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Prototype Riemannian manifold with ends

Let (M, g) be a connected Riemannian manifold.

An open subset E C M is an end, if the closure E is of the form
E=[1,00) xS

for some connected manifold S.

The metric g is of warped-product type on E, if

g(r,0) = dr ® dr + f(r)hyg(0) do* @ doP;  (r,0) € (1,00) x S

for some Riemannian metric h on S. In particular, the geometry
of Sy :={r} x S C M is similar to (S,h) with scale factor ,/f(r).
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We mainly consider the following models of growing ends:
e f(r) =79 with 8 > 0. (Asympt. Euclidean)
o f(r) =exp(dr¥) with § >0, 0 <0 < 1. (Asympt. Euclidean)

o f(r) =exp(kr) with k > 0. (Asympt. hyperbolic)

Remarks 1. Typical examples are RY and H¢.

2. We do not assume anything on (S,h). Hence the half-spaces
of R4 and HY are included. Their sectors are also included.

3. In the following abstraction, more general exterior domains
such as the outside of a parabola or a cylinder are included.
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Abstraction: EXxistence of ends

Let (M, g) be a connected Riemannian manifold.

Assumption (A) There exist r € C®°(M) with r(M) =[1,00) and
c >0 and ry > 2 such that:

1. The gradient vector field Vr € X(M) is forward complete.

2. The bound |Vr| > c holds on {x € M |r(x) > 19/2}.

We call each component of E={x € M|r(x) > 15} an end of M.
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Construction of spherical coordinates

It is obvious that E is the union of r-spheres
Sp={xeM|r(x) =R}; R>r.

Denote by y: [0,00) x M > (t,x) — y(t,x) € M the flow generated
by the normalized gradient vector field

X =nvr2vre 2(M); n=1—x(2r/ry),

It clearly satisfies r(y(t,x)) =r(x)+t for any x € E and t > 0, and
hence the flow y induces a family of diffeomorphic embeddings

LR,R/ :y(R/—R, .)‘SR: SR%SR/; R < R’
satisfying

LR/,R” o LR,R/ = LR,R”; R S R/ S R//.



Through the above embeddings we may regard

Sg C Sgr for R< R’ in a well-defined manner.

This naturally induces a manifold structure on the union
S = U Sg.
R>TO

Let o be any local coordinates on S, and define o(x) for x € E by
considering x € ST(X) C S. The spherical coordinates of x € E are

(r,0) = (r(x), 0(x)) € (rg,00) X S.

Note that in such coordinates the ends E are identified with
an open subset of the half-infinite cylinder (ry,00) X S whose -
sections are monotonically increasing and exploiting S.



Abstract assumption on geometry: Growing ends

We introduce the tensor £ and the differential operator L:

=g —n\Vr\_zdr ®dr, L= p%“(ﬁijp)-.

In the spherical coordinates £ may be identified with the pull-back
of g to the r-spheres, and L with the spherical part of —A.

Assumption (B) There exist o,1,C > 0 such that
rver > %\Vrlzﬁ — Cr g,
and for « =0, 1

‘V“\VT\Z‘ < cr I+ \yeAr < C, LAY < Cr T

Note that V2r is the geometric Hessian of r.



The Schrodinger operator

On such (M, g) we study the Schrodinger operator

H=Hy+V on H= LZ(M, det gdx),
where Hy is the free Schrodinger operator

11, 1 ’ |
Ho = —5A =5pig"p; = —meg”\/det gpj; Py = —i9;.

The operator A is called the Laplace—Beltrami operator.

Under the assumptions below we consider the Dirichlet self-
adjoint realization.



Joint potential

Define the effective joint potential by

1 )
q =V -+ IViT2 (A1) + 2V AT, VT =gV (Vin) V.

Assumption (C) There exists a splitting by real-valued func-
tions:

a=d1+a3 a3 €C(MNL®M), qp € L®(M),
such that for some €,C > 0

Vail < Cr17¢ gyl < Crle



Critical energy

Define the critical energy Ay € R by

Ay = Iign%ségp q= ]Jme (sup{q(x); r(x) > R})

Remarks 1. Kumura ('97) proved that [Ay,00) C Oess(H).

2. If f(r) = exp(kr) and V; =0, we have

(d — 1)%k?
32 '

AH =

Recall for HY we have

f(r) = (sinh 1) ~ exp(2r), o(Hg) = |



Weighted spaces

Define the weighted spaces

H® = (Hy + NS 2H, He=7vSH: scR.

Set the dyadic annuli Qv = {x € M; 2V < r(x) < 2V} for v > 0,
and define the associated Besov spaces by

B = {w € M) bl = Y~ 2 2lxa bl < oo},
v=0

B = {1 € LheM); [[Wllge = sup2™"/2|xq, il < o,
V>
By = C5°(M) in B™.
Recall the nesting holding for any s > 1/2:

Hs CBCHy CHCH ) S By S B* C Hos.
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Functions satisfying the Dirichlet boundary condition

Choose a non-negative x € C°(IR) such that

(t) = 1 fort<I,
XW=10 fort>2

and define xn, XN € C°(M) for N > 0 by

xn =X/2N), %=1 XN
Let us introduce an auxiliary space:
N = {11) € L%OC(M); XN € H! for any N > O}.

This is the space of the functions that locally satisfy the Dirichlet
boundary condition, possibly with infinite H'-norm. Recall:

D(Hp) = {1]) S H]; AP € ‘H in the distributional sense}.
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Boundedness outside the ends

Assumption (D) The embeddings
SH 5 H
are compact for any s > 0, or equivalently, the mapping
xn(Ho 4+ 1712 H = H.

is compact for all for all N > 0.

Assumption (D) says the “boundedness” of M\ E.
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Limiting absorption principle (LAP)

We set the resolvent R(z) = (H—2z)"! for z € C\ R.

Theorem For any 1 € (Ay,o0) set
I+ ={z=AxileC; Ael Te(0,1)}.
Then there exists C > 0 such that for any\y € B and z = Axil’ € I+

IR(z) |+ < Cl[b][p.

Moreover, R(z) extend for z € 1 U I+ continuously in the norm
topology of B(Hs, H_s) for any s > 1/2, and the limits

R(A£i0):= Iim R(z); Ael,
[L2z—A

belong to B(B, B*).
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An interpretation by forced oscillation

Let z=A+Iil € I+, and consider a system with forced oscillation:

uw'(t) = —iHu(t) + ie "*f;  f € B.
Obviously we have an explicit solution:

u(t) = e "R(2)f + e (uy — R(2)f).

e In general, R(z)f is a response to the external force e 't%f.

e On entering into the system wave escapes toward infinity.
When the initial wave front gets far away, the amplitude of
oscillator is larger. Hence R(z)f must have a certain decay.

e The smaller I' = 0 gets, the milder t_he decay rate would be.
R(A +i0)f would be a response to e tAf after a long time.

e If f is well localized, the waves escape in the spherical shape,
and thus the natural target of R(A +i0) is B*.
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Radiation condition bound

Let us set

1

A =i[Hy, 1] = Rep' = Z(p1~ + (pr)*>, a :n;\\Vr\\/Z(A —d1),

where p" = (Vr)'V; and 1y = X(2r/1)).

Theorem Let 1 e (Ay,00). Then there exist 6,C > 0 such that
for any p € T °B and ze TU I

[r*(AF a)R(2)Y)|

o
o < Clrplls.

Remark The radial operator AFa eliminates the leading spher-
ical wave of R(A £i0) at infinity.
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Sommerfeld’'s uniqueness

Theorem Let A > Ay, ¢ € L (M) and y € B. Then ¢ =

R(A £ i0)\p holds if and only if both of the following holds:
1. € B*NN and (A Fa)d € B;.
2. (H—=A)p =1 in the distributional sense.

Remark Let 1\ be given, and suppose ¢ solves (H—A)d = ).
Then u(t) = e Y\ is a stationary solution to

u'(t) = —iHu(t) + ie Ay, (&)
To any solution u(t) of () we can freely add a solution v(t) of
v/(t) = —iHv(t) as background. But note such v(t) has source and

sink only at inifinity. If u(t) is purely outgoing, the only source
is the external force ie_'”‘xl), and hence the uniquenss follows.
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Commutator theory

We construct a commutator theory with respect to the conjugate
operator: A =i[Hp,v] = Rep", H! ¢ D(A).

Lemma As quadratic forms on Cg°(M),

H,IA] = 7 (V2r) gy — (V1) + 5 (L)

1

1
+ 5 (Vmldri™2)(Ar)? = 2Im(q2A),

and hence [H,iA]| extends as a quadratic form on HT. Moreover,
for any { € D(H)

(b, [H,IAIP) < (Hp, iAD) + (IAD, H).

Remark The missing positivity of V2r in the radial direction is
recovered from Carleman’s weight.
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