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Prototype Riemannian manifold with ends

Let (M, g) be a connected Riemannian manifold.

An open subset E ⊂ M is an end, if the closure Ē is of the form

Ē ∼= [1, ∞) × S

for some connected manifold S.

The metric g is of warped-product type on E, if

g(r, σ) = dr ⊗ dr + f(r)hαβ(σ)dσα ⊗ dσβ; (r, σ) ∈ (1, ∞) × S

for some Riemannian metric h on S. In particular, the geometry

of Sr := {r} × S ⊂ M is similar to (S, h) with scale factor
√

f(r).
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We mainly consider the following models of growing ends:

• f(r) = rθ with θ > 0. (Asympt. Euclidean)

• f(r) = exp(δrθ) with δ > 0, 0 < θ < 1. (Asympt. Euclidean)

• f(r) = exp(κr) with κ > 0. (Asympt. hyperbolic)

Remarks 1. Typical examples are Rd and Hd.

2. We do not assume anything on (S, h). Hence the half-spaces

of Rd and Hd are included. Their sectors are also included.

3. In the following abstraction, more general exterior domains

such as the outside of a parabola or a cylinder are included.
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Abstraction: Existence of ends

Let (M, g) be a connected Riemannian manifold.

Assumption (A) There exist r ∈ C∞(M) with r(M) = [1, ∞) and

c > 0 and r0 ≥ 2 such that:

1. The gradient vector field ∇r ∈ X(M) is forward complete.

2. The bound |∇r| ≥ c holds on {x ∈ M | r(x) > r0/2}.

We call each component of E = {x ∈ M | r(x) > r0} an end of M.
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Construction of spherical coordinates

It is obvious that E is the union of r-spheres

SR = {x ∈ M | r(x) = R}; R > r0.

Denote by y : [0, ∞) × M 3 (t, x) 7→ y(t, x) ∈ M the flow generated

by the normalized gradient vector field

X̃ = η|∇r|−2∇r ∈ X(M); η = 1 − χ(2r/r0),

It clearly satisfies r(y(t, x)) = r(x) + t for any x ∈ E and t ≥ 0, and

hence the flow y induces a family of diffeomorphic embeddings

ιR,R ′ = y(R ′ − R, · )|SR
: SR → SR ′; R ≤ R ′

satisfying

ιR ′,R ′′ ◦ ιR,R ′ = ιR,R ′′; R ≤ R ′ ≤ R ′′.
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Through the above embeddings we may regard

SR ⊂ SR ′ for R ≤ R ′ in a well-defined manner.

This naturally induces a manifold structure on the union

S =
⋃

R>r0

SR.

Let σ be any local coordinates on S, and define σ(x) for x ∈ E by

considering x ∈ Sr(x) ⊂ S. The spherical coordinates of x ∈ E are

(r, σ) = (r(x), σ(x)) ∈ (r0, ∞) × S.

Note that in such coordinates the ends E are identified with

an open subset of the half-infinite cylinder (r0, ∞) × S whose r-

sections are monotonically increasing and exploiting S.
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Abstract assumption on geometry: Growing ends

We introduce the tensor ` and the differential operator L:

` = g − η|∇r|−2dr ⊗ dr, L = p∗
i `

ijpj.

In the spherical coordinates ` may be identified with the pull-back
of g to the r-spheres, and L with the spherical part of −∆.

Assumption (B) There exist σ, τ, C > 0 such that

r∇2r ≥
σ

2
|∇r|2` − Cr−τg,

and for α = 0, 1∣∣∣∇α|∇r|2
∣∣∣ ≤ Cr−α(1+τ), |∇α∆r| ≤ C, |L∆r| ≤ Cr−1−τ.

Note that ∇2r is the geometric Hessian of r.
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The Schrödinger operator

On such (M, g) we study the Schrödinger operator

H = H0 + V on H = L2
(
M,

√
detgdx

)
,

where H0 is the free Schrödinger operator

H0 = −
1

2
∆ =

1

2
p∗

ig
ijpj = −

1

2
√

detg
pig

ij
√

detgpj; pj = −i∂j.

The operator ∆ is called the Laplace–Beltrami operator.

Under the assumptions below we consider the Dirichlet self-

adjoint realization.
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Joint potential

Define the effective joint potential by

q = V +
1

8
η|∇r|−2

[
(∆r)2 + 2∇r∆r

]
; ∇r = gij(∇ir)∇j.

Assumption (C) There exists a splitting by real-valued func-

tions:

q = q1 + q2; q1 ∈ C1(M) ∩ L∞(M), q2 ∈ L∞(M),

such that for some ε, C > 0

|∇q1| ≤ Cr−1−ε, |q2| ≤ Cr−1−ε.
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Critical energy

Define the critical energy λH ∈ R by

λH = lim sup
r→∞ q = lim

R→∞
(
sup

{
q(x); r(x) ≥ R

})
.

Remarks 1. Kumura (’97) proved that [λH, ∞) ⊂ σess(H).

2. If f(r) = exp(κr) and V1 ≡ 0, we have

λH =
(d − 1)2κ2

32
.

Recall for Hd we have

f(r) = (sinh r)2 ∼ exp(2r), σ(H0) =
[(d − 1)2

8
, ∞)

.
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Weighted spaces

Define the weighted spaces

Hs = (H0 + 1)−s/2H, Hs = r−sH; s ∈ R.

Set the dyadic annuli Ων =
{
x ∈ M; 2ν ≤ r(x) < 2ν+1

}
for ν ≥ 0,

and define the associated Besov spaces by

B =
{

ψ ∈ L2
loc(M); ‖ψ‖B =

∞∑
ν=0

2ν/2‖χΩν
ψ‖H < ∞}

,

B∗ =
{

ψ ∈ L2
loc(M); ‖ψ‖B∗ = sup

ν≥0
2−ν/2‖χΩν

ψ‖H < ∞}
,

B∗
0 = C∞

0 (M) in B∗.

Recall the nesting holding for any s > 1/2:

Hs ( B ( H1/2 ( H ( H−1/2 ( B∗
0 ( B∗ ( H−s.
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Functions satisfying the Dirichlet boundary condition

Choose a non-negative χ ∈ C∞(R) such that

χ(t) =

{
1 for t ≤ 1,

0 for t ≥ 2,

and define χN, χ̄N ∈ C∞(M) for N ≥ 0 by

χN = χ(r/2N), χ̄N = 1 − χN.

Let us introduce an auxiliary space:

N =
{
ψ ∈ L2

loc(M); χNψ ∈ H1 for any N ≥ 0
}
.

This is the space of the functions that locally satisfy the Dirichlet

boundary condition, possibly with infinite H1-norm. Recall:

D(H0) =
{
ψ ∈ H1; ∆ψ ∈ H in the distributional sense

}
.
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Boundedness outside the ends

Assumption (D) The embeddings

r−sH1 ↪→ H

are compact for any s > 0, or equivalently, the mapping

χN(H0 + 1)−1/2 : H → H.

is compact for all for all N ≥ 0.

Assumption (D) says the “boundedness” of M \ E.
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Limiting absorption principle (LAP)

We set the resolvent R(z) = (H − z)−1 for z ∈ C \ R.

Theorem For any I b (λH, ∞) set

I± =
{
z = λ ± iΓ ∈ C; λ ∈ I, Γ ∈ (0, 1)

}
.

Then there exists C > 0 such that for any ψ ∈ B and z = λ±iΓ ∈ I±

‖R(z)ψ‖B∗ ≤ C‖ψ‖B.

Moreover, R(z) extend for z ∈ I ∪ I± continuously in the norm

topology of B(Hs,H−s) for any s > 1/2, and the limits

R(λ ± i0) := lim
I±3z→λ

R(z); λ ∈ I,

belong to B(B, B∗).
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An interpretation by forced oscillation

Let z = λ+ iΓ ∈ I+, and consider a system with forced oscillation:

u ′(t) = −iHu(t) + ie−itzf; f ∈ B.

Obviously we have an explicit solution:

u(t) = e−itzR(z)f + e−itH
(
u0 − R(z)f

)
.

• In general, R(z)f is a response to the external force e−itzf.

• On entering into the system wave escapes toward infinity.
When the initial wave front gets far away, the amplitude of
oscillator is larger. Hence R(z)f must have a certain decay.

• The smaller Γ ≈ 0 gets, the milder the decay rate would be.
R(λ + i0)f would be a response to e−itλf after a long time.

• If f is well localized, the waves escape in the spherical shape,
and thus the natural target of R(λ + i0) is B∗.
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Radiation condition bound

Let us set

A = i[H0, r] = Repr =
1

2

(
pr + (pr)∗

)
, a = ηλ|∇r|

√
2(λ − q1),

where pr = (∇r)i∇i and ηλ = χ̄(2r/rλ).

Theorem Let I b (λH, ∞). Then there exist δ, C > 0 such that

for any ψ ∈ r−δB and z ∈ I ∪ I±∥∥∥rδ(A ∓ a)R(z)ψ
∥∥∥
B∗ ≤ C‖rδψ‖B.

Remark The radial operator A∓a eliminates the leading spher-

ical wave of R(λ ± i0) at infinity.
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Sommerfeld’s uniqueness

Theorem Let λ > λH, φ ∈ L2
loc(M) and ψ ∈ B. Then φ =

R(λ ± i0)ψ holds if and only if both of the following holds:

1. φ ∈ B∗ ∩N and (A ∓ a)φ ∈ B∗
0
.

2. (H − λ)φ = ψ in the distributional sense.

Remark Let ψ be given, and suppose φ solves (H − λ)φ = ψ.
Then u(t) = e−itλφ is a stationary solution to

u ′(t) = −iHu(t) + ie−itλψ. (♦)

To any solution u(t) of (♦) we can freely add a solution v(t) of
v ′(t) = −iHv(t) as background. But note such v(t) has source and
sink only at inifinity. If u(t) is purely outgoing, the only source
is the external force ie−itλψ, and hence the uniquenss follows.
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Commutator theory

We construct a commutator theory with respect to the conjugate
operator: A = i[H0, r] = Repr, H1 ⊂ D(A).

Lemma As quadratic forms on C∞
0

(M),

[H, iA] = p∗
i (∇

2r)ijpj − (∇rq1) +
1

4
(L∆r)

+
1

8
(∇rη|dr|−2)(∆r)2 − 2 Im(q2A),

and hence [H, iA] extends as a quadratic form on H1. Moreover,
for any ψ ∈ D(H)

〈ψ, [H, iA]ψ〉 ≤ 〈Hψ, iAψ〉 + 〈iAψ, Hψ〉.

Remark The missing positivity of ∇2r in the radial direction is
recovered from Carleman’s weight.
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