A Feynman path integral-like method of quantization on Riemannian manifolds and related problems

Yoshihisa Miyanishi

The graduate school of Engineering and Science Osaka University

March 8, 2015

§1 Introduction. Feynman path integrals (heuristics)

§1.1 Classical Mechanics

§1 Introduction. Feynman path integrals (heuristics)

 $\S1.1$ Classical Mechanics

(Hamiltonian formulation)

$$\begin{cases} H(x,p) = \frac{1}{2} |p|^2 + V(x) \in C^{\infty}(\mathbb{R}^n_x \times \mathbb{R}^n_p) : \text{Hamiltonian} \\ \frac{dx}{dt} = \frac{\partial H}{\partial p}, \ \frac{dp}{dt} = -\frac{\partial H}{\partial x} : \text{Hamiltonian flow} \end{cases}$$

 $\S1.1$ Classical Mechanics

(Hamiltonian formulation)

$$\begin{cases} H(x,p) = \frac{1}{2}|p|^2 + V(x) \in C^{\infty}(\mathbf{R}^n_x \times \mathbf{R}^n_p) : \text{Hamiltonian} \\ \frac{dx}{dt} = \frac{\partial H}{\partial p}, \ \frac{dp}{dt} = -\frac{\partial H}{\partial x} : \text{Hamiltonian flow} \end{cases}$$

Legendre transform gives

(Lagrangian formulation)

For
$$X(au) \in \mathbf{R}^n$$
 and $\dot{X} = rac{dX}{d au}$
 $\begin{cases} L(X, \dot{X}) = rac{1}{2}\dot{X}^2 - V(x) : Lagrangian \\ rac{d}{d au}rac{\partial L}{\partial \dot{X}} - rac{\partial L}{\partial X} = 0 : Euler-Lagrange eq \end{cases}$

§1 Introduction Feynman path integrals (heuristics)

$\S1$ Introduction Feynman path integrals (heuristics)

Action integral $S(X) \ (t,x) = \int_s^t rac{1}{2} L(X,\dot{X}) d au$

R.Feynman proposed the quantization is given by $\int_{\Omega} e^{\frac{i}{\hbar}S(0,t,x,y)} f(y) \mathcal{D}[X]$ $= e^{\frac{-it}{\hbar}\hat{H}} f(x)$

 $egin{aligned} \Omega & ext{is the path space} \\ & ext{connecting } (0,y) ext{ and } (t,x). \\ \mathcal{D}[X] ext{ is the Lebesgue-like} \\ & ext{measure on } \Omega \end{aligned}$

§1 Introduction Feynman path integrals (heuristics)

 $egin{aligned} & ext{Action integral} \ & S(X) \ & (t,x) \ & = \int_s^t rac{1}{2} L(X,\dot{X}) d au \end{aligned}$

R.Feynman proposed the quantization is given by $\int_{\Omega} e^{\frac{i}{\hbar}S(0,t,x,y)} f(y) \mathcal{D}[X]$ $= e^{\frac{-it}{\hbar}\hat{H}} f(x)$

 $egin{aligned} \Omega & ext{is the path space} \\ & ext{connecting } (0,y) ext{ and } (t,x). \\ \mathcal{D}[X] ext{ is the Lebesgue-like} \\ & ext{measure on } \Omega \end{aligned}$

Remark. We can not construct Feynman path measure (Cameron)

An alternative method of F.P.I. (rough sketch)

 $H(x,p) \in C^{\infty}(T^*\mathbf{R}^n)$

An alternative method of F.P.I. (rough sketch)

 $H(x,p)\in C^\infty(T^*\mathbf{R}^n)$

Strong Assumption (Time locally unique path condition)

For small t-s and for $x,y\in {f R}^n$,

An alternative method of F.P.I. (rough sketch)

 $H(x,p) \in C^{\infty}(T^*\mathbf{R}^n)$

Strong Assumption (Time locally unique path condition)

For small
$$t-s$$
 and for $x,y \in \mathbb{R}^n$,
 ${}^{\exists 1}ar{X}(au)$ s.t. $egin{cases} ar{X}(au) ext{ satisfies E-L eq.} \ ar{X}(s) = x ext{ and } ar{X}(t) = y \end{cases}$

An alternative method of F.P.I. (rough sketch)

 $H(x,p) \in C^{\infty}(T^*\mathbf{R}^n)$

Strong Assumption (Time locally unique path condition)

For small
$$t-s$$
 and for $x,y\in {f R}^n$, $^{\exists 1}ar{X}(au)$ s.t. $egin{cases} ar{X}(au) \ ar{X}(s) = x \ ar{X}(t) = y \end{cases}$

 $S(s,t,x,y) = \int_s^t L(ar{X}(au),ar{X}(au))$: phase function defined by H.

An alternative method of F.P.I. (rough sketch)

 $H(x,p) \in C^{\infty}(T^*\mathbf{R}^n)$

Strong Assumption (Time locally unique path condition)

For small
$$t-s$$
 and for $x,y\in {
m R}^n$, $\exists^1ar{X}(au)$ s.t. $egin{cases} ar{X}(au) ext{ satisfies E-L eq.} \ ar{X}(s)=x ext{ and }ar{X}(t)=y \end{cases}$

 $S(s,t,x,y) = \int_s^t L(ar{X}(au),ar{X}(au))$: phase function defined by H. $D(s,t,x,y) = \det\left(\partial^2 S(s,t,x,y)/\partial x \partial y\right)$: van-Vleck determinant

An alternative method of F.P.I. (rough sketch)

 $H(x,p)\in C^\infty(T^*\mathbf{R}^n)$

Strong Assumption (Time locally unique path condition)

For small
$$t-s$$
 and for $x,y\in {
m R}^n$, ${}^{\exists 1}ar{X}(au)$ s.t. $egin{cases} ar{X}(au) ext{ satisfies E-L eq.} \ ar{X}(s)=x ext{ and }ar{X}(t)=y \end{cases}$

 $egin{aligned} S(s,t,x,y) &= \int_s^t L(ar{X}(au),ar{X}(au)) : ext{ phase function defined by } H. \ D(s,t,x,y) &= \det\left(\partial^2 S(s,t,x,y)/\partial x \partial y
ight) : ext{ van-Vleck determinant } \Delta: 0 &= t_0 < t_1 < \cdots < t_{n-1} < t_n = t. \end{aligned}$

An alternative method of F.P.I. (rough sketch)

 $H(x,p)\in C^\infty(T^*\mathbf{R}^n)$

Strong Assumption (Time locally unique path condition)

For small
$$t-s$$
 and for $x,y\in {
m R}^n$, $\exists^1ar{X}(au)$ s.t. $egin{cases} ar{X}(au) \ ar{X}(s) = x \ ar{X}(t) = y \end{cases}$

 $egin{aligned} S(s,t,x,y) &= \int_s^t L(ar{X}(au),ar{X}(au)) : ext{ phase function defined by } H. \ D(s,t,x,y) &= \det\left(\partial^2 S(s,t,x,y)/\partial x \partial y
ight) : ext{ van-Vleck determinant } \Delta: 0 &= t_0 < t_1 < \cdots < t_{n-1} < t_n = t. \ U(t-s)f(x) &\equiv \int\limits_{\mathrm{R}^n} (2\pi i)^{-n/2} D(s,t,x,y) \exp\{rac{i}{h}S(s,t,x,y)\}f(y)dy \end{aligned}$

An alternative method of F.P.I. (rough sketch)

 $H(x,p)\in C^\infty(T^*\mathbf{R}^n)$

Strong Assumption (Time locally unique path condition)

For small
$$t-s$$
 and for $x,y\in {
m R}^n$, $\exists^1ar{X}(au)$ s.t. $egin{cases} ar{X}(au) \ ar{X}(s)=x \ ar{X}(t)=y \ ar{X}(t)=y \end{cases}$

 $egin{aligned} S(s,t,x,y) &= \int_s^t L(ar{X}(au),ar{X}(au)): ext{ phase function defined by } H. \ D(s,t,x,y) &= \det\left(\partial^2 S(s,t,x,y)/\partial x \partial y
ight): ext{ van-Vleck determinant } \Delta: 0 &= t_0 < t_1 < \cdots < t_{n-1} < t_n = t. \ U(t-s)f(x) &\equiv \int\limits_{\mathrm{R}^n} (2\pi i)^{-n/2} D(s,t,x,y) \exp\{rac{i}{h}S(s,t,x,y)\}f(y)dy \ &\lim_{|\Delta| o 0} \prod\limits_i [U(t_i-t_{i-1})] = \exp\left(rac{-it}{h}\hat{H}
ight) \end{aligned}$

An alternative method of F.P.I. (rough sketch)

 $H(x,p)\in C^\infty(T^*\mathbf{R}^n)$

Strong Assumption (Time locally unique path condition)

For small
$$t-s$$
 and for $x,y\in {f R}^n$, $\exists^1ar X(au)$ s.t. $egin{cases} ar X(au) \ ar X(s)=x \ ar X(t)=y \end{cases}$

 $egin{aligned} S(s,t,x,y) &= \int_s^t L(ar{X}(au),ar{X}(au)) : ext{ phase function defined by } H. \ D(s,t,x,y) &= \det \left(\partial^2 S(s,t,x,y) / \partial x \partial y
ight) : ext{ van-Vleck determinant} \ \Delta: 0 &= t_0 < t_1 < \cdots < t_{n-1} < t_n = t. \ U(t-s)f(x) &\equiv \int\limits_{\mathbb{R}^n} (2\pi i)^{-n/2} D(s,t,x,y) \exp\{rac{i}{h}S(s,t,x,y)\}f(y)dy \ &\lim_{|\Delta| o 0} \prod\limits_i [U(t_i-t_{i-1})] = \exp\left(rac{-it}{h}\hat{H}
ight) \end{aligned}$

Problem1.

An alternative method of F.P.I. (rough sketch)

 $H(x,p)\in C^\infty(T^*\mathbf{R}^n)$

Strong Assumption (Time locally unique path condition)

For small
$$t-s$$
 and for $x,y\in {
m R}^n$, ${}^{\exists 1}ar{X}(au)$ s.t. $egin{cases} ar{X}(au) ext{ satisfies E-L eq.} \ ar{X}(s)=x ext{ and }ar{X}(t)=y \end{cases}$

$\S.2$ Time slicing approximations (Summary. Euclidean case)

§.2 Time slicing approximations (Summary. Euclidean case)

§.2 Time slicing approximations (Summary. Euclidean case)

 $S(s,t,x,y)\equiv\int_{s}^{t}L(ar{X},ar{X})d au$ (t,x) The action ~S is integrals over piecewise classical paths

By using the density of paths a

$\S.2$ Time slicing approximations (Summary. Euclidean case)

 $S(s,t,x,y)\equiv\int_{s}^{t}L(ar{X},ar{X})d au$ (t,x) The action ~S is integrals over piecewise classical paths

By using the density of paths a $\int_{M} a(t_j, t_{j+1}, x_j, x_{j+1})$ $e^{\frac{i}{h}S(t_j, t_{j+1}, x_j, x_{j+1})} f(x_j) dx_j$ $= U(t_{j+1} - t_j) f(x_{j+1})$ (small time evolution op.)

§.2 Time slicing approximations (Summary. Euclidean case)

 $\text{Assumption} \quad V(x) \in C^\infty(\mathbf{R}^n), \ |\partial^\alpha V(x)| < C_\alpha \ \text{for} \ |\alpha| \geqq 2.$

Assumption $V(x) \in C^{\infty}(\mathbf{R}^n)$, $|\partial^{lpha}V(x)| < C_{lpha}$ for $|lpha| \geq 2$.

1. $S(t,x,y) = \int_0^t [\frac{1}{2}\dot{\bar{X}}(\tau)^2 - V(\bar{X}(\tau))]d\tau$

(The classical path connecting (0,y) and (t,x) is time locally unique.)

Assumption $V(x) \in C^{\infty}(\mathbf{R}^n)$, $|\partial^{lpha}V(x)| < C_{lpha}$ for $|lpha| \geqq 2$.

1. $S(t,x,y) = \int_0^t [\frac{1}{2}\dot{\bar{X}}(\tau)^2 - V(\bar{X}(\tau))]d\tau$

(The classical path connecting (0,y) and (t,x) is time locally unique.)

2. $D(t, x, y) = \det(\partial^2 S(t, x, y) / \partial x \partial y)$ (van Vleck determinant) $a(t, x, y) = (2\pi i h)^{-n/2} D(t, x, y)^{1/2}.$

Assumption $V(x) \in C^{\infty}(\mathbf{R}^n)$, $|\partial^{lpha}V(x)| < C_{lpha}$ for $|lpha| \geqq 2$.

1. $S(t,x,y) = \int_0^t [\frac{1}{2}\dot{\bar{X}}(\tau)^2 - V(\bar{X}(\tau))]d\tau$

(The classical path connecting (0,y) and (t,x) is time locally unique.)

- 2. $D(t, x, y) = \det(\partial^2 S(t, x, y) / \partial x \partial y)$ (van Vleck determinant) $a(t, x, y) = (2\pi i h)^{-n/2} D(t, x, y)^{1/2}$.
- 3. $U(t)f(x) \equiv \int_{\mathbf{R}^n} \frac{a(t,x,y)e^{\frac{i}{h}S(t,x,y)}f(y)dy}{dt}$

Assumption $V(x) \in C^{\infty}(\mathbf{R}^n)$, $|\partial^{lpha}V(x)| < C_{lpha}$ for $|lpha| \geqq 2$.

1. $S(t,x,y) = \int_0^t [\frac{1}{2}\dot{\bar{X}}(\tau)^2 - V(\bar{X}(\tau))]d\tau$

(The classical path connecting (0,y) and (t,x) is time locally unique.)

- 2. $D(t,x,y) = \det(\partial^2 S(t,x,y)/\partial x \partial y)$ (van Vleck determinant) $a(t,x,y) = (2\pi i h)^{-n/2} D(t,x,y)^{1/2}.$
- 3. $U(t)f(x)\equiv\int_{\mathbf{R}^n} a(t,x,y)e^{rac{i}{\hbar}S(t,x,y)}f(y)dy.$

Theorem (D. Fujiwara)

For t
eq 0,

$$\lim_{|\Delta|\to 0} \prod_{i} [U(t_i - t_{i-1})] = \exp \frac{-it}{h} [-\frac{h^2}{2} \Delta + V(x)] \quad (\text{Operator norm})$$

Other different alternative definitions of Feynman path integrals

Other alternative methods for path integrals.

- 1. Trotter Kato forumulas.
- 2. Analytic continuation of Wiener measure by using complex Planch constant h, m or t
- 3. An improper integral on Hilbert spaces. (K.Ito, Albeverio)
- 4. Non-standard analysis (*measure of the Dirac operator and take the limit $c \to \infty$

etc.

Other different alternative definitions of Feynman path integrals

Other alternative methods for path integrals.

- 1. Trotter Kato forumulas.
- 2. Analytic continuation of Wiener measure by using complex Planch constant h, m or t
- 3. An improper integral on Hilbert spaces. (K.Ito, Albeverio)
- 4. Non-standard analysis (*measure of the Dirac operator and take the limit $c \to \infty$

etc.

Here, we employ the time slicing products. to derive the curvature from action integrals.

Settings.

Settings.

1. (M,g) : n-dim C^∞ oriented complete Riemannian manifold

Settings.

- 1. (M,g) : n-dim C^∞ oriented complete Riemannian manifold
- 2. $H(x,p) = \frac{1}{2}|p|^2$

Settings.

1. (M,g) : n-dim C^∞ oriented complete Riemannian manifold

2.
$$H(x,p) = \frac{1}{2}|p|^2 = \frac{1}{2}g^{ij}p_ip_j$$
 (on local charts)

Settings.

- 1. (M,g) : n-dim C^∞ oriented complete Riemannian manifold
- 2. $H(x,p) = rac{1}{2} |p|^2 = rac{1}{2} g^{ij} p_i p_j$ (on local charts)

Hamiltonian gives the geodesic flow on $T^{st}M$ (various speed)

Settings.

- 1. (M,g) : n-dim C^∞ oriented complete Riemannian manifold
- 2. $H(x,p)=rac{1}{2}|p|^2=rac{1}{2}g^{ij}p_ip_j$ (on local charts)

Hamiltonian gives the geodesic flow on $T^{st}M$ (various speed)

3. d = d(x, y) (geodesic distance)

Settings.

- 1. (M,g) : n-dim C^∞ oriented complete Riemannian manifold
- 2. $H(x,p)=rac{1}{2}|p|^2=rac{1}{2}g^{ij}p_ip_j$ (on local charts)

Hamiltonian gives the geodesic flow on $T^{st}M$ (various speed)

- 3. d = d(x, y) (geodesic distance)
- 4. $S(t,x,y) = \int_0^t \frac{1}{2} g_{x(t)}(\dot{x}(t),\dot{x}(t)) \ dt = \frac{|d(x,y)|^2}{2t}$

(The action integral over the shortest path)
Settings.

- 1. (M,g) : n-dim C^∞ oriented complete Riemannian manifold
- 2. $H(x,p) = rac{1}{2} |p|^2 = rac{1}{2} g^{ij} p_i p_j$ (on local charts)

Hamiltonian gives the geodesic flow on $T^{st}M$ (various speed)

- 3. d = d(x, y) (geodesic distance)
- 4. $S(t,x,y) = \int_0^t \frac{1}{2} g_{x(t)}(\dot{x}(t),\dot{x}(t)) \ dt = rac{|d(x,y)|^2}{2t}$

(The action integral over the shortest path)

5. van Vleck determinants on manifolds

 $egin{aligned} D(t,x,y) &= G^{-1/2}(x)G^{-1/2}(y)\det(\partial^2 S(t,x,y)/\partial x\partial y)\ \chi(d(x,y)) &: ext{ cut off}\ (ext{bump ft. with compact support contained in } d(x,y) < ext{injrad}(M) \)\ a(t,x,y) &= \chi(d(x,y))D(t,x,y)^{1/2} \end{aligned}$

Settings.

- 1. (M,g) : n-dim C^∞ oriented complete Riemannian manifold
- 2. $H(x,p) = rac{1}{2} |p|^2 = rac{1}{2} g^{ij} p_i p_j$ (on local charts)

Hamiltonian gives the geodesic flow on $T^{st}M$ (various speed)

- 3. d = d(x, y) (geodesic distance)
- 4. $S(t,x,y) = \int_0^t \frac{1}{2} g_{x(t)}(\dot{x}(t),\dot{x}(t)) \ dt = rac{|d(x,y)|^2}{2t}$

(The action integral over the shortest path)

5. van Vleck determinants on manifolds

 $egin{aligned} D(t,x,y) &= G^{-1/2}(x)G^{-1/2}(y)\det(\partial^2 S(t,x,y)/\partial x\partial y)\ \chi(d(x,y)) &: ext{ cut off}\ (ext{bump ft. with compact support contained in } d(x,y) < ext{injrad}(M) \)\ a(t,x,y) &= \chi(d(x,y))D(t,x,y)^{1/2} \end{aligned}$

Definition (Shortest path approximations on manifolds)

 $U(t)f(x)\equiv (2\pi i)^{-n/2}\int_M a(t,x,y)e^{iS(t,\ x,\ y)}f(y)\ dy$

(Remark. For the simplicity, let h = 1.)

Definition (Shortest path approximations on manifolds)

 $U(t)f(x)\equiv (2\pi i)^{-n/2}\int_M a(t,x,y)e^{iS(t,\ x,\ y)}f(y)\ dy$

(Remark. For the simplicity, let h = 1.)

We don't consider $d(x,y) \ge injrad(M)$

Definition (Shortest path approximations on manifolds)

 $U(t)f(x)\equiv (2\pi i)^{-n/2}\int_M a(t,x,y)e^{iS(t,\ x,\ y)}f(y)\ dy$

(Remark. For the simplicity, let h = 1.)

We don't consider $d(x,y) \ge {\sf injrad}(M)$

Problem. $\lim_{N o \infty} [U(t/N)]^N f(x) = \exp(-it\hat{H})f(x)$?

What is the \hat{H} ?

$\S4$ Asymptotically conic non-trapping scattering case

Assumtions for scattering case

§4 Asymptotically conic non-trapping scattering case

Assumtions for scattering case

(A1) ∂M is n-1 dimensional smooth Riemmanian manifold,

$\S4$ Asymptotically conic non-trapping scattering case

Assumtions for scattering case

(A1) ∂M is n-1 dimensional smooth Riemmanian manifold,

with metric $h=h_{jk}dy^idy^k$

$\S4$ Asymptotically conic non-trapping scattering case

Assumtions for scattering case

(A1) ∂M is n-1 dimensional smooth Riemmanian manifold,

with metric $h = h_{jk} dy^i dy^k$

(A2) \exists compact set $K \subset M$ s.t.

§4 Asymptotically conic non-trapping scattering case

Assumtions for scattering case (A1) ∂M is n - 1 dimensional smooth Riemmanian manifold, with metric $h = h_{jk} dy^i dy^k$ (A2) \exists compact set $K \subset M$ s.t. $g = \frac{dx^2}{x^4} + \frac{h_{jk}(x,y)dy^i dy^k}{x^2} = dr^2 + r^2 h_{jk}(\frac{1}{r}, y)dy^j dy^k$ on the asymptotic region $M \setminus K = (0, \epsilon) \times \partial M = \{(x, y) : 0 < x < \epsilon, y \in \partial M\}$

§4 Asymptotically conic non-trapping scattering case

Assumtions for scattering case (A1) ∂M is n - 1 dimensional smooth Riemmanian manifold, with metric $h = h_{jk} dy^i dy^k$ (A2) \exists compact set $K \subset M$ s.t. $g = \frac{dx^2}{x^4} + \frac{h_{jk}(x,y)dy^idy^k}{x^2} = dr^2 + r^2h_{jk}(\frac{1}{r}, y)dy^jdy^k$ on the asymptotic region $M \setminus K = (0, \epsilon) \times \partial M = \{(x, y) : 0 < x < \epsilon, y \in \partial M\}$

Example(The radial compactification map)

(A3)(Non-trapping) For all compact set $K \subset int(M)$, $\exists T > 0$ s.t.

(A3)(Non-trapping) For all compact set $K \subset int(M)$, $\exists T > 0$ s.t. $\pi \{ \exp tX_H(x, p) \} \cap K = \emptyset \text{ for } \forall |t| > T$ (i.e. Every geodesic $\gamma : \mathbb{R} \to M$ reaches ∂M at $\pm \infty$.) (A4) The scalar curvature R(x) on M is bounded.

(A3)(Non-trapping) For all compact set $K \subset \operatorname{int}(M)$, $\exists T > 0$ s.t. $\pi \{ \exp t X_H(x,p) \} \cap K = \emptyset \quad \text{for } \forall |t| > T$

(i.e. Every geodesic $\gamma: \mathbf{R}
ightarrow M$ reaches ∂M at $\pm \infty$.)

(A4) The scalar curvature R(x) on M is bounded.

Lemma (The action integral S(t, x, y) is well defined locally) Under (A1) \sim (A4), injrad(M) > 0.

(A3)(Non-trapping) For all compact set $K \subset \operatorname{int}(M)$, $\exists T > 0$ s.t. $\pi \{ \exp t X_H(x,p) \} \cap K = \emptyset \quad \text{for } \forall |t| > T$

(i.e. Every geodesic $\gamma: \mathbf{R}
ightarrow M$ reaches ∂M at $\pm \infty$.)

(A4) The scalar curvature R(x) on M is bounded.

Lemma (The action integral S(t, x, y) is well defined locally) Under (A1) \sim (A4), $\operatorname{injrad}(M) > 0.$

(Notation)

(A3)(Non-trapping) For all compact set $K \subset \operatorname{int}(M)$, $\exists T > 0$ s.t. $\pi \{ \exp t X_H(x,p) \} \cap K = \emptyset \quad \text{for } \forall |t| > T$

(i.e. Every geodesic $\gamma: \mathbf{R}
ightarrow M$ reaches ∂M at $\pm \infty$.)

(A4) The scalar curvature R(x) on M is bounded.

Lemma (The action integral S(t, x, y) is well defined locally) Under (A1) \sim (A4), injrad(M) > 0.

(Notation)

 $- riangle_M+rac{R(x)}{6}=\int_{\mathbf{R}} Ed
ho(E)$: spectral resolution

(A3)(Non-trapping) For all compact set $K \subset \operatorname{int}(M)$, $\exists T > 0$ s.t. $\pi \{ \exp t X_H(x,p) \} \cap K = \emptyset \quad \text{for } \forall |t| > T$

(i.e. Every geodesic $\gamma: \mathbf{R} o M$ reaches ∂M at $\pm \infty$.)

(A4) The scalar curvature R(x) on M is bounded.

Lemma (The action integral S(t, x, y) is well defined locally) Under (A1)~(A4), injrad(M) > 0.

(Notation)

 $- riangle_M+rac{R(x)}{6}=\int_{
m R} Ed
ho(E)$: spectral resolution $ho(E):L^2(M) o L^2(M)$: spectral projector

§4 Asymptotically conic non-trapping case (Results) (in preparation)

Theorem (strong limits)

Assume (A1)~ (A4). For $t \neq 0$ $s = \lim_{N \to \infty} [U(t/N)]^N \rho(N) f(x) = \exp\left[-it\left(-\frac{1}{2}(\Delta - \frac{R}{6})\right)\right] f(x)$ in L^2

§4 Asymptotically conic non-trapping case (Results) (in preparation)

Theorem (strong limits)

Assume (A1)~ (A4). For $t \neq 0$ $s-\lim_{N \to \infty} [U(t/N)]^N \rho(N) f(x) = \exp\left[-it\left(-\frac{1}{2}(\Delta - \frac{R}{6})\right)\right] f(x) \text{ in } L^2$

Assume (A1)~ (A4). If $R(x) \leq 0$, then injrad $(M) = \infty$. Moreover we can take $\chi(d(x,y)) = 1$ and $U^*(t)U(t) \in \Psi^0_{sc}$

Theorem (strong limits without cut off and spectral projectors)

Assume (A1) ~ (A4), If
$$R(x) \leq 0$$
 and $\chi(d(x,y)) = 1$. Then
 $s = \lim_{N \to \infty} [U(t/N)]^N f(x) = \exp\left[-it\left(-\frac{1}{2}(\Delta - \frac{R}{6})\right)\right] f(x)$ in L^2

§5 In the case of a compact manifold (Sphere)

Setting

1. $(M,g) = (S^2,g_{st})$ (2dim standard sphere in \mathbf{R}^3)

1.
$$(M,g) = (S^2, g_{st})$$

2. $d = d(x, y) = \arccos(\vec{x} \cdot \vec{y})$ (geodesic distance)

(2dim standard sphere in R³) (geodesic distance)

- 1. $(M,g)=(S^2,g_{st})$ (2dim standard sphere in ${f R}^3)$
- 2. $d = d(x, y) = \arccos(\vec{x} \cdot \vec{y})$ (geodesic distance)

$\S5$ Path integrals on the sphere

Setting.

$\S5$ Path integrals on the sphere

Setting.

3.
$$S(t, x, y) = \int_0^t \frac{1}{2} g_{x(t)}(\dot{x}(t), \dot{x}(t)) dt = \frac{|d(x,y)|^2}{2t}$$

(The action integral over the shortest path)

3. $S(t,x,y) = \int_0^t \frac{1}{2} g_{x(t)}(\dot{x}(t),\dot{x}(t)) \ dt = \frac{|d(x,y)|^2}{2t}$

(The action integral over the shortest path)

4. Van Vleck determinant on manifolds

$$\begin{split} D(t,x,y) &= G^{-1/2}(x)G^{-1/2}(y)\det(\partial^2 S(t,x,y)/\partial x\partial y)\\ \chi(d(x,y)) : \text{ cut off}\\ (\text{bump ft. with compact support contained in } d(x,y) < \pi. \)\\ a(t,x,y) &= \chi(d(x,y))D(t,x,y)^{1/2} \end{split}$$

3. $S(t,x,y) = \int_0^t \frac{1}{2} g_{x(t)}(\dot{x}(t),\dot{x}(t)) \ dt = rac{|d(x,y)|^2}{2t}$

(The action integral over the shortest path)

4. Van Vleck determinant on manifolds

$$\begin{split} D(t,x,y) &= G^{-1/2}(x)G^{-1/2}(y)\det(\partial^2 S(t,x,y)/\partial x\partial y)\\ \chi(d(x,y)): \text{ cut off}\\ (\text{bump ft. with compact support contained in } d(x,y) < \pi. \)\\ a(t,x,y) &= \chi(d(x,y))D(t,x,y)^{1/2} \end{split}$$

Definition (Shortest path approximations on S^2)

 $U(t)f(x)\equiv (2\pi i)^{-1}\int_{S^2} {a(t,x,y)} e^{iS(t,\ x,\ y)}f(y) \ dy$

(Remark. For the simplicity, let h = 1.)

$$- riangle_{S^2}+rac{R}{6}=\int_{\mathbf{R}} Ed
ho(E)$$
 : spectral resolution

$$- riangle_{S^2} + rac{R}{6} = \int_{\mathbf{R}} E d
ho(E)$$
 : spectral resolution

Remark.

$$- riangle_{S^2}+rac{R}{6}=\int_{
m R} Ed
ho(E)$$
 : spectral resolution

Remark.

 $\{u_j, E_j\}$: Eigenfunction expansion on S^2 .

$$- riangle_{S^2}+rac{R}{6}=\int_{
m R} Ed
ho(E)$$
 : spectral resolution

Remark.

$\{u_j,E_j\}$: Eigenfunction expansion on $S^2.$ $(\{u_j\} \text{ denotes C.O.B in } L^2(S^2) \text{ , } E_j \text{ the eigenvalue})$

$$- riangle_{S^2}+rac{R}{6}=\int_{\mathbf{R}} Ed
ho(E)$$
 : spectral resolution

Remark.

 $\{u_j, E_j\}$: Eigenfunction expansion on S^2 . $(\{u_j\} \text{ denotes C.O.B in } L^2(S^2) \text{ , } E_j \text{ the eigenvalue})$ $ho(E): L^2(S^2)
ightarrow ext{L.h.} \{u_j \mid E_j \leq E\} \text{ : spectral projector}$ $(ext{Spectral projectors })$

§5 Path integrals on the sphere. (Results) [Adv. Appl. Math. Anal. (2014)]

Theorem (operator norm)

For
$$t \neq 0$$
 and small $\varepsilon > 0$,

$$\lim_{N \to \infty} [U(t/N)]^N \rho(N^{1/3-\varepsilon}) = \exp\left[-it\left(-\frac{1}{2}(\Delta - \frac{R}{6})\right)\right] \text{ in } L^2$$

§5 Path integrals on the sphere. (Results) [Adv. Appl. Math. Anal. (2014)]

Theorem (operator norm)

For
$$t \neq 0$$
 and small $\varepsilon > 0$,

$$\lim_{N \to \infty} [U(t/N)]^N \rho(N^{1/3-\varepsilon}) = \exp\left[-it\left(-\frac{1}{2}(\Delta - \frac{R}{6})\right)\right] \text{ in } L^2$$

Theorem (strong limits)

For $t \neq 0$ $s = \lim_{N \to \infty} [U(t/N)]^N \rho(N) f(x) = \exp\left[-it\left(-\frac{1}{2}(\bigtriangleup - \frac{R}{6})\right)\right] f(x)$ in L^2

§5 Path integrals on the sphere. (Results) [Adv. Appl. Math. Anal. (2014)]

Theorem (operator norm)

For
$$t \neq 0$$
 and small $\varepsilon > 0$,

$$\lim_{N \to \infty} [U(t/N)]^N \rho(N^{1/3-\varepsilon}) = \exp\left[-it\left(-\frac{1}{2}(\Delta - \frac{R}{6})\right)\right] \text{ in } L^2$$

Theorem (strong limits)

For $t \neq 0$ $s = \lim_{N \to \infty} [U(t/N)]^N \rho(N) f(x) = \exp\left[-it\left(-\frac{1}{2}(\Delta - \frac{R}{6})\right)\right] f(x)$ in L^2

Corollary

Let
$$u_j$$
 be an eigenfunction of Laplacian. For $t \neq 0$,
 s - $\lim_{N \to \infty} [U(t/N)]^N u_j = \exp \left[-it \left(-\frac{1}{2} (\Delta - \frac{R}{6}) \right) \right] u_j$ in L^2
$\S5$ Path integrals on the sphere (Results)

without spectral projector,)

Remark 1. For $t \neq 0$, $\lim_{N \to \infty} \|[U(t/N)]^N - \exp\left[-it\left(-\frac{1}{2}(\bigtriangleup - \frac{R}{6})\right)\right]\|_{L^2} \neq 0.$ (Time slicing products does not converge in operator norm

Remark 1. For $t \neq 0$, $\lim_{N \to \infty} \|[U(t/N)]^N - \exp\left[-it\left(-\frac{1}{2}(\Delta - \frac{R}{6})\right)\right]\|_{L^2} \neq 0.$ (Time in the second sec

(Time slicing products does not converge in operator norm without spectral projector,)

Remark 2.

$$f(x) \in G_{1/6}(S^2)$$
 (Gevrey class). For $t \neq 0$,
 $s = \lim_{N \to \infty} [U(t/N)]^N f(x) = \exp \left[-it \left(-\frac{1}{2} (\Delta - \frac{R}{6}) \right)
ight] f(x)$ in L^2 .

(The convergence for low energy functions)

High energy functions cannot be captured by shortest path approximations.

$\S5$ Path integrals on the sphere (Related results)

Let $f(x) \in C^{\infty}(S^2)$ and $t = \frac{8\pi m}{k} \in \mathbf{Q}$ (k and m are relatively prime.)

$\S5$ Path integrals on the sphere (Related results)

Let $f(x) \in C^{\infty}(S^2)$ and $t = \frac{8\pi m}{k} \in \mathbf{Q}$ (k and m are relatively prime.)

$$s-\lim_{N \to \infty} \{U(8\pi m/kN)\}^N \rho(N) f(x) \times e^{iRt/12}$$

= $\int_{S^2} \sum_{l=0}^{\infty} \left(\frac{2l+1}{4\pi}\right) e^{-4\pi i \{3ml(l+1)+1\}/3k} C_l^{1/2}(\cos d(x,y)) f(y) dy$
= $\left\{ e^{2\pi i m/3k} \sum_{j=0}^{2k-1} \Gamma(m,k,j) \cos \frac{2\pi j}{k} A \right\} f(x)$

$\S5$ Path integrals on the sphere (Related results)

Let $f(x) \in C^{\infty}(S^2)$ and $t = \frac{8\pi m}{k} \in \mathbf{Q}$ (k and m are relatively prime.)

$$\begin{split} s\text{-}\lim_{N \to \infty} \{ U(8\pi m/kN) \}^N \rho(N) f(x) \times e^{iRt/12} \\ &= \int_{S^2} \sum_{l=0}^{\infty} \left(\frac{2l+1}{4\pi} \right) e^{-4\pi i \{ 3ml(l+1)+1 \}/3k} C_l^{1/2}(\cos d(x,y)) \ f(y) dy \\ &= \left\{ e^{2\pi i m/3k} \sum_{j=0}^{2k-1} \Gamma(m,k,j) \cos \frac{2\pi j}{k} A \right\} f(x) \\ \text{where } \Gamma(m,k,j) &= \frac{1}{2\pi} \sum_{l=0}^{2k-1} e^{\pi i (l^2 m + lj)/k} \text{ is a Gaussian sum,} \\ A &= \sqrt{-\Delta + \frac{1}{4}}, \\ C_l : \text{ Gegenbauer polynomials are defined by} \\ &= \frac{1}{(1-2xt+t^2)^{1/2}} = \sum_{l=0}^{\infty} C_l^{1/2}(x) \ t^l. \end{split}$$

 $\S5.1$ Outline of proof (We mainly discuss the case of sphere)

For the case of Sphere S^2 We find

$$D(t,x,y) = rac{d(x,y)}{t^2 \sin d(x,y)} \hspace{1em} ext{for} \hspace{1em} 0 \leqq d < \pi.$$

For $\chi(d)K(t,x,y)=\chi(d)D(t,x,y)^{1/2}e^{iS}$, we obtain

$$egin{aligned} &\left(irac{\partial}{\partial t}+rac{1}{2} riangle_x-rac{R}{12}
ight)(\chi(d)K(t,x,y))\ &=\left[\chi\left(rac{d^2-\sin^2 d}{8d^2\sin^2 d}+rac{1}{8}-rac{R}{12}
ight)+rac{1}{2}(riangle_x\chi)
ight]K(t,x,y)\ &+rac{\partial\chi}{\partial d}\left(rac{\sin d-d\cos d}{2d\sin d}
ight)K(t,x,y). \end{aligned}$$

$\S5.1$ Outline of proof (We mainly discuss the case of sphere)

By using stationary phase methods and integral equations,

5.1 Outline of proof (We mainly discuss the case of sphere)

By using stationary phase methods and integral equations, For the case of sphere S^2 For $\hat{H} = -\frac{1}{2}(\triangle_{S^2} - \frac{R}{6})$

5.1 Outline of proof (We mainly discuss the case of sphere)

By using stationary phase methods and integral equations,

For the case of sphere S^2 For $\hat{H} = -\frac{1}{2}(\Delta_{S^2} - \frac{R}{6})$ $\|U(t)f\|_{L^2} \leq (1+C_1t)\|f\|_{L^2} + C_2t^2\|(-\Delta_{S^2}+1)f\|_{L^2} \cdots (3)$ $\|U(t)f - \exp(-it\hat{H})f\|_{L^2} \leq \frac{C_3t^2}{2}\|(-\Delta_{S^2}+1)^3f\|_{L^2} \cdots (4)$

$\S5.1$ Outline of proof (We mainly discuss the case of sphere)

By using stationary phase methods and integral equations, For the case of sphere S^2 For $\hat{H} = -\frac{1}{2}(\Delta_{S^2} - \frac{R}{6})$ $\|U(t)f\|_{L^2} \leq (1 + C_1 t) \|f\|_{L^2} + C_2 t^2 \|(-\Delta_{S^2} + 1)f\|_{L^2} \cdots (3)$ $\|U(t)f - \exp(-it\hat{H})f\|_{L^2} \leq \frac{C_3 t^2}{2} \|(-\Delta_{S^2} + 1)^3 f\|_{L^2} \cdots (4)$

For the scattering manifold case For $\hat{H} = -\frac{1}{2}(\Delta_M - \frac{R}{6})$

$\S5.1$ Outline of proof (We mainly discuss the case of sphere)

By using stationary phase methods and integral equations, For the case of sphere S^2 For $\hat{H} = -\frac{1}{2}(\triangle_{S^2} - \frac{R}{6})$ $\|U(t)f\|_{L^2} \leq (1 + C_1 t) \|f\|_{L^2} + C_2 t^2 \|(-\triangle_{S^2} + 1)f\|_{L^2} \cdots (3)$ $\|U(t)f - \exp(-it\hat{H})f\|_{L^2} \leq \frac{C_3 t^2}{2} \|(-\triangle_{S^2} + 1)^3 f\|_{L^2} \cdots (4)$

For the scattering manifold case For $\hat{H} = -\frac{1}{2}(\Delta_M - \frac{R}{6})$ $\|U(t)f\|_{L^2} \leq (1+C_1t)\|f\|_{L^2} + C_2t^2\|f\|_{\mathcal{H}_l}$ for $l \geq 2$... (3)' $\|U(t)f - \exp(-it\hat{H})f\|_{L^2} \leq \frac{C_3t^2}{2}\|f\|_{\mathcal{H}_m}$ for m > [n/2] + 1... (4)'

Here $\mathcal{H}_k = igcap_{s=0}^k x^{k-s} H^s_{sc}(M)$: weighted scattering Sobolev sp.

$\S 5.1$ Outline of proof (We mainly discuss the case of sphere)

The binomical coefficients bounds $\binom{N}{k} rac{1}{N^k} < rac{1}{k!}$ yields the following estimates

$$egin{aligned} &\|\{e^{-it\hat{H}}-U_{\chi}(t/N)^n\}f(x)\|_{L^2}\ &=\|\left[e^{-it\hat{H}}-\{e^{-it\hat{H}/N}(1+ ilde{E}(t/N))\}^N
ight]f(x)\|_{L^2}\ &\leq\sum_{k=1}^Ninom{N}k\,\|\{e^{-i(N-k)t\hat{H}/N} ilde{E}(t/N)^k\}f(x)\|_{L^2}\ &\leq\sum_{k=1}^Ninom{N}k\,\Big(rac{ ilde{C}}{2}\Big)^kinom{t}{k}\Big(rac{t}{N}\Big)^{2k}\|(- riangle+1)^{3k}f(x)\|_{L^2}\ &\leq\sum_{k=1}^Nrac{1}{k!}inom{ ilde{C}t^2}{2N}^k\|(- riangle+1)^{3k}f(x)\|_{L^2}. \end{aligned}$$

(Case 1) $M = \mathbb{R}^n$, $H(x,p) = \frac{1}{2}|p|^2 + V(x) \in C^\infty(T^*M)$

Classical mechanics	Canonical quantization	Feynman quantization
$V(x)=O(ert xert ^{2}) ext{+error}.$	$\hat{H}=-rac{h^2}{2} riangle +V(x)$	$\lim_{N \to \infty} [U(\tfrac{t}{N})]^N$
(Fujiwara theory)		$=\exp\left(rac{-it}{h}\hat{H} ight)$

(Case 1) $M = \mathbb{R}^n$, $H(x,p) = \frac{1}{2}|p|^2 + V(x) \in C^\infty(T^*M)$

Classical mechanics	Canonical quantization	Feynman quantization
$V(x)=O(ert xert ^{2}) ext{+error}.$	$\hat{H}=-rac{h^2}{2} riangle +V(x)$	$\lim_{N \to \infty} [U(\tfrac{t}{N})]^N$
(Fujiwara theory)		$=\exp\left(rac{-it}{h}\hat{H} ight)$

$$(ext{Integral kernel}) \ \ e^{rac{-it}{\hbar}\hat{H}}f(x) = \int\limits_{\mathbf{R}^n} K(t,x,y)f(y) \ dy.$$

Classical mechanics	Orbits of CM	integral kernel
$V(x) = O(x ^2)$ +error.	time locally	K(t,x,y)
	global diffeo	$\in C^\infty((0,t) imes \mathrm{R}^{2n})$
	on config. space	
$V(x) = C x ^n$	infinite many	If $n=1$, $K(t,x,y)$
$(C>0,n\geqq4)$	small periodic curves	is nowhere $oldsymbol{C^1}$

(Case 2) (M,g) : Riem. mfd., $H(x,p)=rac{1}{2}|p|^2\in C^\infty(T^*M)$

Manifolds	Feynman quantization
Asymptotically conic	$\lim_{N ightarrow\infty} [U(rac{t}{N})]^N ho(N)$
+ cutoff	$= \exp \left[-it \left(-rac{1}{2} (riangle - rac{R}{6}) ight) ight]$
Asymptotically conic	$\lim_{N\to\infty} [\tilde{U}(\frac{t}{N})]^N$
$R(x) \leqq 0$ without cutoff	$= \exp \left[-it \left(-rac{1}{2} (riangle - rac{R}{6}) ight) ight]$

(Case 2) (M,g) : Riem. mfd., $H(x,p)=rac{1}{2}|p|^2\in C^\infty(T^*M)$

Manifolds	Feynman quantization
Asymptotically conic	$\lim_{N ightarrow\infty} [U(rac{t}{N})]^N ho(N)$
+ cutoff	${}=\exp\left[-it\left(-rac{1}{2}(riangle-rac{R}{6}) ight) ight]$
Asymptotically conic	$\lim_{N\to\infty} [\tilde{U}(\frac{t}{N})]^N$
$R(x) \leqq 0$ without cutoff	$= \exp \left[-it \left(-rac{1}{2} (riangle - rac{R}{6}) ight) ight]$

Manifolds	Feynman quantization
$S^2~({\sf sphere})$	$\lim_{N\to\infty} [U(\frac{t}{N})]^N \rho(N)$
+ cutoff	${ig }=\exp\left[-it\left(-rac{1}{2}(riangle-rac{R}{6}) ight) ight]$
S^2	$\lim_{N ightarrow\infty} [U(rac{t}{N})]^N$
without cutoff	How to define rigorously ?

(1) General manifolds? Potentials?

- (1) General manifolds? Potentials?
- (2) Relationships between Various quantizations?
 - (e.g. Geometric quantization, Feynman quantization, Deformation quantization etc.).

- (1) General manifolds? Potentials?
- (2) Relationships between Various quantizations?
 - (e.g. Geometric quantization, Feynman quantization, Deformation quantization etc.).
 - In the framework of geometric quantization, we can not construct the real polarization of $\frac{1}{2}|p|^2$ on $L^2(S^2)$.

- (1) General manifolds? Potentials?
- (2) Relationships between Various quantizations?
 - (e.g. Geometric quantization, Feynman quantization, Deformation quantization etc.).
 - In the framework of geometric quantization, we can not construct the real polarization of $\frac{1}{2}|p|^2$ on $L^2(S^2)$.
- · Quantized operators may differ depending on the definitions.

- (1) General manifolds? Potentials?
- (2) Relationships between Various quantizations?
 - (e.g. Geometric quantization, Feynman quantization, Deformation quantization etc.).
 - In the framework of geometric quantization, we can not construct the real polarization of $\frac{1}{2}|p|^2$ on $L^2(S^2)$.
 - · Quantized operators may differ depending on the definitions.
- (3) Application? Spectral geometry $\triangle + \beta R$
 - $\cdot \beta = 0$ (well-known)
 - $\cdot \beta = 1/6$ (geometry of spectrum clustering)

- (1) General manifolds? Potentials?
- (2) Relationships between Various quantizations?
 - (e.g. Geometric quantization, Feynman quantization, Deformation quantization etc.).
 - In the framework of geometric quantization, we can not construct the real polarization of $\frac{1}{2}|p|^2$ on $L^2(S^2)$.
 - · Quantized operators may differ depending on the definitions.
- (3) Application? Spectral geometry $\triangle + \beta R$
 - $\cdot \beta = 0$ (well-known)
 - $\cdot \beta = 1/6$ (geometry of spectrum clustering)
- (4) Application? Gutzwiller trace formula
- (eg. Albeverio's proof using Feynman path integral (Euclidean case).)

- (1) General manifolds? Potentials?
- (2) Relationships between Various quantizations?
 - (e.g. Geometric quantization, Feynman quantization, Deformation quantization etc.).
 - In the framework of geometric quantization, we can not construct the real polarization of $\frac{1}{2}|p|^2$ on $L^2(S^2)$.
 - · Quantized operators may differ depending on the definitions.
- (3) Application? Spectral geometry $\triangle + \beta R$
 - $\cdot \beta = 0$ (well-known)
 - $\cdot \beta = 1/6$ (geometry of spectrum clustering)

(4) Application? Gutzwiller trace formula(eg. Albeverio's proof using Feynman path integral (Euclidean case).)

$$\gamma$$
 $tr(e^{-itH}) \sim \sum_{\gamma: ext{closed geodesic}} he^{iS_\gamma/h} rac{c_\gamma e^{rac{\pi im\gamma}{4}}}{\sqrt{ ext{det}(I-P_\gamma)}} ?$

Yoshihisa Miyanishi (The graduate school of A Feynman path integral-like method of quan

- (1) General manifolds? Potentials?
- (2) Relationships between Various quantizations?
 - (e.g. Geometric quantization, Feynman quantization, Deformation quantization etc.).
 - In the framework of geometric quantization, we can not construct the real polarization of $\frac{1}{2}|p|^2$ on $L^2(S^2)$.
 - · Quantized operators may differ depending on the definitions.
- (3) Application? Spectral geometry $\triangle + \beta R$
 - $\cdot \beta = 0$ (well-known)
 - $\cdot \beta = 1/6$ (geometry of spectrum clustering)

(4) Application? Gutzwiller trace formula(eg. Albeverio's proof using Feynman path integral (Euclidean case).)

$$\gamma$$
 $tr(e^{-itH}) \sim \sum_{\gamma: ext{closed geodesic}} he^{iS_\gamma/h} rac{c_\gamma e^{rac{\pi im\gamma}{4}}}{\sqrt{ ext{det}(I-P_\gamma)}} ?$

Yoshihisa Miyanishi (The graduate school of A Feynman path integral-like method of quan

· Quantization (Euclidean space)

• Quantization (Euclidean space) Canonical quantization · Quantization (Euclidean space) Canonical quantization $A, B \in C^{\infty}(\mathbf{R}_x^n \times \mathbf{R}_p^n) = C^{\infty}(T^*\mathbf{R}^n)$

Quantization (Euclidean space)
Canonical quantization
A,
$$B \in C^{\infty}(\mathbb{R}^n_x \times \mathbb{R}^n_p) = C^{\infty}(T^*\mathbb{R}^n)$$
 $\{A, B\} = \sum_{\alpha} \left(\frac{\partial A}{\partial x_{\alpha}} \frac{\partial B}{\partial p_{\alpha}} - \frac{\partial B}{\partial x_{\alpha}} \frac{\partial A}{\partial p_{\alpha}} \right)$ Poisson Bracket

Quantization (Euclidean space)
Canonical quantization
A,
$$B \in C^{\infty}(\mathbb{R}^{n}_{x} \times \mathbb{R}^{n}_{p}) = C^{\infty}(T^{*}\mathbb{R}^{n})$$
 $\{A, B\} = \sum_{\alpha} \left(\frac{\partial A}{\partial x_{\alpha}} \frac{\partial B}{\partial p_{\alpha}} - \frac{\partial B}{\partial x_{\alpha}} \frac{\partial A}{\partial p_{\alpha}} \right)$ Poisson Bracket
 $\hat{A}, \ \hat{B} \in \mathcal{L}(L^{2}(\mathbb{R}^{n}))$
 $[\hat{A}, \hat{B}] = ih\{\widehat{A}, \widehat{B}\}$ Canonical quantization
(i.e. $\hat{x} = x, \ \hat{p} = \frac{h}{i} \frac{\partial}{\partial x}.$)

• Quantization (manifolds) Geometric quantization

• Quantization (manifolds) Geometric quantization $A, B \in C^{\infty}(T^*M)$

 \cdot Quantization (manifolds) Geometric quantization $A, \ B \in C^{\infty}(T^*M)$ $(\omega = \sum dx_{lpha} \wedge dp_{lpha}:$ Darboux coordinates)

 $\begin{array}{l} \cdot \text{ Quantization (manifolds)} \\ \text{ Geometric quantization} \\ A, \ B \in C^{\infty}(T^*M) \\ (\omega = \sum dx_{\alpha} \wedge dp_{\alpha} : \text{ Darboux coordinates}) \\ \{A, B\} = \sum_{\alpha} \left(\frac{\partial A}{\partial x_{\alpha}} \frac{\partial B}{\partial p_{\alpha}} - \frac{\partial B}{\partial x_{\alpha}} \frac{\partial A}{\partial p_{\alpha}} \right) \quad \text{Poisson Bracket} \end{array}$

§7 Appendix

 $\begin{array}{ll} & \text{Quantization (manifolds)} \\ & \text{Geometric quantization} \\ & A, \ B \in C^{\infty}(T^*M) \\ & (\omega = \sum dx_{\alpha} \wedge dp_{\alpha} : \text{Darboux coordinates}) \\ & \{A, B\} = \sum_{\alpha} \left(\frac{\partial A}{\partial x_{\alpha}} \frac{\partial B}{\partial p_{\alpha}} - \frac{\partial B}{\partial x_{\alpha}} \frac{\partial A}{\partial p_{\alpha}} \right) \\ & \psi \end{array}$ Poisson Bracket $\begin{array}{l} & \hat{A}, \ \hat{B} \in \mathcal{L}(L^2(T^*M)) \\ & [\tilde{A}, \tilde{B}] = ih\{\widetilde{A, B}\} \end{array}$ Prequantization

 Quantization (manifolds) Geometric quantization A, $B \in C^{\infty}(T^*M)$ $(\omega = \sum dx_{\alpha} \wedge dp_{\alpha} : \text{Darboux coordinates})$ $\{A,B\} = \sum \left(\frac{\partial A}{\partial x_{\alpha}} \frac{\partial B}{\partial p_{\alpha}} - \frac{\partial B}{\partial x_{\alpha}} \frac{\partial A}{\partial p_{\alpha}} \right)$ Poisson Bracket $\hat{A}, \ \hat{B} \in \mathcal{L}(L^2(T^*M))$ $[\tilde{A}, \tilde{B}] = ih\{A, B\}$ Prequantization (i.e. $H = -ihX_H + \eta(X_H) + H$ $= -ih\{(\frac{\partial H}{\partial n})\frac{\partial}{\partial x} - (\frac{\partial H}{\partial x})\frac{\partial}{\partial n}\} - \frac{1}{2}(x\frac{\partial H}{\partial x} + p\frac{\partial H}{\partial n}) + H$

§7 Appendix

 Quantization (manifolds) Geometric quantization A, $B \in C^{\infty}(T^*M)$ $(\omega = \sum dx_{\alpha} \wedge dp_{\alpha} : \text{Darboux coordinates})$ $\{A,B\} = \sum \left(\frac{\partial A}{\partial x_{\alpha}} \frac{\partial B}{\partial p_{\alpha}} - \frac{\partial B}{\partial x_{\alpha}} \frac{\partial A}{\partial p_{\alpha}} \right)$ Poisson Bracket $\hat{A}, \ \hat{B} \in \mathcal{L}(L^2(T^*M))$ $[\tilde{A}, \tilde{B}] = ih\{A, B\}$ Prequantization (i.e. $\tilde{H} = -ihX_H + \eta(X_H) + H$ $= -ih\{\left(\frac{\partial H}{\partial n}\right)\frac{\partial}{\partial x} - \left(\frac{\partial H}{\partial n}\right)\frac{\partial}{\partial n}\} - \frac{1}{2}\left(x\frac{\partial H}{\partial x} + p\frac{\partial H}{\partial n}\right) + H$ 11 We can't take the real polarization of $\frac{1}{2}|p|^2$. However for T^*S^2 $\exists L_{\alpha} \in C^{\infty}(S^2)$ s.t. $\frac{1}{2}|p|^2 = \sum_{\alpha} L_{\alpha}^2$ The prequantization \tilde{L}_{α} satisfy
§7 Appendix

 Quantization (manifolds) Geometric quantization A, $B \in C^{\infty}(T^*M)$ $(\omega = \sum dx_{\alpha} \wedge dp_{\alpha} : \text{Darboux coordinates})$ $\{A,B\} = \sum \left(\frac{\partial A}{\partial x_{lpha}} \frac{\partial B}{\partial p_{lpha}} - \frac{\partial B}{\partial x_{lpha}} \frac{\partial A}{\partial p_{lpha}}
ight)$ Poisson Bracket $\hat{A}, \ \hat{B} \in \mathcal{L}(L^2(T^*M))$ $[\tilde{A}, \tilde{B}] = ih\{A, B\}$ Prequantization (i.e. $H = -ihX_H + \eta(X_H) + H$ $= -ih\{(\frac{\partial H}{\partial n})\frac{\partial}{\partial x} - (\frac{\partial H}{\partial x})\frac{\partial}{\partial n}\} - \frac{1}{2}(x\frac{\partial H}{\partial x} + p\frac{\partial H}{\partial n}) + H$ 11 We can't take the real polarization of $\frac{1}{2}|p|^2$. However for T^*S^2 $\exists L_{\alpha} \in C^{\infty}(S^2)$ s.t. $\frac{1}{2}|p|^2 = \sum_{\alpha} L_{\alpha}^2$ The prequantization \tilde{L}_{α} satisfy $\sum_{\alpha} \tilde{L}_{\alpha}^2 \pi^* Y_{l,m} = \frac{\hbar^2}{2} (l(l+1) + \frac{1}{2}) \pi^* Y_{l,m}$

Thank you for your attention.