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Background

I will give a survey of results obtained in collaboration with
Horia Cornean (Aalborg) and Gheorghe Nenciu (Bucarest) during
the last ten years.
Two of the papers are

. A. Jensen, G. Nenciu: Uniqueness results for transient
dynamics of quantum systems. Contemp. Math. 447
(2007), 165–174.

. H. Cornean, A. Jensen, G. Nenciu, Metastable states when
the Fermi Golden Rule constant vanishes, Comm. Math.
Phys. 334 (2015), 1189–1218.
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The Problem

We consider a self-adjoint operator H on a Hilbert space H
such that H has an eigenvalue embedded in its continuous
spectrum.
We assume the eigenvalue is λ = 0, is non-degenerate, and has
normalized eigenfunction Ψ0.

Assumption

There exists a0 > 0 such that for all 0 < a < a0 with
Ja = (−a,a) we have

Ja ∩ σpp(H) = {0}, Ja ∩ σsc(H) = �, and Ja ∩ σac(H) ≠ �.
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The Problem
For the perturbation W we assume

Assumption

W is self-adjoint and bounded.

The family of operators is then

H(ε) = H + εW, ε > 0.

The problem to be solved is to describe what happens to the
embedded eigenvalue for sufficiently small ε.
I concentrate on the case where the eigenvalue is properly
embedded, Case 1 below.

Case 3

Case 2

Case 1

1
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Methods to solve the problem

There are several different ways of getting results on this
problem. Two of the major methods are:

. Spectral deformation methods.

. Time-dependent methods.

The spectral deformation methods have a long history. I will
not review it, but mention two methods.
Very important is the dilation-analytic method of
Aguilar-Balslev-Combes (1971) with significant extensions by
Simon (1972).
The general spectral deformation technique was given a
foundation by Hunziker (1996) and then many other authors
extended the results.
Main results include a unified perturbation theory for
embedded eigenvalues and resonances.
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Spectral deformation methods

General picture of spectral deformation. The are embedded
eigenvalues revealed as isolated eigenvalues by spectral
deformation. The are resonances revealed by spectral
deformation.

1
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Spectral deformation methods

The method used is to continue matrix elements of the
resolvent R(z) = (H − z)−1, viz. 〈ψ,R(z)ψ〉, from the upper
half plane Imz > 0 into a region in the lower half plane,
crossing the absolutely continuous spectrum. This
continuation should exist for a dense set of vectors ψ.

Embedded eigenvalues give rise to poles on the real axis in the
continued matrix elements. Poles of the continued matrix
element in the lower half plane are defined to be resonances.

To get a meaningful definition of a resonance one needs further
conditions. I will not enter into details on this point now.
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Spectral deformation methods

Discussion of spectral deformation methods.
Advantages:

. Covers many important quantum systems, including atoms
and molecules.

. Gives a consistent definition of a resonance and in many
cases makes available the full power of analytic
perturbation theory for both resonances and embedded
eigenvalues.

Disadvantage:

. Dilation analyticity (or other forms of analyticity) of
perturbations is a strong assumption.
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Time-dependent methods
My interest is in time-dependent methods and I will
concentrate on this aspect from this point.
The time-dependent methods are well adapted to a family

H(ε) = H + εW, ε > 0.

The results I present are for small ε. So it is an asymptotic
theory.

First some general results. The set-up is: H is self-adjoint on
H with an eigenvalue λ0 and eigenprojection P0 assumed to be
of finite rank. We assume that we have constructed an effective
Hamiltonian h(ε) on P0H .

We assume that we have

P0e−itH(ε)P0 = e−ith(ε)P0 + δ(ε, t) (1)

with
sup
t≥0
‖δ(ε, t)‖ ≤ Cεp, p > 0. (2)
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Time-dependent methods

This framework is general enough to cover both the case when
the eigenvalue remains (e.g. if λ0 is isolated) and the case
where it becomes a resonance.
Thus h(ε) describes the short time behaviour of the evolution
in the subspace P0H . If h(ε) has an asymptotic expansion as
ε → 0 we have a uniqueness result.

Theorem

(i) Assume that h1(ε) and h2(ε) both satisfy (1) and (2) with the
same p > 0. Assume that for some ε0 > 0 h1(ε) satisfies

h1(ε) = λ0P0 + εh1
1 + εf 1(ε), 0 ≤ ε < ε0,

such that h1
1 = (h1

1)∗, Imf 1(ε) ≤ 0, and f 1(ε) = o(1). Then for
ε0 sufficiently small we have

‖h1(ε)− h2(ε)‖ ≤ Cεp+1, 0 ≤ ε < ε0.



Introduction Methods Time-dependent methods High order R-S Eigenvalue at threshold

Time-dependent methods

Continuation:

Theorem

(ii) Assume that h1(ε) and h2(ε) both satisfy (1) and (2) with
p = 2. Assume that for some ε0 > 0 h1(ε) satisfies

h1(ε) = λ0P0 + εh1 + ε2h2 + o(ε2), 0 ≤ ε < ε0,

such that h1 = h∗1 and Imh1(ε) ≤ 0. Then there exists a family
of invertible operators U(ε) on P0H with U(ε) = P0 +O(ε2) such
that for sufficiently small ε0 we have

‖h1(ε)−U(ε)h2(ε)U(ε)−1‖ ≤ Cε4, 0 ≤ ε < ε0.

Reference:
Rank P0 = 1: Cattaneo-Graf-Hunziker 2006
General case: J.-Nenciu 2007.
If Imh2 ≠ 0 we speak of resonance behaviour.
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Time-dependent methods

The quantity of interest for a simple eigenvalue is the
transition probability amplitude

A0(ε, t) = 〈Ψ0, e−itH(ε)Ψ0〉.

Let us consider the case when λ0 = 0 is an isolated eigenvalue.
and take h(ε) = λ(ε)P0, with λ(ε) from eigenvalue perturbation
theory. Then

|A0(ε, t)− e−itλ(ε)| ≤ Cε2.
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Time-dependent methods

In general, if we restrict to P0H for the effective Hamiltonian,
then we can do no better. This holds even in the case of an
embedded eigenvalue, if an eigenvalue moves but persists
under perturbation.

Proposition

Assume that for sufficiently small ε there exists exactly one
eigenvalue λ(ε) (λ(ε)→ 0 for ε → 0), with eigenfunction Ψ(ε).
Assume that there exists a Ψ1 ≠ 0 such that
‖Ψ(ε)− Ψ0 − εΨ1‖ = o(ε) and 〈Ψ0,Ψ1〉 = 0. Then there exists
C > 0 such that

sup
t≥0
‖A0(ε, t)− e−itλ(ε)‖ ≥ Cε2.
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Time-dependent methods
Results on embedded eigenvalues

We now state the first result on perturbation of embedded
eigenvalues. This requires some preparation.

Assumption

Assume there exists a Hilbert space K and bounded operators
A ∈ B(H ,K) and D ∈ B(K) such that W = A∗DA. Here D = D∗
and D2 = I is assumed.

Let Q0 = I − P0. Define

G(z) = AQ0(H − z)−1Q0A∗,

and

F0(z, ε) = ε〈Ψ0,WΨ0〉 − z
− ε2〈Ψ0, A∗D{G(z)− εG(z)[D + εG(z)]−1G(z)}DAΨ0〉.
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Time-dependent methods
Results on embedded eigenvalues

Using the Stone formula and the Schur-Livsic-Feshbach-Grushin
(SLFG) formula we obtain our starting point:

A0(ε, t) = lim
η↘0

1
2πi

∫
R
dx e−ixt

( 1
F0(x + iη, ε) −

1
F0(x − iη, ε)

)
.

We need conditions on G(z). Let

Da = {z = x + iη ∈ C |x ∈ Ja = (−a,a), 0 < η < 1}.

For 0 < θ < 1 we use the Hölder space C1,θ(Da,B(K)).

Assumption

For some 0 < θ < 1 we have G(·) ∈ C1,θ(Da,B(K)).

This assumption can be verified using Mourre theory,
Agmon-Herbst-Skibsted 1989.
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Time-dependent methods
Results on embedded eigenvalues

Theorem (J.-Nenciu 2006)

Under the above Assumptions and 0 < ε < ε0 taken sufficiently
small we have F0(·, ε) ∈ C1,θ(Da;C).
In particular, this function has an extension to the real axis with
the same smoothness properties
F0(x, ε) := limη↘0 F0(x + iη, ε) ∈ C1,θ(Ja;C).
Let R0(x, ε) and I0(x, ε) be the real and imaginary part of
F0(x, ε), respectively, viz. F0(x, ε) =: R0(x, ε)+ iI0(x, ε).
For a fixed ε sufficiently small the equation R0(x, ε) = 0 has a
unique solution x0(ε) in Ja/2, which obeys the estimate
|x0(ε)| Ü ε. Define λ0(ε) := x0(ε)+ iI0(x0(ε), ε). Then for
sufficiently small ε we have:

|A0(ε, t)− e−itλ0(ε)| Ü ε2. (3)
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Time-dependent methods
Results on embedded eigenvalues

We call λ0(ε) the resonance position. The uniqueness results
show that it is asymptotically well defined.
Comments

. The estimate (3) has exactly the same form as for the case
of eigenvalues, with the perturbed eigenvalue replaced by
the ‘resonance position’, λ0(ε). In particular, the
Proposition above shows that in general, the error in (3)
cannot be made smaller.

. The computation of I0(x0(ε), ε), using |x0(ε)| Ü ε, leads to
I0(x0(ε), ε) = −ε2ΓFGR +O(ε3), with

ΓFGR := π〈Ψ0,Wδ(Q0HQ0)WΨ0〉,

which coincides with the result given by the Dirac
computation. Here
Wδ(Q0HQ0)W = limη↘0 ImW(Q0HQ0 − iη)−1W .
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Time-dependent methods
Results on embedded eigenvalues

. Note that no condition ΓFGR > 0 or I0(x0(ε), ε) < 0 is
required for this result, in contrast to other authors. Orth
1990 has proved that I0(x0(ε), ε) = 0 if and only if x0(ε) is
an eigenvalue.

. In the analytic case, the resonance position is spectrally
defined as a pole of the analytically continued resolvent
and coincides with the zero zr = xr + iyr of the analytic
continuation of F0(z, ε). In our case its definition also
involves Ψ0 since it is given via the limit values of F0(z, ε).
Comparing the decay law given by the Theorem with the
one given by Hunziker 1990 in the analytic case, one can
show that |λ0(ε)− zr | Ü ε2|yr |, i.e. up to some order in ε,
λ0(ε) is indeed a spectral object of the family H(ε), due to
the uniqueness result.
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Time-dependent methods
Results on embedded eigenvalues

Can one improve the above results with respect to the error
term by replacing Ψ0 by another choice?
In the dilation analytic framework Hunziker 1990 proved that if
the eigenvalue λ0(= 0) initially is isolated and the formal
Rayleigh-Schrödinger (R-S) expansion for the perturbed
eigenfunction is well defined up to order εN then taking as the
resonance function the truncated R-S series one can prove that
both Imλ(ε) and the error term are of order ε2N+2. The result
applies to the Stark Hamiltonian to any order N.

We want to obtain similar results in the framework of finite
regularity instead of analyticity.

Under the assumption that ΓFGR = 0 it turns out that one can
deal with the case N = 1 in the R-S expansion.
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Time-dependent methods
Results on embedded eigenvalues

The detailed construction of a better resonance function is
rather technical. I will not give the details. The result is a
family Ψ1(ε). We define

A1(ε, t) = 〈Ψ1(ε), e−itH(ε)Ψ1(ε)〉

and we define F1(z, ε) in a manner analogous to F0(z, ε).
The required assumptions are

Assumption

(i) For some 0 < θ < 1 we have G(·) ∈ C1,θ(Da,B(K)).
(ii) We have ΓFGR = 0.

Under these assumptions we have for the boundary values

F1(x, ε) := lim
η↘0
F1(x + iη, ε) ∈ C1,θ(Ja/2;C)
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Time-dependent methods
Results on embedded eigenvalues

Theorem (Cornean-J.-Nenciu 2015)

Under the above assumptions we have the following results. Let
F1(x, ε) =: R1(x, ε)+ iI1(x, ε). For a fixed ε the equation
R1(x, ε) = 0 has a unique solution x1(ε) in Ja/2, with |x1(ε)| Ü ε
. Define

λ1(ε) := x1(ε)+ iI1(x1(ε), ε).

Then for sufficiently small ε we have

|A1(ε, t)− e−itλ1(ε)| Ü ε4. (4)
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Time-dependent methods
High order R-S

One obvious question is whether we can continue the
construction of better ΨN(ε) in the finite regularity case for
perturbation of a simple embedded eigenvalue. Looking at the
formula in Kato’s book it looks hopeless with the present
approach.
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Time-dependent methods
Eigenvalue at threshold

We recall the illustration

Case 3

Case 2

Case 1

1

A question we have also dealt with is what happens in Case 2
above.
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Case 2 our results I

I will briefly review some of the results obtained with G. Nenciu
on this problem some time ago.
Resolvent smoothness is replaced by asymptotic expansion of
the resolvent around threshold. Results in odd dimensions.

Definition of zero resonance for Schrödinger operator.

H = −∆+ V on L2(Rd), V(x) real-valued, |V(x)| ≤ C|x|−β,
β� 2. Assume (−∆+ V)Ψ = 0. Ψ is a zero resonance function,
if

. d = 1: Ψ(x) = c0 + f , c0 ≠ 0, f ∈ L2(R1).

. d = 3: Ψ(x) = c0

|x| + f , c0 ≠ 0, f ∈ L2(R3).

. d ≥ 5: No zero resonance function exists.
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Case 2 our results I

H Schrödinger operator on H . Assumptions are

. There exists a > 0, such that (−a,0) ⊂ ρ(H) and
[0, a] ⊂ σess(H)

. Assume that zero is a non-degenerate eigenvalue of H:
HΨ0 = 0, with ‖Ψ0‖ = 1, and there are no other eigenvalues
in [0, a]. Let P0 = |Ψ0〉〈Ψ0| be the orthogonal projection
onto the one-dimensional eigenspace.

. Assume 〈Ψ0,WΨ0〉 = b > 0.
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Case 2 our results I

. For Reκ ≥ 0 and z ∈ C \ [0,∞) we let κ = −i√z, z = −κ2.
There exist N0 ∈ N and δ0 > 0, such that for
κ ∈ {κ ∈ C |0 < |κ| < δ0,Reκ ≥ 0} we have (recall
G(z) = AQ0(H − z)−1Q0A∗)

G(z) =
N0∑
j=−1

G̃jκj + κN0+1G̃N0(κ),

where

G̃j are bounded and self-adjoint,

G̃−1 is of finite rank and self-adjoint,

G̃N0(κ) is uniformly bounded in κ.
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Case 2 our results I

. From the expansion we get

〈Ψ0, A∗DG(z)DAΨ0〉 =
N0∑
j=−1

gjκj + κN0+1gN0(κ),

where

gj = 〈Ψ0, A∗DG̃jDAΨ0〉,
gN0(κ) = 〈Ψ0, A∗DG̃N0(κ)DAΨ0〉.

Notice that we have gj = gj.

. There exists an odd integer, −1 ≤ ν ≤ N0, such that gν ≠ 0,
G̃j = 0 for j = −1,1, . . . , ν − 2.
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Case 2 our results I

Theorem

Let the above assumptions hold. Then for sufficiently small ε > 0
we have

|〈Ψ0, e−itH(ε)Ψ0〉 − e−it(x0(ε)−iΓ(ε))| ≤ Cεp(ν).

Here p(ν) =min{2, (2+ ν)/2}, and

Γ(ε) = −iν−1gνbν/2ε2+(ν/2)(1+O(ε)),
x0(ε) = bε(1+O(ε)).

Recall that ν = −1,1,3,5, . . ..


	Introduction
	Methods
	Time-dependent methods
	High order R-S
	Eigenvalue at threshold

