Stationary scattering theory on manifold with ends (LAP and RC)

Kenichi ITO (Kobe University) joint work with Erik Skibsted (Aarhus University)

7 March 2015

Prototype Riemannian manifold with ends

Let (M, g) be a connected Riemannian manifold.

An open subset $E \subset M$ is an *end*, if the closure \overline{E} is of the form

 $\overline{E} \cong [1,\infty) \times S$

for some connected manifold S.

The metric g is of warped-product type on E, if

 $g(r,\sigma) = dr \otimes dr + f(r)h_{\alpha\beta}(\sigma) d\sigma^{\alpha} \otimes d\sigma^{\beta}; \quad (r,\sigma) \in (1,\infty) \times S$

for some Riemannian metric h on S. In particular, the geometry of $S_r := \{r\} \times S \subset M$ is similar to (S,h) with scale factor $\sqrt{f(r)}$.

We mainly consider the following models of growing ends:

- $f(r) = r^{\theta}$ with $\theta > 0$. (Asympt. Euclidean)
- $f(r) = \exp(\delta r^{\theta})$ with $\delta > 0$, $0 < \theta < 1$. (Asympt. Euclidean)
- $f(r) = \exp(\kappa r)$ with $\kappa > 0$. (Asympt. hyperbolic)

Remarks 1. Typical examples are \mathbb{R}^d and \mathbb{H}^d .

- 2. We do not assume anything on (S,h). Hence the half-spaces of \mathbb{R}^d and \mathbb{H}^d are included. Their sectors are also included.
- 3. In the following abstraction, more general exterior domains such as the outside of a parabola or a cylinder are included.

Abstraction: Existence of ends

Let (M, g) be a connected Riemannian manifold.

Assumption (A) There exist $r \in C^{\infty}(M)$ with $r(M) = [1, \infty)$ and c > 0 and $r_0 \ge 2$ such that:

1. The gradient vector field $\nabla r \in \mathfrak{X}(M)$ is forward complete.

2. The bound $|\nabla r| \ge c$ holds on $\{x \in M | r(x) > r_0/2\}$.

We call each component of $E = \{x \in M | r(x) > r_0\}$ an end of M.

Construction of spherical coordinates

It is obvious that E is the union of r-spheres

$$S_{R} = \{ x \in M \mid r(x) = R \}; \quad R > r_{0}.$$

Denote by $y: [0, \infty) \times M \ni (t, x) \mapsto y(t, x) \in M$ the flow generated by the *normalized* gradient vector field

$$\tilde{X} = \eta |\nabla r|^{-2} \nabla r \in \mathfrak{X}(M); \quad \eta = 1 - \chi(2r/r_0)$$

It clearly satisfies r(y(t, x)) = r(x) + t for any $x \in E$ and $t \ge 0$, and hence the flow y induces a family of diffeomorphic embeddings

$$\iota_{\mathbf{R},\mathbf{R'}} = \mathfrak{y}(\mathbf{R'} - \mathbf{R}, \cdot)|_{\mathbf{S}_{\mathbf{R}}} \colon \mathbf{S}_{\mathbf{R}} \to \mathbf{S}_{\mathbf{R'}}; \quad \mathbf{R} \leq \mathbf{R'}$$

satisfying

$$\iota_{R',R''} \circ \iota_{R,R'} = \iota_{R,R''}; \quad R \leq R' \leq R''.$$

Through the above embeddings we may regard

 $S_R \subset S_{R'}$ for $R \leq R'$ in a well-defined manner.

This naturally induces a manifold structure on the union

$$S = \bigcup_{R > r_0} S_R$$

Let σ be any local coordinates on S, and define $\sigma(x)$ for $x \in E$ by considering $x \in S_{r(x)} \subset S$. The spherical coordinates of $x \in E$ are

$$(\mathbf{r}, \sigma) = (\mathbf{r}(\mathbf{x}), \sigma(\mathbf{x})) \in (\mathbf{r}_0, \infty) \times S.$$

Note that in such coordinates the ends E are identified with an open subset of the half-infinite cylinder $(r_0, \infty) \times S$ whose rsections are monotonically increasing and exploiting S.

Abstract assumption on geometry: Growing ends

We introduce the tensor ℓ and the differential operator L:

$$\ell = g - \eta |\nabla r|^{-2} dr \otimes dr, \quad L = p_i^* \ell^{ij} p_j.$$

In the spherical coordinates ℓ may be identified with the pull-back of g to the r-spheres, and L with the spherical part of $-\Delta$.

Assumption (B) There exist $\sigma, \tau, C > 0$ such that $r\nabla^2 r \ge \frac{\sigma}{2} |\nabla r|^2 \ell - Cr^{-\tau} g$,

and for $\alpha = 0, 1$

$$\left| \nabla^{\alpha} |\nabla r|^2 \right| \leq Cr^{-\alpha(1+\tau)}, \quad |\nabla^{\alpha} \Delta r| \leq C, \quad |L\Delta r| \leq Cr^{-1-\tau}.$$

Note that $\nabla^2 r$ is the geometric Hessian of r.

On such $\left(M,g\right)$ we study the Schrödinger operator

$$\mathsf{H} = \mathsf{H}_0 + \mathsf{V}$$
 on $\mathcal{H} = \mathsf{L}^2 \big(\mathsf{M}, \sqrt{\det \mathfrak{g}} \mathsf{d} x \big),$

where H_0 is the free Schrödinger operator

$$H_0 = -\frac{1}{2}\Delta = \frac{1}{2}p_i^*g^{ij}p_j = -\frac{1}{2\sqrt{\det g}}p_ig^{ij}\sqrt{\det g}p_j; \quad p_j = -i\partial_j.$$

The operator Δ is called the Laplace–Beltrami operator.

Under the assumptions below we consider the Dirichlet selfadjoint realization.

Joint potential

Define the effective joint potential by

$$\mathbf{q} = \mathbf{V} + \frac{1}{8} \eta |\nabla \mathbf{r}|^{-2} \left[(\Delta \mathbf{r})^2 + 2 \nabla^{\mathbf{r}} \Delta \mathbf{r} \right]; \quad \nabla^{\mathbf{r}} = \mathbf{g}^{\mathbf{i}\mathbf{j}} (\nabla_{\mathbf{i}} \mathbf{r}) \nabla_{\mathbf{j}}.$$

Assumption (C) There exists a splitting by real-valued functions:

$$q = q_1 + q_2;$$
 $q_1 \in C^1(\mathcal{M}) \cap L^\infty(\mathcal{M}), q_2 \in L^\infty(\mathcal{M}),$

such that for some $\varepsilon, C > 0$

$$|\nabla q_1| \le Cr^{-1-\epsilon}, \quad |q_2| \le Cr^{-1-\epsilon}$$

Critical energy

Define the critical energy $\lambda_{H} \in \mathbb{R}$ by

$$\lambda_{H} = \limsup_{r \to \infty} q = \lim_{R \to \infty} \Big(\sup \big\{ q(x); \ r(x) \ge R \big\} \Big).$$

Remarks 1. Kumura ('97) proved that $[\lambda_H, \infty) \subset \sigma_{ess}(H)$.

2. If $f(r) = \exp(\kappa r)$ and $V_1 \equiv 0$, we have

$$\lambda_{H} = \frac{(d-1)^2 \kappa^2}{32}.$$

Recall for \mathbb{H}^d we have

$$f(r)=(sinh\,r)^2\sim exp(2r), \quad \sigma(H_0)=\Big[\frac{(d-1)^2}{8},\infty\Big).$$

Weighted spaces

Define the weighted spaces

$$\mathcal{H}^s = (H_0 + 1)^{-s/2} \mathcal{H}, \quad \mathcal{H}_s = r^{-s} \mathcal{H}; \quad s \in \mathbb{R}.$$

Set the dyadic annuli $\Omega_{\nu} = \{x \in M; 2^{\nu} \leq r(x) < 2^{\nu+1}\}$ for $\nu \geq 0$, and define the associated Besov spaces by

$$\begin{split} & \mathsf{B} = \Big\{ \psi \in \mathsf{L}^2_{\mathsf{loc}}(\mathsf{M}); \ \|\psi\|_{\mathsf{B}} = \sum_{\nu=0}^{\infty} 2^{\nu/2} \|\chi_{\Omega_{\nu}}\psi\|_{\mathcal{H}} < \infty \Big\}, \\ & \mathsf{B}^* = \Big\{ \psi \in \mathsf{L}^2_{\mathsf{loc}}(\mathsf{M}); \ \|\psi\|_{\mathsf{B}^*} = \sup_{\nu \geq 0} 2^{-\nu/2} \|\chi_{\Omega_{\nu}}\psi\|_{\mathcal{H}} < \infty \Big\}, \\ & \mathsf{B}^*_0 = \overline{C^\infty_0(\mathsf{M})} \text{ in } \mathsf{B}^*. \end{split}$$

Recall the nesting holding for any s > 1/2:

$$\mathcal{H}_{s} \subsetneq B \subsetneq \mathcal{H}_{1/2} \subsetneq \mathcal{H} \subsetneq \mathcal{H}_{-1/2} \subsetneq B_{0}^{*} \subsetneq B^{*} \subsetneq \mathcal{H}_{-s}.$$

Choose a non-negative $\chi\in C^\infty(\mathbb{R})$ such that

$$\chi(t) = \left\{ egin{array}{cc} 1 & \mbox{for } t \leq 1, \\ 0 & \mbox{for } t \geq 2, \end{array}
ight.$$

and define $\chi_N, \bar{\chi}_N \in C^\infty(M)$ for $N \geq 0$ by

$$\chi_{N} = \chi(r/2^{N}), \quad \bar{\chi}_{N} = 1 - \chi_{N}.$$

Let us introduce an auxiliary space:

$$\mathcal{N} = \big\{ \psi \in L^2_{\text{loc}}(M); \ \chi_N \psi \in \mathcal{H}^1 \text{ for any } N \geq 0 \big\}.$$

This is the space of the functions that locally satisfy the Dirichlet boundary condition, possibly with infinite \mathcal{H}^1 -norm. Recall:

$$\mathcal{D}(\mathsf{H}_0) = \big\{ \psi \in \mathcal{H}^1; \ \Delta \psi \in \mathcal{H} \text{ in the distributional sense} \big\}.$$

Boundedness outside the ends

Assumption (D) The embeddings

 $r^{-s}\mathcal{H}^1 \hookrightarrow \mathcal{H}$

are compact for any s > 0, or equivalently, the mapping

$$\chi_{\mathsf{N}}(\mathsf{H}_0+1)^{-1/2}\colon \mathcal{H} \to \mathcal{H}.$$

is compact for all for all $N \ge 0$.

Assumption (D) says the "boundedness" of $M \setminus E$.

Limiting absorption principle (LAP)

We set the resolvent $R(z) = (H - z)^{-1}$ for $z \in \mathbb{C} \setminus \mathbb{R}$.

Theorem For any $I \in (\lambda_H, \infty)$ set

$$I_{\pm} = \{ z = \lambda \pm i\Gamma \in \mathbb{C}; \ \lambda \in I, \ \Gamma \in (0,1) \}.$$

Then there exists C > 0 such that for any $\psi \in B$ and $z = \lambda \pm i\Gamma \in I_{\pm}$

$$\|\mathsf{R}(z)\psi\|_{\mathsf{B}^*} \leq C\|\psi\|_{\mathsf{B}}.$$

Moreover, R(z) extend for $z \in I \cup I_{\pm}$ continuously in the norm topology of $\mathcal{B}(\mathcal{H}_s, \mathcal{H}_{-s})$ for any s > 1/2, and the limits

$$R(\lambda \pm i0) := \lim_{I_{\pm} \ni z \to \lambda} R(z); \quad \lambda \in I,$$

belong to $\mathcal{B}(B, B^*)$.

An interpretation by forced oscillation

Let $z = \lambda + i\Gamma \in I_+$, and consider a system with forced oscillation: $u'(t) = -iHu(t) + ie^{-itz}f; \quad f \in B.$

Obviously we have an explicit solution:

$$\mathbf{u}(\mathbf{t}) = \mathrm{e}^{-\mathrm{i}\mathbf{t}z}\mathbf{R}(z)\mathbf{f} + \mathrm{e}^{-\mathrm{i}\mathbf{t}H}(\mathbf{u}_0 - \mathbf{R}(z)\mathbf{f}).$$

- In general, R(z)f is a response to the external force $e^{-itz}f$.
- On entering into the system wave escapes toward infinity. When the initial wave front gets far away, the amplitude of oscillator is larger. Hence R(z)f must have a certain decay.
- The smaller $\Gamma \approx 0$ gets, the milder the decay rate would be. $R(\lambda + i0)f$ would be a response to $e^{-it\lambda}f$ after a long time.
- If f is well localized, the waves escape in the spherical shape, and thus the natural target of $R(\lambda+i0)$ is $B^{\ast}.$

Radiation condition bound

Let us set

$$A = i[H_0, r] = \operatorname{Re} p^r = \frac{1}{2} (p^r + (p^r)^*), \quad a = \eta_{\lambda} |\nabla r| \sqrt{2(\lambda - q_1)},$$

where $p^{r} = (\nabla r)^{i} \nabla_{i}$ and $\eta_{\lambda} = \overline{\chi}(2r/r_{\lambda})$.

Theorem Let $I \subseteq (\lambda_H, \infty)$. Then there exist $\delta, C > 0$ such that for any $\psi \in r^{-\delta}B$ and $z \in I \cup I_{\pm}$

$$\left\| r^{\delta}(A \mp a) R(z) \psi \right\|_{B^*} \le C \| r^{\delta} \psi \|_{B^*}$$

Remark The radial operator $A \mp a$ eliminates the leading spherical wave of $R(\lambda \pm i0)$ at infinity.

Sommerfeld's uniqueness

Theorem Let $\lambda > \lambda_H$, $\phi \in L^2_{loc}(M)$ and $\psi \in B$. Then $\phi = R(\lambda \pm i0)\psi$ holds if and only if both of the following holds:

1.
$$\phi \in B^* \cap \mathcal{N}$$
 and $(A \mp \mathfrak{a})\phi \in B_0^*$.

2. $(H - \lambda)\phi = \psi$ in the distributional sense.

Remark Let ψ be given, and suppose ϕ solves $(H - \lambda)\phi = \psi$. Then $u(t) = e^{-it\lambda}\phi$ is a stationary solution to

$$u'(t) = -iHu(t) + ie^{-it\lambda}\psi.$$
 (\diamondsuit)

To any solution u(t) of (\diamondsuit) we can freely add a solution v(t) of v'(t) = -iHv(t) as background. But note such v(t) has source and sink only at inifinity. If u(t) is purely outgoing, the only source is the external force $ie^{-it\lambda}\psi$, and hence the uniquenss follows.

Commutator theory

We construct a commutator theory with respect to the conjugate operator: $A = i[H_0, r] = \operatorname{Re} p^r$, $\mathcal{H}^1 \subset \mathcal{D}(A)$.

Lemma As quadratic forms on $C_0^{\infty}(M)$,

$$\begin{aligned} [\mathsf{H},\mathsf{i}\mathsf{A}] &= \mathsf{p}^*_{\mathsf{i}}(\nabla^2 \mathsf{r})^{\mathsf{i}\mathsf{j}}\mathsf{p}_{\mathsf{j}} - (\nabla^\mathsf{r}\mathsf{q}_1) + \frac{1}{4}(\mathsf{L}\Delta\mathsf{r}) \\ &+ \frac{1}{8}(\nabla^\mathsf{r}\eta|\mathsf{d}\mathsf{r}|^{-2})(\Delta\mathsf{r})^2 - 2\operatorname{Im}(\mathsf{q}_2\mathsf{A}), \end{aligned}$$

and hence [H, iA] extends as a quadratic form on \mathcal{H}^1 . Moreover, for any $\psi \in \mathcal{D}(H)$

 $\langle \psi, [H, iA]\psi\rangle \leq \langle H\psi, iA\psi\rangle + \langle iA\psi, H\psi\rangle.$

Remark The missing positivity of $\nabla^2 r$ in the radial direction is recovered from Carleman's weight.