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§1 Introduction. Feynman path integrals (heuristics)

§1.1 Classical Mechanics

(Hamiltonian formulation){
H(x, p) = 1

2
|p|2 + V (x) ∈ C∞(Rn

x × Rn
p ) : Hamiltonian

dx
dt

= ∂H
∂p

, dp
dt

= −∂H
∂x

: Hamitlonian flow

Legendre transform gives

(Lagrangian formulation)

For X(τ ) ∈ Rn and Ẋ = dX
dτ{

L
(
X, Ẋ

)
= 1

2
Ẋ2 − V (x) : Lagrangian

d
dτ

∂L

∂Ẋ
− ∂L

∂X
= 0 : Euler-Lagrange eq
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§1 Introduction Feynman path integrals (heuristics)

t

xspace

time
O

(s, y)

(t, x)
X′′′

X′

X′′

X̄

X̄(·) classical path

X̂(·) linear path

X̂

Action integral
S(X)

=
∫ t
s

1
2
L(X, Ẋ)dτ

R.Feynman proposed
the quantization is given by∫

Ω e
i
h
S(0,t,x,y)f(y)D[X]

= e
−it
h

Ĥf(x)

Ω is the path space
connecting (0, y) and (t, x).
D[X] is the Lebesgue-like 　　
measure on Ω

Remark. We can not construct Feynman path measure (Cameron)
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§.2 Time slicing approximations (An alternative method of F.P.I.)

An alternative method of F.P.I. (rough sketch)

H(x, p) ∈ C∞(T ∗Rn)

Strong Assumption (Time locally unique path condition)

For small t − s and for x, y ∈ Rn,

∃1X̄(τ ) s.t.

{
X̄(τ ) satisfies E-L eq.

X̄(s) = x and X̄(t) = y

S(s, t, x, y) =
∫ t
s L(X̄(τ ), X̄(τ )) : phase function defined by H.

D(s, t, x, y) = det
(
∂2S(s, t, x, y)/∂x∂y

)
: van-Vleck determinant

∆ : 0 = t0 < t1 < · · · < tn−1 < tn = t.

U(t−s)f(x) ≡
∫

Rn

(2πi)−n/2D(s, t, x, y) exp{ i
h
S(s, t, x, y)}f(y)dy

lim
|∆|→0

∏
i

[U(ti − ti−1)] = exp

(−it

h
Ĥ

)
Problem1. Ĥ = H(x, 1

i
∂
∂x

) ∈ L(L2(Rn))?
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§.2 Time slicing approximations (Summary. Euclidean case)

t

x

O

(0, y)

(t, x)

X̄

X̄(·) piecewise classical path

(t1, x1)

(t2, x2) (t3, x3)

S(s, t, x, y) ≡
∫ t
s L(X̄, ˙̄X)dτ

The action S is integrals over
piecewise classical paths

By using the density of paths a∫
M a(tj, tj+1, xj, xj+1)

e
i
h
S(tj ,tj+1,xj ,xj+1)f(xj)dxj

= U(tj+1 − tj)f(xj+1) 　　　
(small time evolution op.)
Time slicing approximations
are defined by∫

Rn · · ·
∫
Rn

N−1∏
j=0

a(tj, tj+1, xj, xj+1)e
i
h
S(tj ,tj+1,xj ,xj+1)f(y)

N−1∏
j=0

dxj

= [
N−1∏
j=0

U(tj+1 − tj)]f(x) →
∫
Ω e

i
h
S(0,t,x,y)f(y)D[X] (N → ∞).
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U(tj+1 − tj)]f(x) →
∫
Ω e

i
h
S(0,t,x,y)f(y)D[X] (N → ∞).
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Known results (Fujiwara Theory) (Euclidean case)

Assumption V (x) ∈ C∞(Rn), |∂αV (x)| < Cα for |α| ≧ 2.

1. S(t, x, y) =
∫ t
0 [

1
2

˙̄X(τ )2 − V (X̄(τ ))]dτ

(The classical path connecting (0, y) and (t, x) is time locally unique. )

2. D(t, x, y) = det(∂2S(t, x, y)/∂x∂y) (van Vleck determinant)

a(t, x, y) = (2πih)−n/2D(t, x, y)1/2.

3. U(t)f(x) ≡
∫
Rn a(t, x, y)e

i
h
S(t,x,y)f(y)dy.

Theorem (D. Fujiwara)

For t ̸= 0,

lim
|∆|→0

∏
i

[U(ti − ti−1)] = exp −it
h

[−h2

2
△ + V (x)] (Operator norm)
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Other different alternative definitions of Feynman path
integrals

Other alternative methods for path integrals.
1. Trotter Kato forumulas.
2. Analytic continuation of Wiener measure

by using complex Planch constant h, m or t

3. An improper integral on Hilbert spaces.
（K.Ito, Albeverio ）

4. Non-standard analysis (*measure of the Dirac operator
and take the limit c → ∞

etc.

Here, we employ the time slicing products.
to derive the curvature from action integrals.
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§3 Path integral-like method on Riemannian manifold

Settings.

1. (M, g) : n-dim C∞ oriented complete Riemannian manifold

2. H(x, p) = 1
2
|p|2= 1

2
gijpipj (on local charts)

Hamiltonian gives the geodesic flow on T ∗M (various speed)

3. d = d(x, y) (geodesic distance)

4. S(t, x, y) =
∫ t
0

1
2
gx(t)(ẋ(t), ẋ(t)) dt = |d(x,y)|2

2t

(The action integral over the shortest path)

5. van Vleck determinants on manifolds

D(t, x, y) = G−1/2(x)G−1/2(y) det(∂2S(t, x, y)/∂x∂y)

χ(d(x, y)) : cut off
(bump ft. with compact support contained in d(x, y) < injrad(M) )

a(t, x, y) = χ(d(x, y))D(t, x, y)1/2
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§3 Path integral-like method on Riemannian manifold

Definition (Shortest path approximations on manifolds)

U(t)f(x) ≡ (2πi)−n/2
∫
M a(t, x, y)eiS(t, x, y)f(y) dy

(Remark. For the simplicity, let h = 1.)

x y

M
d(x, y)

x
y

M

d(x, y)

We don’t consider d(x, y) ≧ injrad(M)

Problem. lim
N→∞

[U(t/N)]Nf(x) = exp(−itĤ)f(x) ?

What is the Ĥ ?
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§4 Asymptotically conic non-trapping scattering case

Assumtions for scattering case

(A1) ∂M is n − 1 dimensional smooth Riemmanian manifold,

with metric h = hjkdy
idyk

(A2) ∃ compact set K ⊂ M s.t.

g = dx2

x4 +
hjk(x,y)dy

idyk

x2 = dr2 + r2hjk(
1
r
, y)dyjdyk

on the asymptotic region

M\K = (0, ϵ) × ∂M = {(x, y) : 0 < x < ϵ, y ∈ ∂M}

Example(The radial compactification map)

Rn
(z, 1)

M

∂M

RC(z)

RC : (z, 1) ∈ Rn

→ ( z√
1+|z|2

, 1√
1+|z|2

) ∈ Sn
+
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§4 Asymptotically conic non-trapping case

(A3)(Non-trapping) For all compact set K ⊂ int(M), ∃T > 0 s.t.

π{exp tXH(x, p)} ∩ K = ∅ for ∀|t| > T

(i.e. Every geodesic γ : R → M reaches ∂M at ±∞. )

(A4) The scalar curvature R(x) on M is bounded.

Lemma (The action integral S(t, x, y) is well defined locally)

Under (A1)∼(A4),
injrad(M) > 0.

(Notation)

−△M + R(x)
6

=
∫
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§4 Asymptotically conic non-trapping case (Results)
(in preparation)

Theorem (strong limits)

Assume (A1)∼ (A4). For t ̸= 0

s- lim
N→∞

[U(t/N)]Nρ(N)f(x) = exp
[
−it

(
−1

2
(△ − R

6
)
) ]

f(x) in L2

Assume (A1)∼ (A4). If R(x) ≦ 0, then injrad(M) = ∞.
Moreover we can take χ(d(x, y)) = 1 and U∗(t)U(t) ∈ Ψ0

sc

Theorem (strong limits without cut off and spectral projectors)

Assume (A1) ∼ (A4), If R(x) ≦ 0 and χ(d(x, y)) = 1. Then

s- lim
N→∞

[U(t/N)]Nf(x) = exp
[
− it

(
−1

2
(△ − R

6
)
) ]

f(x) in L2
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§5 In the case of a compact manifold (Sphere)

Setting

1. (M, g) = (S2, gst) (2dim standard sphere in R3)

2. d = d(x, y) = arccos(x⃗ · y⃗) (geodesic distance)

x

y

d

S2

x

y

S2

x

yS2

(We don’t consider d ≧ π.)

Yoshihisa Miyanishi (The graduate school of Engineering and Science Osaka University)A Feynman path integral-like method of quantization on Riemannian manifolds and related problemsMarch 8, 2015 13 / 27



§5 In the case of a compact manifold (Sphere)

Setting

1. (M, g) = (S2, gst) (2dim standard sphere in R3)

2. d = d(x, y) = arccos(x⃗ · y⃗) (geodesic distance)

x

y

d

S2

x

y

S2

x

yS2

(We don’t consider d ≧ π.)

Yoshihisa Miyanishi (The graduate school of Engineering and Science Osaka University)A Feynman path integral-like method of quantization on Riemannian manifolds and related problemsMarch 8, 2015 13 / 27



§5 In the case of a compact manifold (Sphere)

Setting

1. (M, g) = (S2, gst) (2dim standard sphere in R3)

2. d = d(x, y) = arccos(x⃗ · y⃗) (geodesic distance)

x

y

d

S2

x

y

S2

x

yS2

(We don’t consider d ≧ π.)

Yoshihisa Miyanishi (The graduate school of Engineering and Science Osaka University)A Feynman path integral-like method of quantization on Riemannian manifolds and related problemsMarch 8, 2015 13 / 27



§5 In the case of a compact manifold (Sphere)

Setting

1. (M, g) = (S2, gst) (2dim standard sphere in R3)

2. d = d(x, y) = arccos(x⃗ · y⃗) (geodesic distance)

x

y

d

S2

x

y

S2

x

yS2

(We don’t consider d ≧ π.)

Yoshihisa Miyanishi (The graduate school of Engineering and Science Osaka University)A Feynman path integral-like method of quantization on Riemannian manifolds and related problemsMarch 8, 2015 13 / 27



§5 Path integrals on the sphere

Setting.

3. S(t, x, y) =
∫ t
0

1
2
gx(t)(ẋ(t), ẋ(t)) dt = |d(x,y)|2

2t

(The action integral over the shortest path)

4. Van Vleck determinant on manifolds

D(t, x, y) = G−1/2(x)G−1/2(y) det(∂2S(t, x, y)/∂x∂y)

χ(d(x, y)) : cut off
(bump ft. with compact support contained in d(x, y) < π. )

a(t, x, y) = χ(d(x, y))D(t, x, y)1/2

Definition (Shortest path approximations on S2)

U(t)f(x) ≡ (2πi)−1
∫
S2 a(t, x, y)e

iS(t, x, y)f(y) dy

(Remark. For the simplicity, let h = 1.)
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§5 Path integrals on the sphere.

Setting

−△S2 + R
6
=
∫
R Edρ(E) : spectral resolution

Remark.

{uj, Ej} : Eigenfunction expansion on S2.

({uj} denotes C.O.B in L2(S2) , Ej the eigenvalue)

ρ(E) : L2(S2) → L.h.{uj | Ej ≦ E} : spectral projector
(Spectral projectors )
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§5 Path integrals on the sphere. (Results)
[Adv. Appl. Math. Anal. (2014)]

Theorem (operator norm)

For t ̸= 0 and small ε > 0,

lim
N→∞

[U(t/N)]Nρ(N1/3−ε) = exp
[
− it

(
−1

2
(△ − R

6
)
) ]

in L2

Theorem (strong limits)

For t ̸= 0

s- lim
N→∞

[U(t/N)]Nρ(N)f(x) = exp
[
−it

(
−1

2
(△ − R

6
)
) ]

f(x) in L2

Corollary

Let uj be an eigenfunction of Laplacian. For t ̸= 0,

s- lim
N→∞

[U(t/N)]Nuj = exp
[
− it

(
−1

2
(△ − R

6
)
) ]

uj in L2
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§5 Path integrals on the sphere (Results)

Remark 1.
For t ̸= 0,

lim
N→∞

∥[U(t/N)]N − exp
[
− it

(
−1

2
(△ − R

6
)
) ]

∥L2 ̸=0.

(Time slicing products does not converge in operator norm
without spectral projector, )

Remark 2.
f(x) ∈ G1/6(S

2) (Gevrey class). For t ̸= 0,

s- lim
N→∞

[U(t/N)]Nf(x) = exp
[
− it

(
−1

2
(△ − R

6
)
) ]

f(x) in L2.

(The convergence for low energy functions)

High energy functions cannot be captured by shortest path
approximations.
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§5 Path integrals on the sphere (Related results)

Let f(x) ∈ C∞(S2) and t = 8πm
k

∈ Q (k and m are relatively
prime.)

s- lim
N→∞

{U(8πm/kN)}Nρ(N)f(x) × eiRt/12

=
∫
S2

∑∞
l=0

(
2l+1
4π

)
e−4πi{3ml(l+1)+1}/3kC

1/2
l (cos d(x, y)) f(y)dy

=

{
e2πim/3k

2k−1∑
j=0

Γ(m,k, j) cos 2πj
k

A

}
f(x)

where Γ(m, k, j) = 1
2π

2k−1∑
l=0

eπi(l2m+lj)/k is a Gaussian sum,

A =
√

−△ + 1
4
,

Cl： Gegenbauer polynomials are defined by
1

(1−2xt+t2)1/2
=

∞∑
l=0

C
1/2
l (x) tl.
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§5.1 Outline of proof (We mainly discuss the case of sphere)

For the case of Sphere S2 We find

D(t, x, y) =
d(x, y)

t2 sin d(x, y)
for 0 ≦ d < π.

For χ(d)K(t, x, y) = χ(d)D(t, x, y)1/2eiS, we obtain(
i
∂

∂t
+

1

2
△x −

R

12

)
(χ(d)K(t, x, y))

=
[
χ

(
d2 − sin2 d

8d2 sin2 d
+

1

8
−

R

12

)
+

1

2
(△xχ)

]
K(t, x, y)

+
∂χ

∂d

(
sin d − d cos d

2d sin d

)
K(t, x, y)

+
∂χ

∂d

(
id

t

)
K(t, x, y).
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§5.1 Outline of proof (We mainly discuss the case of sphere)

By using stationary phase methods and integral equations,

For the case of sphere S2

For Ĥ = −1
2
(△S2 − R

6
)

∥U(t)f∥L2 ≦ (1 + C1t)∥f∥L2 + C2t
2∥(−△S2 + 1)f∥L2 · · · (3)

∥U(t)f − exp(−itĤ)f∥L2 ≦ C3t2

2
∥(−△S2 + 1)3f∥L2 · · · (4)

For the scattering manifold case

For Ĥ = −1
2
(△M − R

6
)

∥U(t)f∥L2 ≦ (1+C1t)∥f∥L2 +C2t
2∥f∥Hl for l ≧ 2 · · · (3)′

∥U(t)f − exp(−itĤ)f∥L2 ≦ C3t2

2
∥f∥Hm for m > [n/2] + 1

· · · (4)′

Here Hk =
∩k

s=0 x
k−sHs

sc(M) : weighted scattering Sobolev sp.
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§5.1 Outline of proof (We mainly discuss the case of
sphere)

The binomical coefficients bounds

(
N
k

)
1

Nk < 1
k!

yields the following

estimates

∥{e−itĤ − Uχ(t/N)n}f(x)∥L2

= ∥
[
e−itĤ − {e−itĤ/N(1 + Ẽ(t/N))}N

]
f(x)∥L2

≦
N∑

k=1

(
N
k

)
∥{e−i(N−k)tĤ/N Ẽ(t/N)k}f(x)∥L2

≦
N∑

k=1

(
N
k

)(C̃
2

)k( t

N

)2k
∥(−△ + 1)3kf(x)∥L2

≦
N∑

k=1

1

k!

(C̃t2

2N

)k
∥(−△ + 1)3kf(x)∥L2.
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§6 Summary

(Case 1) M = Rn, H(x, p) = 1
2
|p|2 + V (x) ∈ C∞(T ∗M)

Classical mechanics Canonical quantization Feynman quantization

V (x) = O(|x|2)+error. Ĥ = −h2

2
△ + V (x) lim

N→∞
[U( t

N
)]N

(Fujiwara theory) = exp
(
−it
h

Ĥ
)

(Integral kernel) e
−it
h

Ĥf(x) =
∫

Rn

K(t, x, y)f(y) dy.

Classical mechanics Orbits of CM integral kernel

V (x) = O(|x|2)+error. time locally K(t, x, y)
global diffeo ∈ C∞((0, t) × R2n)

　　 on config. space

V (x) = C|x|n infinite many If n = 1, K(t, x, y)
(C > 0, n ≧ 4) small periodic curves is nowhere C1
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§6 Summary

(Case 2) (M, g) : Riem. mfd., H(x, p) = 1
2
|p|2 ∈ C∞(T ∗M)

Manifolds Feynman quantization

Asymptotically conic lim
N→∞

[U( t
N
)]Nρ(N)

+ cutoff = exp
[
− it

(
−1

2
(△ − R

6
)
) ]

Asymptotically conic lim
N→∞

[U( t
N
)]N

R(x) ≦ 0 without cutoff = exp
[
− it

(
−1

2
(△ − R

6
)
) ]

Manifolds Feynman quantization

S2 (sphere) lim
N→∞

[U( t
N
)]Nρ(N)

+ cutoff = exp
[
− it

(
−1

2
(△ − R

6
)
) ]

S2 lim
N→∞

[U( t
N
)]N

without cutoff How to define rigorously ?
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Prospects

(1) General manifolds? Potentials?

(2) Relationships between Various quantizations?
(e.g. Geometric quantization, Feynman quantization,

Deformation quantization etc.).

・In the framework of geometric quantization, we can not
construct the real polarization of 1

2
|p|2 on L2(S2).

・Quantized operators may differ depending on the definitions.

(3) Application? Spectral geometry △ + βR
・β = 0 (well-known)
・β = 1/6 (geometry of spectrum clustering)

(4) Application? Gutzwiller trace formula
(eg. Albeverio’s proof using Feynman path integral (Euclidean case). )

　 γ

tr(e−itH) ∼
∑

γ:closed geodesic

heiSγ/h cγe
πimγ

4√
det(I−Pγ)

?

(Low energy, time local) Gutzwiller trace formula can be found
in [Gu-St] (§11.5.3. p.301)
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§3 Appendix

・Quantization (Euclidean space)
　

Canonical quantization
A, B ∈ C∞(Rn

x × Rn
p ) = C∞(T ∗Rn)

{A,B} =
∑
α

(
∂A
∂xα

∂B
∂pα

− ∂B
∂xα

∂A
∂pα

)
Poisson Bracket

⇕
Â, B̂ ∈ L(L2(Rn))

[Â, B̂] = ih ̂{A,B} Canonical quantization

(i.e. x̂ = x, p̂ = h
i

∂
∂x

.)
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Â, B̂ ∈ L(L2(Rn))
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Â, B̂ ∈ L(L2(Rn))
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Â, B̂ ∈ L(L2(Rn))
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§7 Appendix

・Quantization (manifolds)
Geometric quantization

A, B ∈ C∞(T ∗M)
　　 (ω =

∑
dxα ∧ dpα : Darboux coordinates)

{A,B} =
∑
α

(
∂A
∂xα

∂B
∂pα

− ∂B
∂xα

∂A
∂pα

)
Poisson Bracket

⇓
Â, B̂ ∈ L(L2(T ∗M))

[Ã, B̃] = ih ˜{A,B} Prequantization

(i.e. H̃ = −ihXH + η(XH) + H
= −ih{(∂H

∂p
) ∂
∂x

− (∂H
∂x

) ∂
∂p

} − 1
2
(x∂H

∂x
+ p∂H

∂p
) + H

⇓
We can’t take the real polarization of 1̃

2
|p|2. However for T ∗S2

∃Lα ∈ C∞(S2) s.t. 1
2
|p|2 =

∑
α L2

α The prequantization L̃α satisfy∑
α L̃2

απ
∗Yl,m = h2

2
(l(l + 1) + 1

8
)π∗Yl,m
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Thank you for your attention.
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