Commutator criteria for strong mixing

Rafael Tiedra

Catholic University of Chile

Himeji, March 2015

Table of Contents

Strong mixing

Commutators

- Oiscrete groups
- 4 Continuous groups
- 5 Time changes of horocycle flows

6 Two questions

References

Strong mixing

A unitary operator U in a Hilbert space \mathcal{H} is a surjective isometry:

$$U^*U=UU^*=1.$$

Example (Discrete group of unitary operators)

If U is a unitary operator in a Hilbert space \mathcal{H} ,

$$U_n := U^n, \quad n \in \mathbb{Z},$$

defines a discrete 1-parameter group of unitary operators.

Example (Continuous group of unitary operators)

If H is a self-adjoint operator in a Hilbert space \mathcal{H} , then

$$U_t := \mathrm{e}^{-itH}, \quad t \in \mathbb{R},$$

defines a strongly continuous 1-parameter group of unitary operators.

Example (Koopman operator)

If $T : X \to X$ is an automorphism of a probability space (X, μ) , then the Koopman operator

$$U_{\mathcal{T}}: \mathsf{L}^{2}(X,\mu) \to \mathsf{L}^{2}(X,\mu), \quad \varphi \mapsto \varphi \circ \mathcal{T},$$

is a unitary operator.

Ergodicity, weak mixing and strong mixing of an automorphism $T: X \to X$ are expressible in terms of the Koopman operator U_T :

- T is ergodic iff 1 is a simple eigenvalue of U_T .
- T is weakly mixing iff U_T has purely continuous spectrum in $\{\mathbb{C} \cdot \mathbf{1}\}^{\perp}$.
- T is strongly mixing iff

$$\lim_{N\to\infty} \left\langle \varphi, (U_{\mathcal{T}})^N \varphi \right\rangle = 0 \quad \text{for all } \varphi \in \{\mathbb{C} \cdot \mathbf{1}\}^{\perp}.$$

Commutators

- \mathcal{H} , Hilbert space with norm $\|\cdot\|$ and scalar product $\langle\,\cdot\,,\,\cdot\,
 angle$
- $\mathscr{B}(\mathcal{H})$, bounded linear operators on $\mathcal H$
- A, self-adjoint operator in \mathcal{H} with domain $\mathcal{D}(A)$

Definition

An operator $S \in \mathscr{B}(\mathcal{H})$ satisfies $S \in C^k(A)$ if

$$\mathbb{R}
i t \mapsto \mathrm{e}^{-it \mathsf{A}} \, \mathsf{S} \, \mathrm{e}^{it \mathsf{A}} \in \mathscr{B}(\mathcal{H})$$

is strongly of class C^k .

 $S \in C^1(A)$ if and only if

$$\left|\langle A\varphi, S\varphi\rangle - \langle \varphi, SA\varphi\rangle\right| \leq \mathrm{Const.} \, \|\varphi\|^2 \quad \text{for all } \varphi \in \mathcal{D}(A).$$

The operator corresponding to the continuous extension of the quadratic form is denoted by [S, A], and one has

$$[iS,A] = \mathsf{s} - \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \mathrm{e}^{-itA} \, S \, \mathrm{e}^{itA} \in \mathscr{B}(\mathcal{H}).$$

Definition

A self-adjoint operator H in \mathcal{H} is of class $C^{k}(A)$ if $(H - z)^{-1} \in C^{k}(A)$ for some $z \in \mathbb{C} \setminus \sigma(H)$.

If H is of class $C^1(A)$, then

$$[A, (H-z)^{-1}] = (H-z)^{-1}[H, A](H-z)^{-1},$$

with $[H, A] \in \mathscr{B}(\mathcal{D}(H), \mathcal{D}(H)^*)$ the operator corresponding to the continuous extension to $\mathcal{D}(H)$ of the quadratic form

$$\mathcal{D}(\mathcal{H})\cap\mathcal{D}(\mathcal{A})
i arphi\mapsto \langle \mathcal{H}arphi,\mathcal{A}arphi
angle-\langle \mathcal{A}arphi,\mathcal{H}arphi
angle\in\mathbb{C}.$$

Discrete groups

Theorem (Strong mixing for discrete groups)

Let U and A be a unitary and a self-adjoint operator in \mathcal{H} , with $U \in C^1(A)$. Assume that

$$D := \operatorname{s-lim}_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} U^n ([A, U] U^{-1}) U^{-n}$$

exists, and suppose that $\eta(D)\mathcal{D}(A) \subset \mathcal{D}(A)$ for each $\eta \in C_c^{\infty}(\mathbb{R} \setminus \{0\})$. Then,

(a) lim_{N→∞} ⟨φ, U^Nψ⟩ = 0 for each φ ∈ ker(D)[⊥] and ψ ∈ H,
(b) U|_{ker(D)[⊥]} has purely continuous spectrum.

- *D* is bounded and self-adjoint because it is the strong limit of bounded self-adjoint operators.
- $\eta(D)$ with $\eta \in C^{\infty}_{c}(\mathbb{R} \setminus \{0\})$ is well-defined by functional calculus.
- DUⁿ = UⁿD for each n ∈ Z. So, ker(D)[⊥] is a reducing subspace for U, and U|_{ker(D)[⊥]} is a unitary operator.
- Point (b) is a simple consequence of point (a).
- Point (b) could be compared with the Virial theorem for unitary operators ("C¹(A) + · · · " ⇒ continuous spectrum).

Sketch of the proof of (a). Since $U \in C^1(A)$, one has $U^N \in C^1(A)$ with

$$\begin{bmatrix} A, U^{N} \end{bmatrix} = \sum_{n=0}^{N-1} U^{N-1-n} [A, U] U^{n} = \left(\sum_{n=0}^{N-1} U^{N-1-n} ([A, U] U^{-1}) U^{n+1-N} \right) U^{N}$$
$$= \left(\sum_{n=0}^{N-1} U^{n} ([A, U] U^{-1}) U^{-n} \right) U^{N}$$
$$= ND_{N} U^{N}$$

and

$$D_N := rac{1}{N} \sum_{n=0}^{N-1} U^n ([A, U] U^{-1}) U^{-n}.$$

So, we have for $\varphi \equiv \eta(D)\varphi$ with $\varphi \in \mathcal{D}(A)$ and $\psi \in \mathcal{D}(A)$

$$\begin{split} \left\langle \varphi, U^{N}\psi \right\rangle \\ &= \left| \left\langle DD^{-1}\eta(D)\varphi, U^{N}\psi \right\rangle \right| \\ &\leq \left| \left\langle (D_{N} - D)D^{-1}\eta(D)\varphi, U^{N}\psi \right\rangle \right| + \left| \left\langle D^{-1}\eta(D)\varphi, D_{N}U^{N}\psi \right\rangle \right| \\ &\leq \left\| (D_{N} - D)D^{-1}\eta(D)\varphi \right\| \cdot \left\|\psi\right\| + \frac{1}{N} \left| \left\langle D^{-1}\eta(D)\varphi, \left[A, U^{N}\right]\psi \right\rangle \right| \\ &= \left\| (D_{N} - D)D^{-1}\eta(D)\varphi \right\| \cdot \left\|\psi\right\| \\ &+ \frac{1}{N} \left| \left\langle AD^{-1}\eta(D)\varphi, U^{N}\psi \right\rangle - \left\langle D^{-1}\eta(D)\varphi, U^{N}A\psi \right\rangle \right| \\ &\leq \left\| (D_{N} - D)D^{-1}\eta(D)\varphi \right\| \cdot \left\|\psi\right\| \\ &+ \frac{1}{N} \left(\left\| AD^{-1}\eta(D)\varphi \right\| \cdot \left\|\psi\right\| + \left\| D^{-1}\eta(D)\varphi \right\| \cdot \left\|A\psi\right\| \right), \end{split}$$

which goes to 0 as $N \to \infty$.

- If $\sum_{N\geq 1} \|(D_N D)\varphi\|^2 < \infty$ for suitable $\varphi \in \mathcal{H}$, then $\sum_{N\geq 1} |\langle \varphi, U^N \varphi \rangle|^2 < \infty$ for all $\varphi \in \ker(D)^{\perp}$, and $U|_{\ker(D)^{\perp}}$ has purely a.c. spectrum.
- D can be seen as a topological degree of the map N → U^N in U(H). Indeed, one has

$$D = \underset{N \to \infty}{\text{s-lim}} \frac{1}{N} \sum_{n=0}^{N-1} U^n ([A, U] U^{-1}) U^{-n} = \underset{N \to \infty}{\text{s-lim}} \frac{1}{N} [A, U^N] U^{-N}.$$

So, if one considers $[A, \cdot]$ as a derivation on $\{U^N\}_{N\in\mathbb{Z}} \subset U(\mathcal{H})$, then D can be seen as a renormalised winding number of the map $N \mapsto U^N$ in $U(\mathcal{H})$ (the logarithmic derivative $\frac{\mathrm{d}z}{z}$ in the usual definition of winding number is replaced by the "logarithmic derivative" $[A, U^N] U^{-N}$ associated to $[A, \cdot]$).

Example (Skew products of compact Lie groups)

• • •

Continuous groups

Theorem (Strong mixing for continuous groups)

Let H and A be self-adjoint operators in \mathcal{H} , with $(H - i)^{-1} \in C^{1}(A)$. Assume that

$$D := \operatorname{s-lim}_{t \to \infty} \frac{1}{t} \int_0^t \mathrm{d}s \, \mathrm{e}^{isH} (H+i)^{-1} [iH, A] (H-i)^{-1} \, \mathrm{e}^{-isH}$$

exists, and suppose that $\eta(D)\mathcal{D}(A) \subset \mathcal{D}(A)$ for each $\eta \in C_c^{\infty}(\mathbb{R} \setminus \{0\})$. Then,

(a) lim_{t→∞} ⟨φ, e^{-itH} ψ⟩ = 0 for each φ ∈ H and ψ ∈ ker(D)[⊥],
(b) H|_{ker(D)[⊥]} has purely continuous spectrum.

Example (Canonical commutation relation)

Assume that $(H - i)^{-1} \in C^1(A)$ with [iH, A] = 1. Then, for all t > 0

$$D_t = \frac{1}{t} \int_0^t \mathrm{d}s \, \mathrm{e}^{isH} (H+i)^{-1} [iH, A] (H-i)^{-1} \, \mathrm{e}^{-isH} = (H^2+1)^{-1} = D$$

and $ker(D) = \{0\}$. So, the theorem implies that H has purely a.c. spectrum. In fact, we have in this case the Weyl commutation relation

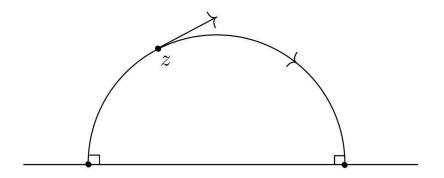
$$e^{-itA} e^{isH} e^{itA} = e^{ist} e^{isH}, \quad s, t \in \mathbb{R}.$$

Thus, Stone-von Neumann theorem implies that H has Lebesgue spectrum with uniform multiplicity.

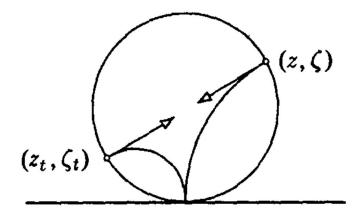
Example (Time changes of horocycle flows).

- Σ, compact Riemannian surface of constant negative curvature
- M := T¹Σ, unit tangent bundle of Σ (M is a compact 3-manifold with probability measure μ, M ≃ Γ \ PSL(2; ℝ) for some cocompact lattice Γ in PSL(2; ℝ))
- $F_1 \equiv \{F_{1,t}\}_{t \in \mathbb{R}}$, horocycle flow on M
- $F_2 \equiv \{F_{2,t}\}_{t \in \mathbb{R}}$, geodesic flow on M

The flows F_1 , F_2 are one-parameter groups of diffeomorphisms preserving the measure μ .



Geodesic in the Poincaré half plane



(Positive) horocycle flow in the Poincaré half plane

Each flow has an essentially self-adjoint generator

$$H_j \varphi := -i X_j \varphi, \quad \varphi \in C^\infty(M) \subset L^2(M,\mu),$$

with X_j the vector field associated to F_j . H_1 is of class $C^1(H_2)$ with

$$[iH_1,H_2]=H_1.$$

A C^1 -time change of X_1 is a vector field fX_1 with $f \in C^1(M; (0, \infty))$. fX_1 has a complete flow $\widetilde{F}_1 \equiv {\widetilde{F}_{1,t}}_{t \in \mathbb{R}}$ and a generator $H := fH_1$ essentially self-adjoint on $C^1(M) \subset \mathcal{H} := L^2(M, f^{-1}\mu)$. The operator $A := f^{1/2}H_2f^{-1/2}$ is self-adjoint in \mathcal{H} , and $(H-i)^{-1} \in C^1(A)$ with

$$(H+i)^{-1}[iH,A](H-i)^{-1} = (H+i)^{-1}(H\xi + \xi H)(H-i)^{-1}$$

and

$$\xi := rac{1}{2} - rac{1}{2} f^{-1} X_2(f).$$

So,

$$D_t := \frac{1}{t} \int_0^t ds \, e^{isH} (H+i)^{-1} [iH, A] (H-i)^{-1} e^{-isH}$$
$$= (H+i)^{-1} (H\xi_t + \xi_t H) (H-i)^{-1}$$

with

$$\xi_t := \frac{1}{t} \int_0^t \mathrm{d} s \, \mathrm{e}^{i s H} \, \xi \, \mathrm{e}^{-i s H} = \frac{1}{t} \int_0^t \mathrm{d} s \, \big(\xi \circ \widetilde{F}_{1,-s} \big).$$

Since F_1 is uniquely ergodic with respect to μ , \widetilde{F}_1 is uniquely ergodic with respect to $\widetilde{\mu} := \frac{f^{-1}\mu}{\int_M f^{-1}d\mu}$. Thus,

$$\lim_{t \to \infty} \xi_t = \frac{1}{2} - \frac{1}{2} \int_M \mathrm{d}\tilde{\mu} \, f^{-1} X_2(f) = \frac{1}{2} + \frac{1}{2 \int_M f^{-1} \mathrm{d}\mu} \int_M \mathrm{d}\mu \, X_2(f^{-1}) = \frac{1}{2}$$

uniformly on M, and

$$D := \underset{t \to \infty}{\text{s-lim}} D_t = (H+i)^{-1} \left(H \cdot \frac{1}{2} + \frac{1}{2} \cdot H \right) (H-i)^{-1} = H \left(H^2 + 1 \right)^{-1}.$$

So, ker(D) = ker(H), and the theorem implies that

$$\lim_{t\to\infty} \left\langle \varphi, \mathrm{e}^{-itH} \psi \right\rangle = 0 \quad \text{for all } \varphi \in \mathcal{H} \text{ and } \psi \in \ker(H)^{\perp}.$$

Therefore, C^1 -time changes of horocycle flows are strongly mixing.

Two questions

Strong mixing for Schrödinger operators:

Given $H := -\triangle + V$ in $L^2(\mathbb{R}^d)$, can we find conditions on V such that the theorem applies with A the generator of dilations? Can we prove the continuity of $\sigma(H)$ in some interval in our set-up? Can we add a compact error term in the theorems?

Strong mixing for C^* -dynamical systems:

Given $\{\mathcal{A}, \mathcal{G}, \alpha\}$ with \mathcal{A} a C^* -algebra, \mathcal{G} a locally compact group and α a strongly continuous representation of \mathcal{G} in Aut(\mathcal{A}), can we find conditions on α in terms of an auxiliary map on \mathcal{A} (maybe a derivation of \mathcal{A} replacing the map $[\mathcal{A}, \cdot]$ appearing in our set-up) guaranteeing that α is strong mixing?

References

- A. Iwanik, M. Lemańczyk, and C. Mauduit. Absolutely continuous cocycles over irrational rotations. Israel J. Math., 1993
- B. Marcus. Ergodic properties of horocycle flows for surfaces of negative curvature. Ann. of Math., 1977
- R. Tiedra. Commutator criteria for strong mixing. to appear in Ergodic Theory Dynam. Systems
- R. Tiedra. The absolute continuous spectrum of skew products of compact Lie groups. to appear in Israel J. Math.