P;(qo, ¢) will be different,
namely, the leading power of ¢t in the expansion changes from
~% to t— "% for some positive number k. The number &

appearing in the power is different for different situations.
When M is compact with OM # @, consider the heat kernel
trace,

trace (P;) = / Pi(q,q)dV (g Ze (1.3)
Jj=1

where 0 < A\; < Ay <--- are the eigenvalues of the Laplace-
Beltrami operator with vanishing Dirichlet condition. M.Kac’s
(1966) famous question “can one hear the shape of a drum”
concerns the extraction of geometric information of M from the
asymptotic expansion of the heat kernel trace.

3 /56



McKean and Singer (1967) showed that

oo
STt o~ Cot R4 Ot 4 Opt T 4, t 0t (14)
j=1

where Cp, C7 and Cy are all global geometric quantities given

by
_ VM)
Co = (2m)z
A(OM)
C = 4(2<7r)n217 (1.5)
Cy = Ju R(x)lex,
6(2m) 2

with V(M), A(OM) and R(z) being the volume of M, the
“area” of boundary of M, and the scalar curvature, respectively.



Consider a real-valued function F' : [0,00) — R of bounded
variation. The Laplace-Stieltjes transform of F' is defined by

w(s) = /0 T etap (),

The asymptotics of w relates to F' in the following way. If
p € Ry, then the Hardy-Littlewood tauberian theorem tells us
that the following are equivalent

w(s) ~Cs™*, as s—0
C (1.6)
~— P —
F(t) F(p+1)t , as t— oo.

Consider the counting function of eigenvalues, i.e., the number
of eigenvalues not exceed A

N = #{ <A =Y 1

A <A
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Then dN () is the spectral measure:

/ dN(A\) = #numbers of eigenvalues containing in the interval I.
I

Note that N()) is a step function, and the measure dN ()
should be treated as
AN = S50 ),

7=0
and integral under this measure is understood as Lebesgue-
Stieltjes integral. Now consider the Laplace-Stieltjes transform
of the measure dN(\)
= C

00
—st Ajt

dN(t) = g "t~ =

/0 CIAN =

=0

which is the heat kernel trace.
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By the Hardy-Littlewood tauberian theorem, we have

Co

Ry

A2 as A sufficiently large

which is the Hermann Weyl’s asymptotic formula. Notice that
N(An) = n by definition. Hence,

" {(Z””W = [y mira s g) 7
- (o)
/2

Here w,, = is the volume of a unit n-ball.

r(i+%)



2. Heat kernel asymptotics for subelliptic operators

On an n-dimensional Riemannian manifold M, one needs n
independent smooth vector fields X = {X;, X5, -, X,,} to
introduce a metric g which is given by the n x n positive definite
matrix (g(X;, X;)) = (gij)nxn- The Laplace-Beltrami operator
is given by

nxn

1 "9 g’ 9
A= S(detg)? ;1 2 (@&w’) 7 2.1)

which is an elliptic operator. Here, (¢) = (g;;)~*. We had
already discussed some results on this situation.
When one or several vector fields are missing, say, given
{X;}7, with m < n, the possible generalizations of the elliptic
operators, Riemannian geometries and their relations are of
particular interest.



2. Heat kernel asymptotics for subelliptic operators

Given Xi,...,X,, in an n-dim manifold M. Let v: I — M be a
curve on M. The curve v is horizontal if 4(t) = 3", ar(t) Xk, or
equivalently §(t) € Dy, Vtel.

Chow-Rashevskii’s Theorem (1938, 1939)

If a manifold M is topologically connected and the distribution
D =span{Xy,...,X,} is bracket generating, then any two points
can be connected by a horizontal curve.

B

¥(s)

Figure 1. Chow’s Theorem.



2. Heat kernel asymptotics for subelliptic operators

Given Xi,...,X,, in an n-dimensional manifold M. Assume
that X = {X},..., X,,} satisfies bracket generating condition:

“the horizontal vector fields X and their brackets span TM”.
In 1967, Lars Hormander proved that the differential operators

Ax = i){f
j=1

is hypoelliptic: if f € C°°(M) then the solutions to

Axu:f

is also in C*°(M).
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2. Heat kernel asymptotics for subelliptic operators

A subRiemannian structure over a manifold M is a pair
(D,{-,-)), where D is a bracket generating distribution and (-,-) a
fibre inner product defined on D. The length of the horizontal
curve 7y is

()= [ VEGAEs = [ oo+t ois

The shortest length d..(A, B) is called the Carnot-Carathéodory
distance between A, B € M which is given by

dee(A, B) :=inf £(7)

where the infimum is taken over all absolutely continuous
horizontal curves joining A and B. Hence, we may define a
geometry on M which is so-called subRiemannian geometry.



2. Heat kernel asymptotics for subelliptic operators

Set
i 0
Xj= Zajk(ﬂc)a—xk, j=1...,m
k=1
Then
1 m n 2
H= 3 ; (;ajk(m)fk)

is the Hamiltonian function on the cotangent bundle T* M.
A bicharacteristic curve (x(s),£(s)) € T*M is a solution of the
Hamilton’s system:

‘ik(s) = ka, ék(s) = 7Hmka
with boundary conditions,
x(0) = xq, x(1) = x,

for given points xg, x € M. The projection x(s) of a
bicharacteristic curve on M is a geodesic.



2. Heat kernel asymptotics for subelliptic operators

Remark 2.1
Let M = R? x 3S', (z,y) € R?, 0 €S'. The distribution

0 0 0 0
D? — x=2 v=2 4,2 = X, Y] = =
span{ o’ By P o }, p=tand, [X,Y] o

satisfies Chow’s condition which can be applied to our daily life.

Figure 2. Parallel Parking.
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2. Heat kernel asymptotics for subelliptic operators

Leandre (1987) proved a result for the subelliptic heat kernels

. 1
lim t log (P¢(go. q)) = —=d%(qo0. q)- (2.2)

t—0+ 2

Here, d..(qo,q) denotes the subRiemannian distance between ¢
and ¢. A refined asymptotic formula was then given by Ben
Arous (1989), who showed that

1 _dgc(q 1)
Pulao.a) ~ 7re™ " [aolan @) + O]t 0%,

for qo # q and ¢ is not on the cut-locus of ¢gg. These results
could be regarded as generalizations of (1.1) and (1.2) to
subelliptic operators.

The above results suggest that subelliptic heat kernels have the
similar small-time behavior as elliptic ones. However, the
subelliptic operators also show some new phenomena.



2. Heat kernel asymptotics for subelliptic operators

On the diagonal, i.e., when gy = q, Ben Arous and Leandre

(1991) proved

C -
Pila, ) ~ 73 + Ot ), t— o0t

The asymptotic behavior of P;(qo, q) is not known for g # go
and ¢ is a cut point of qo. Recently, Barilari, Boscain, Neel
(2012), who showed that

2
_92.(90,9)

Puldora) ~ gz e F {aglao. ) + o)}, ¢ 0%,
(2mt) =
if ¢ # qo and ¢ is a cut point as well as a conjugate point of ¢q
along some shortest geodesic. Here, k is a positive number that
reflects “how conjugate” the two points are, in particular, when
there is a k-parameter family of shortest geodesics.



3. The Heisenberg subLaplacian

The n-dimensional Heisenberg group is a nilpotent Lie group
of step two on the manifold

H"=C"xR={(z,y) = (21,22, - ,2n,y) : 2 €C", y€R},

with the group law

(z,y) o (w,s) = (z—i—w,y—l—s—i—QImZajzjuTj),
j=1

where a;’s are positive parameters. Without loss of generality,
we restrict ourselves on H! = {(z; + izo,y)}, and assume
a; = 1/2. The vector fields

13} 0 0 13}
X = —_— JE— X —_ -
L= oy + 22 oy’ 2= 92, T1 oy’
are left-invariant under the group law and bracket-generating,
i.e., [ X1, Xo] = 28% recovers the missing direction.
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3. The Heisenberg subLaplacian

Therefore, the Heisenberg subLaplacian

Apg = -(X? + X2), (3.1)

1
2
is subelliptic by Hérmander’s theorem. The heat kernel of Ay
is well studied in literatures, see e.g., Calin-Chang-Furutani-
Twasaki (2011). We can fix ¢o = (0,0,0) and let the other point
q(z1,22,y) vary. The heat kernel P;(z1,x2,y) is given as a
Laplace integral

1 R eo)
Pt(ml,xmy)—@m)g/ e” "t V(r)dr, (3.2)

where the phase function (also known as the “modified complex
action function”) is

1
f(r)=—ity+ §||x||27' coth7, with ||9v||2 = x% + x% (3.3)

The amplitude function (also known as the “volume element”)
is V(1) = ==

sinh 7 °




3. The Heisenberg subLaplacian

Case I: diagonal, i.e., 21 =2, =y = 0.
In this case, f(7) = 0 and the integral in (3.2) reduces to

1 < T 1
= dr = —.
P+(0,0,0) (2mt)? /Oo sinh7 | 82

The last integral can be evaluated explicitly by residue calculus.

Figure 3. The path v;, j =1,2,3,4.



3. The Heisenberg subLaplacian

Case II: 2 = (z1,22) = (0,0) with y # 0.
We may assume y > 0 by symmetry. Now the heat kernel is
simply given as

1 <, T
Pt(0707y) - W[ € SiHthT7

o0

3
-

which can be evaluated via the residue calculation. Note that
each ikm, k=1,2,..., is a simple pole of V() with the residue
being e~ (—1)*ikr. Then, we have

L R zet't
P(0,0,y) = yrors) (
k=1

1 & ki
ki) = s SO k(1) e
i sinh(z)’ m 2t2; (=1)"e

Note that kry = % with ¢;, = length of the kth geodesic joining

(0,0,y) and the origin. In particular, ¢; = d..((0,0,0);(0,0,y)),
see e.g., Calin-Chang-Greiner (2007). Hence,
22

1
P:(0,0,y) ~ ﬁe_ﬁ + exponentially small terms, ¢ — 0.
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3. The Heisenberg subLaplacian

Case III-1: y = 0.
In this case, the heat kernel (3.2) takes the form

1 ' reot(nz|2 T
Pi(x1,22,y) = W/ e z sinthT'
— 00

Since the exponent f(7) is real, the method for asymptotic
expansion in previous two cases does not work. We may handle

the last integral as ¢ — 0% by Laplace method.
We recall some properties of the modified complex function

£(r) = 3 llelPr coth(r).

The function f(7) is real positive and has only one minimum
point at 7 =0, i.e., f/(1) =0« 7 = 0. This critical point
corresponds to the unique geodesic connecting the point
(x1,22,0) and (0,0,0), which is a line segment joining these two
points.



3. The Heisenberg subLaplacian

Moreover,

f(O) = 7H ||2 2d3(,(1'1,:132,0),

Now, the functions f and V have the following Taylor’s
expansions at the point 7 = 0:

1 o0
f(r)= §||:1:H27'coth7' = Zam’k

k=0
Vir) = sth ZﬂkT
k=0
where
z||? z||? x||? z||?
B
1 7 31
:1 = — — = — = - . . :0
/60 ) 62 67 ﬂ4 360; /86 15120’ ) ﬁ2j+1



3. The Heisenberg subLaplacian

By Laplace method, we have the small ¢ asymptotic expansion

1 o« n+1 ni1
Puler,a2,y) ~ Gz Z2r< 5 )cntz
n=0

1 _ l=)i? > n+1 n
=T ZOF( 2 >Cn“

where the coeflicients C,, can be expressed in terms of «ay, and
Br with 0 < k < n. The first few coefficients are given by

_Po_ 2 3a260> 28

1
- Oy =— (B — S
P P PR (52 a0 3

Co

and Cl :0, 03:0



3. The Heisenberg subLaplacian

Case III-2: = #0 and y # 0.

The action function f(7) is analytic in 7. The Laplace method
can not be applied. Hence, we may apply Debye’s method of
steepest descent to derive the asymptotic expansion. Consider
the complex integration

Assume that f(7) and V(1) are analytic functions on C. The
original idea of this method is to deform C to the steepest
descent curve T'. so that the following conditions hold:

(a) T passes the critical points of f’(r), i.e. points such that
f'(r) = 0;

(b) the imaginary part of f(7) is a constant along T, (here
Imf(z)=0onT).



3. The Heisenberg subLaplacian

Suppose that such a path T" can be obtained from the original
path C through a deformation so that

I(t) = /C e PV (r)dr = /F e SV (r)dr. (3.4)

Let n = f(7) — f(m1) for a critical point 7. Then

I(t) = f(m/ Vi(r —e tdn (3.5)

where T' > 0. In most cases, T > 0 is at +oo unless the
integration path strikes another saddle point. Then the
asymptotic expansion maybe obtained if (3.5) satisfies the
hypotheses in Watson’s lemma.



3. The Heisenberg subLaplacian

Watson’s Lemma

Assume that
(1). f(r) is analytic when |7| < a+ 0, where a > 0, § > 0, except
at a branch-point at the origin, and

f(r) = Z a7
m=1

when |7| < a, r being positive;

(2). |f(1)| < KebT, where K, b are independent of 7, when 7 > a;
(3). |2| is sufficiently small and |arg(z)| < § — d where 6 > 0.
Then there exists a complete asymptotic expansion given by

F(z) = /000 f(r)e Fdr ~ Z amf(m)z%.




3. The Heisenberg subLaplacian

Remark 3.1

The method just illustrated (by using Watson’s lemma) has two
technical difficulties.

(1). The path T is not easy to find even is hard to know whether
1t exists.

(2). Computations regarding change of variable in (3.5) is
tedious which makes the calculation is not so easy.

4

To overcome the difficulties, a modified steepest descent method
is introduced.
We now split the action function f(r) into two terms
f(r) = fum(r) + (1 = 70)" fo(r) where
Fm (1)

fu(r) = fr) + I =)™ = f() + e — 7)™

_ | f('m.) (7_1)
- m!

, ¢ 1= arg(f (1))

with a,, :
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3. The Heisenberg subLaplacian

F1) = fm(r) _ fO(m) | S0 (n)

fo(r) = o)t @ + @+ (T—71)+---
where
m=min{k > 1; f®(r) #£0}, £=min{k >m; f®(r) #0}.

(3.6)
The steepest descent method now can be simplified by
considering the steepest descent paths of f,. (7). The steepest
descent paths Ty of f,,(7) are those paths in C satisfying
Im(fm (7)) = Im(fr (1)) = 0, and 71 is a minimum of Re(f (7))
through

e —
M,rzo}, k=0,1,...,m—1.

(3.7)
Consider the disk of convergence Dg(71) and choose the two
most appropriate semi-infinite straight lines T', and T'y,
according to the original path C.

Ty = {7‘ € C: 7=mn+re%, 0, =



3. The Heisenberg subLaplacian

Then we deform the original integration path C to T' = T UT.
where

~

F:{TGC T =7 + ret 0<r<R}

U{Tec 7—71+re 0<r<R}

The path T, is glued at extreme points of T'. In I(t), comparing
to the integration on I', the integration on I'. is negligible. As a
result,

I(t) = [ e NV (r)dr ~ /~ e NV (r)dr

r r

~ / e_’\f(T)V(T)dT
in Ung

This idea was first used by Ldpez-Pagola (2011).
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3. The Heisenberg subLaplacian

By results of Beals-Gaveau-Greiner (2000), Calin-Chang-Greiner
(2007), we known that the unique critical point of f(7) on the
strip 0 < Im(7) < 7 is the point 7, = i6,, where 6; is the solution
of

! 0 1
v = gllelP (G —coro) = 5lelPulo)

A simple calculation yields
o1 .
7'(r) = iy + i p(—im) P
and
1 ) 1 ,
FOm) = i Cimlel’, fO () = 3u® (—in) ]

where p(p) = ﬁ — cotp. See Figure 3.

We know that 4/(¢) > 0 for 0 < » < 7, and hence f® (1) >0
which implies that 7 = 71 is a critical point of order one.
Moreover, 1u?)(¢) > 0 for ¢ € (0,7) and u® () < 0 for ¢ € (—x,0)
= fO(r) > 0.



k
g
)
O
e
g
E

i9;.

Figure 3. The function u(0): the solutions of u(6) = 2y/||z||? give the saddle points Tj

2, y=>5.

Parameters: ||z||?

56
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3. The Heisenberg sublLe acia

Thus,

(r—m)3
6

(r—11)2

f(r) = f(m) + fP(m) + ()

Now, we split the phase function into two terms
f(r) = fo(7) + (7 = 11)  f3(7),
with

@) (7,
folr) = flm) + T




3. The Heisenberg subLaplacian

Notice that fo(7) is a polynomial of degree two, and
Imfo(m) = Imf(m1) = 0, so the steepest descent path for fo(7) is
the horizontal line, which is plotted in Figure 4 with a red line.
This contour is divided into two semi-infinite lines

Fk:{TE(C; T =1 +rethT, 7‘20}, k=0,1.
Then the integral in (3.4) becomes an Laplace integral over

' =T UTy, and any method for computing the coefficients of
Laplace’s methods can be applied. Hence,

It) = /F eIV (ndr = Io(t) + L(1)

where

) — 1 i1
Io(t) ~ e~ T E F(n;— )cn(O)t T,
n=0
£ e +1 (38)
T n+1
L(t) ~e 7S F(" )cn(l)t Eal

n=0

%]
o



The Heisenberg subLaplacian

Im7

Imf(7) =0

T2

Imfs(7) = 0

Rer

Figure 4. Complex 7 plane: the blue curve is the steepest descent path for f(7);

the red line is the steepest descent path for fo(7).
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3. The Heisenberg subLaplacian

Hence,
_dgc o0 + 1
B n nt1
Pr(x1,22,9) ~ (@ni)? ZCnF(T>t 2
n=0
a2
67%

s I\ m
Zonr("; )ﬁ,

T 2t &=

Coefficients C), in the expansion (3.9) are given by
Cpn = cn(0) + ¢, (1) with ¢, (1) = (=1)"¢,(0).

(3.9)

The coefficients ¢, (0) can be calculated recursively by Wojdylo’s

method.



3. The Heisenberg subLaplacian

Assume that

(t4+m7) Z apT” V(r+m) Z bprite—t,

The first four coefficients for the expansion of Iy(t) are given by

1, by
co(0) _i(aéﬁ)

1,06 b
01(0)15(;; 03;%)

b2 3a3 b1 3@4 bo 15@:25 bo
c2(0) 25( 527 2, 572 L T3 a7/2)
2 2
b3 b2 bl bO 4 3 bO

b1 bo
0) ==(— —2 2 6a2— — 2a 12 —da3—
c3(0) 2((1% a3a§’ ay 3+ aj p as 3+ A5G4 —; o a3a§’)




3. The Heisenberg subLaplacian

Assume that

7'+T1 Zak s V(*T‘F’ﬁ) = Zbk(fT)k+a71.

The first four coefficients for the expansion of I;(t) are given by

1, by
co(1) :i(aé/Q)

-1,b b
(1) :7(;; +a3a%)

b2 3a3 b1 3@4 bo 15@:25 bo
W =3Gr- S g gnt s )

—1 b3 by by by bo bo bo
c3(1) :7(;% — 2a3— = — 2a4— 2 + 6a3— " 2a5a—§+12a3a4a—%—4a§;)




3. The Heisenberg subLaplacian

Calculations show that

sin 7 — 61 cos 61 I ||2 01 + 204 cos? 6, + 3sin b cos b, I ||2
as = xl|%,

ag = ———||2||%, = -
2 2sin® 6, 3 6sin’ 6,
b _sinf; — 6y cos by 01(1 + cos? 6;) — 2sin 6 cos 0y
" osing ' sin? 0, R sin® 6, ’

It follows that

c bo m 2 \/ 2sin 64
0= = — —
a;/Q sinh 7y ||z]| —iT1) \x|| sin @y — 61 cos 6y’
_3p, —3as 15
e =501 —553bo + Fho
2 — sty
3/2
ay/

and
Cojp1 =0, j=0,1,2,3,....



3. The Heisenberg subLaplacian

Remark 3.2

There are infinitely many critical points of f(7), and the points
are of the form 7; = i0; for j=1,2,--- ,N. Since y > 0, we have
6y <0y <---<0On. The values f(r;) provide the length of
geodesics. Explicitly, for 1 <j <N,

flo) = 56 = v C2ls) +l1al?),

where )
ej

B 0; + sin® 0; —sinf; cosb;

v(6;)

and £; is the length of jth geodesics joining (x1,z2,y) and the
origin. Of course, f(r1) = d..((0,0,0); (x1,22,y)). Other critical
values are larger than the first one, the contributions of these

critical points are exponentially small compared with the first

critical point. We ignore them.




3. The Heisenberg subLaplacian

Remark 3.3

We have the following form of asymptotics for the heat kernel

C 7("]’%6
Pi(x1,72,y) ~ t@‘f 2
2

where C' and Q are constants and d.. is the Carnot-
Carathéodory distance between (x1,x2,y) and the origin. We
note that the power o of t varies. Namely,

4=0Q >n, whenz=0, y=0, diagonal,
2a=¢4=n+1, when x =0, y # 0, off-diagonal, cut-conjugate;

3=n, when x # 0, off-diagonal, not cut-conjugate.

Here, n = 3 is the topological dimension and Q is the Hausdorff
dimension. This agrees with the previous result on the
asymptotics for the heat kernels on the diagonal, i.e. when the
(z1,22,y) = (0,0,0).




4. The Grushin Operator

The second example of subelliptic operators is introduced by
Grushin. Consider the following vector fields on

Rm+1 = {(x17x27 T 7xm7y)}

0 0

x = 2 YV — g 2
T Oxy’ J mj@y’

1<j<m. (4.1)

These vector fields give all (m + 1) directions on R™*! except
on y-axis, where their bracket [X;,Y;] = e 9 gives the missing
direction. The Grushin operator

Ag =1 i(X2+Y2 li o 1(:52+:z:2+ + z2 )a—2 (4.2)
G*2j:1 ’2: 9z3 T2 T oy
is therefore subelliptic by Hérmander’s theorem. When m = 1,
Ag is the classical Grushin operator and its heat kernel is
constructed in e.g., Calin-Chang-Furutani-Twasaki (2011), the case

of m > 1 is studied in Calin-Chang-Hu-Li (2011).
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4. The Grushin Operator

The heat kernel of Ag has the following form

1 RaEPTEN!
Piland) =~z [ FW(rar, 43
o) = o [ W) (43)

where qo(79,90) and ¢(z,y) are two points in R™*1. The phase
function (the modified complex action function) is

. T
o) = —irly o) + 5 (el + ol coshr — 2(a, 20)]
= —it(y—yo) + % [(x + 20)? tanh % + (x — x0)? coth g} .
(4.4)
and the amplitude function (the volume element) is
T O\7Z
Wir) = (SinhT) ' (4.5)
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4. The Grushin Operator

The heat kernel of Ag has the following form

1 RaEPTEN!
Piland) =~z [ FW(rar, 46
o) = o [ W) (46)

where qo(79,90) and ¢(z,y) are two points in R™*1. The phase
function (the modified complex action function) is

. T
o) = —irly o) + 5 (el + ol coshr — 2(a, 20)]
= —it(y—yo) + % [(x + 20)? tanh % + (x — x0)? coth g} .
(4.7)
and the amplitude function (the volume element) is
T O\7Z
Wir) = (SinhT) ' (4.8)
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4. The Grushin Operator

Theorem 4.1

The heat kernel Py(zo,yo;x,y) of the Grushin operator given
in (4.6) with m =1 has the following asymptotic expansion as
t—0t:

(1). x =20 =0 and y = yo,

(N

1 T
Pt(x,y,xay) - (27_“;/)% [oo (sinhT) dr < o
(2). =120 #0 and y = yo,

oo

2 1
Pm’ 2 8, N —— I'k+=)c tk,
+ (20, Y05 2, Y) (QW)Eth:% ( 2) 2k
where copi1 =0 for k=0,1,2,... and

V2 V2 —V2

o T 2P 4T 320p

Co




4. The Grushin Operator

7|'

(3). @ =—=o # 0 and |y — yo| = F2?,

cc(qo ) oo

ZF<k+ )Dktk

’Pt(x()ayo;xa y)

MU‘

(2m) %t




4. The Grushin Operator

(4). other cases,

e & 1
Pi(x0, yo; T, y) ~ 3§F<k+2)Dktk;

where Dy = Co, for k=10,1,2,.... The Cy = cx(0) + cx(1) with
ck(1) = (=1)*cx(0) and ¢x(0) can be computed recursively by
Wojdylo’s method

k n .

2+s Bn,s
2 s °

Here by, is given in W(r) =1— L2 +... =37 'b,7* and the
partial ordinary Bell polynomials B,, s are defined by By =1,
Bn,O = ].7 and

n—1

Bps = Z ant2-jBjs—1, n>s>1




4. The Grushin Operator

Fix a point ¢ € M, ¢ is a conjugate point of qo if ¢ and g9 can
be connected by a shortest geodesic v. However, this geodesic is
no longer the shortest after this point ¢. This indicates that
d..(qo,q) as a function of ¢ is not smooth at a conjugate point.

A point q is a cut point of qp if: (i) there are more than one
shortest geodesic joining ¢ and go; or (ii) ¢ is a conjugate point
of gy along one shortest geodesic.

Take the Grushin plane as an example for illustration. The cut
locus of ¢y(0,y0) is {(0,v); v # yo}, but these points are not
conjugate points.

For the point qg(zo,yo) with zy # 0, a point ¢(z,y) is a conjugate
point of gy & |y — yo| = Z2? and = = (—1)*z, for some positive
integer k. But only the first two conjugate points associated
with & = 1 are cut points.
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Figure 5. Cut points and conjugate points of gg in the Grushin plane.

g0 = (—1,0): Conj(qo) = {g+1, -

N ER

these points are conjugate with gg along the geodesic plotted in the brown curve;

Cut(gp) = {q1,9—1}, so g1 and g_1 are the only cut-conjugate points of gq.



4. The Grushin Og

Figure 6. g0 = (0,0): Cut(qo) = {(0,y); y # 0} and Conj(qo) = 9,
any point ¢(0, y) is joined with go by two shortest geodesics plotted in a solid and a dotted curves.

Illustration is done for ¢ = (0, —27) and ¢ = (0, 1.287).
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4. The Grushin Operator

Remark 4.1

The heat kernel of the Grushin operator has the small-time
asymtotics in the following form

C _d
Pi(0, yo; 2,y) ~ e =,
where C is a constant and
3=Q >n, r=x9=0, y=vyo, diagonal;
2=0Q =n, r=x9#0, y=vyo, diagonal,
20=< 3 =n+1, r=—x0#0, |y—1yol=mz?/2,

off-diagonal and cut-conjugate;

off-diagonal and not cut-conjugate points.

Here, n =2 is the topological dimension and Q is the Hausdorff
dimension. We see that in most of the cases a = % 200=32

corresponds to the case when qo q are cut-conjugate points.




4. The Grushin Operator

Recall that the scalar curvature is the trace of the Ricci
curvature tensor N
R = Zgl] R;j,
%,J

where the Ricci tensor can be calculated via the Christoffel
symbols

8Ff arz Y4
= ; [ dx* 8le * Z 5 Ttm = D5 i)

and

m_ 1 mk (O9ki 095 | Ogjk
Iy = 2 Zg <8xj ok T ot )

Consider the Grushin vector fields in (4.1) for m = 1, and the
coordinates (x,y) are understood as (x!,2?) in the above
formulas. The metric is given by

@)=y ) W=t =( 2 )
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4. The Grushin Operator

Hence,
Fh = F%z = 1—%1 = 1—% = F%Q =0,
1 —1
1_%2:;3 F%QZFEIZ?'
1 5
Ry =——, Rop = ——, Rip = Ro1 =0
x x

A slight calculation shows

4
R(.’E,y):—?, 1'7&0

Let us look at the diagonal case Case II, for which we have

1 1
Pi(x,y;m,y) ~ —— (1 t t— 0",
(Y5 @, y) 27rta:|< +24| E + - ) as

The second term here is related to the scalar curvature in the

_ _ R(z,y)
sense that 24| AT = oa -




5. Uniform asymptotic expansions

We have shown that the leading power of ¢ in the small-time
asymptotic expansion of the heat kernel (3.2) for the Heisenberg
subLaplacian varies as the point (z1,x2,y) varies. To be precise,
as (x1,r2) approaches (0,0), the power « of ¢ changes from
2 — 2. From the integral point of view, the discontinuity of « is
due to the coalescing of the two saddle points 7, and 7» to the
same value i7 as ||z|| — 0. Note that 8, < 7 < 65 for ||z| # 0, and
that 6; and 6; both tend to 7 as ||z|| — 0, and 7 = ix is also a
simple pole of the phase function f(7). For such a case, Frenzen
and Wong (1988) derived a uniform asymptotic approximation in
terms of Bessel function. Their idea is to introduce a rational
mapping 7 — u by
2
—2f(in) =u— AT(J), (5.1)

where ¢ = Hi% and the function A(c) is determined as follows.

Note that
dr A(o)?

=2ify(in) 7 =1+ =




5. Uniform asymptotic expansions

In order to have a one-to-one mapping in the region of interest,
one requires Z—Z # 0 or co. Note that f,(in) =0 and f,(in2) =0,
thus we let 7, and = correspond to u =iA(c) and u = —iA(o),
respectively. Therefore,
d2

Afo) = if(im) = 2.
Here, we have made use of the fact that f(in) = % By the
transformation 7 +— u, the heat kernel (3.2) reduces to

Pul,y) = ﬁ /u-lh(u) exp {1 (u - A(Z)Q> } du,  (5.2)

where J
h(u) = uv(T(u))dl (5.3)
U
is analytic near v = 0. Recall Schléfli’s integral representation
of the Bessel function J,(z):

1 Z\V (0+)
- (z —(v+1) _z
Ju(2) 57 (2> /_ t exp {t } dt.
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5. Uniform asymptotic expansions

The change of variables ¢ = 2* leads to

v (04) A 2
Ju(Az) = ;—m/ u~ "+ exp {2 <u - 2)} du.

Comparing the last equation with (5.2) yields

1 A 1
Pi(x,y) ~ ?Jo <@) ap(z,y) + O <t) , as t— 0T,

t

where ag(z,y) is a function of z,y. Follow the approach of
Fenzen and Wong (1988), we can derive an asympttoic expansion
of the form

1 1 (A(
Pi(x1,x2,y) ~ 2 {Jo 0)/t) Zasts ;7 Zb ot }

ast— 0.



5. Uniform asymptotic expansions

In the small-time asymptotics of the heat kernel for the Grushin
operator, we see that the leading power of ¢, «, changes from

1 — 2 as ¢ approaches the cut-conjugate point of go. From the
integral point of view, this discontinuity of « is due to the
coalescing of the saddle point 7, and the singularity of W(r) at
7 = im. The treatment of such coalesce of critical points can be
found in Wong (2001), and the uniform asymptotic expansion
involves parabolic cylinder functions. The discontinuous change
of a from 2 to 1 can be smoothed out in a same manner as in
the Heisenberg case. Since there is no alternation in the
methods, we omit the details here.
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