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Strong mixing

Strong mixing

A unitary operator U in a Hilbert space H is a surjective isometry:

uUu=uUur=1.

Example (Discrete group of unitary operators)

If U is a unitary operator in a Hilbert space H,
U,=U", neZ,

defines a discrete 1-parameter group of unitary operators.




Strong mixing

Example (Continuous group of unitary operators)

If H is a self-adjoint operator in a Hilbert space H, then
Ut = e_itH, t e R,

defines a strongly continuous 1-parameter group of unitary operators.

Example (Koopman operator)

If T: X — X is an automorphism of a probability space (X, 1), then the
Koopman operator

Ur :P(X,p) = (X, 1), @ poT,

is a unitary operator.




Strong mixing

Ergodicity, weak mixing and strong mixing of an automorphism
T : X — X are expressible in terms of the Koopman operator Ur:

e T is ergodic iff 1 is a simple eigenvalue of Ur.
e T is weakly mixing iff Ut has purely continuous spectrum in {C-1}+.

e T is strongly mixing iff

lim (o, (UT)Ncp> =0 forallpe{C-1}+.
N—o0

strong — weak

a.c. spectrum in {C-1}+ = mixing mixing = ergodicity




Commutators

e 7, Hilbert space with norm || - || and scalar product (-, -)
e P(H), bounded linear operators on H
e A, self-adjoint operator in  with domain D(A)
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Definition
An operator S € %(H) satisfies S € Ck(A) if

R >t e M Se™ ¢ B(H)

is strongly of class Ck.

S € CY(A) if and only if
|(Ag, Sp) — (p, SAp)| < Const. ol for all ¢ € D(A).

The operator corresponding to the continuous extension of the quadratic
form is denoted by [S, A], and one has

[iS,A]l =s- 4

i e M SeA ¢ B(H).

t=0
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Definition

A self-adjoint operator H in H is of class CX(A) if (H — z)~! € CK(A) for
some z € C\ o(H).

If H is of class C1(A), then
[A(H=2)""] = (H~2)"'[H,Al(H - 2) 7",

with [H, A] € Z(D(H), D(H)*) the operator corresponding to the
continuous extension to D(H) of the quadratic form

D(H)ND(A) 3 ¢ — (Hp,Ap) — (Ap, Hp) € C.



Discrete groups

Discrete groups

Theorem (Strong mixing for discrete groups)

Let U and A be a unitary and a self-adjoint operator in H, with
U € CY(A). Assume that

N-1
o ]- n = —n
D= ?vﬂ’!‘oﬁ 2) U ([A, UlJU U

exists, and suppose that n(D)D(A) C D(A) for each n € C°(R\ {0}).
Then,

(a) limy_soo (0, UNY) = 0 for each ¢ € ker(D)* and ¢ € H,
(b) Ulker(py+ has purely continuous spectrum.




Discrete groups

D is bounded and self-adjoint because it is the strong limit of
bounded self-adjoint operators.

e 7(D) with n € C(R\ {0}) is well-defined by functional calculus.

e DU" = U"D for each n € Z. So, ker(D)* is a reducing subspace for
U, and Ulyer(pyL is a unitary operator.

e Point (b) is a simple consequence of point (a).
e Point (b) could be compared with the Virial theorem for unitary
operators (“CY(A) +---" = continuous spectrum).
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Discrete groups

Sketch of the proof of (a). Since U € C1(A), one has UN € C(A) with

N-1 N—1
[A, UN] — Z UN_l_n[A, U] Un — <Z UN_l_n([A, U] U—l) Un+1—N> UN
n=0 n=0

N—-1

_ (Z U ([A, U]U—l)u—"> uN
n=0

= NDy UV

and

1 N—-1
Dy =3 Z_;) Un([A, LU U
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Discrete groups

So, we have for ¢ = n(D)y with ¢ € D(A) and ¥ € D(A)

Dy — D)D" (D) - [ + 1 [{D (D), [A, UM
Dy — D)D" *n(D)e]| - [[¢]

+ % [(AD™ (D), UNy) — (D~ n(D)y, UNAY)|
< [|(on = D)D" n(D)ee]| - [l

+ 2 (IAD~n()e| - [9]) + [[D~ (D)ol - I1A4w]),

(
{(Dn — D)D™'(D)p, UN)| + |{D~'n(D)p, Dy UV )|
(
(

which goes to 0 as N — oc.



Discrete groups

o If > ns1 [(Dn — D)i||? < oo for suitable ¢ € H, then
> w1 e UNp)|? < oo for all ¢ € ker(D)*, and Ulker(py: has
purely a.c. spectrum.

e D can be seen as a topological degree of the map N — UN in U(H).
Indeed, one has

N—-1
.1 n “1N\ g —n .1 _
O=ilmy U MU =gl la v

So, if one considers [A, -] as a derivation on {UN}nez € U(H), then
D can be seen as a renormalised winding number of the map

N~ UN in U(H) (the logaritmic derivative % in the usual definition
of winding number is replaced by the “logaritmic derivative”

[A, UNJU™N associated to [A, - ]).
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Discrete groups

Example (Skew products of compact Lie groups)
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Continuous groups

Continuous groups

Theorem (Strong mixing for continuous groups)

Let H and A be self-adjoint operators in H, with (H — i)~ € C1(A).
Assume that

1t ,
D :=s-lim / ds eH(H + i) 7I[iH, A|(H — i) te "
0

t—oo t

exists, and suppose that n(D)D(A) C D(A) for eachn € C(R\ {0}).
Then,

(a) limsoo (0, e 4p) =0 for each ¢ € H and ¥ € ker(D)*,
(b) Hlwer(pyL has purely continuous spectrum.
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Continuous groups

Example (Canonical commutation relation)

Assume that (H — i)~t € C1(A) with [iH,A] = 1. Then, for all t > 0

1/t :
D; = t/ ds e*H(H+ )Y[iH,AJ(H— i) te ™" = (H? +1)" =D
0

and ker(D) = {0}. So, the theorem implies that H has purely a.c.
spectrum. In fact, we have in this case the Weyl commutation relation

e—ItA elsH e:tA — elst eISH’ s, te R.

Thus, Stone-von Neumann theorem implies that H has Lebesgue spectrum
with uniform multiplicity.
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Time changes of horocycle flows

Example (Time changes of horocycle flows).

e > compact Riemannian surface of constant negative curvature

e M:=TIX unit tangent bundle of &
(M is a compact 3-manifold with probability measure 1,
M ~ T \ PSL(2;R) for some cocompact lattice ' in PSL(2;R))

e F1 = {Fit}ter, horocycle flow on M
e F> = {F2t}ter, geodesic flow on M

The flows F1, F, are one-parameter groups of diffeomorphisms preserving
the measure p.
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Time changes of horocycle flows

Geodesic in the Poincaré half plane
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Time changes of horocycle flows

(z,¢)

(zt’ Ct)

(Positive) horocycle flow in the Poincaré half plane
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Time changes of horocycle flows

Each flow has an essentially self-adjoint generator
Hi = —iXjp, @€ C®(M)CL*(M,p),
with X; the vector field associated to Fj. Hj is of class C!(Ha) with
[iH1, Ho] = H;.

A C'-time change of Xi is a vector field fX; with f € C*(M; (0, c0)).

f X1 has a complete flow F1 = {F1 t}ter and a generator H := fH;
essentially self-adjoint on CY(M) C H := L2(M, f~1p).
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Time changes of horocycle flows

The operator A := fY/2H,f~1/2 is self-adjoint in A, and
(H— )"t € C(A) with

(H+i)iH,A((H = i)™t = (H+ i) (HE+ EH)(H — i)t

and i 1
== — ZfIX(F).
£=5-5 2(f)
So,
1 [t , -
D; := t/ ds eH(H + ) 7I[iH, A|(H — i) te sH
0
= (H+ i) Y (HE + & H)(H — )7}
with
1 [t . . 1 [t -
&= / ds eH ge=isH — / ds (§OF1 _5).
tJo tJo ’
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Time changes of horocycle flows

Since F; is uniquely ergodic with respect to p, Fi is uniquely ergodic with

respect to [ := T flldu Thus,

1 1 1 1
| - = o 1Xo(F Xo(f71) ==
Am &= Q/Md“ 2(f) = 2[M 1du/d“ 2(F7) = 3

uniformly on M, and

D:=slmD;=(H+i) Y (H- 24+ L1 - H)(H=i) ' =H(H>+1)"".

t—o0

So, ker(D) = ker(H), and the theorem implies that

lim (p,e”™ ) =0 forall p € H and ¥ € ker(H)* .

t—o00

Therefore, C1-time changes of horocycle flows are strongly mixing.



Two questions

Strong mixing for Schrodinger operators:

Given H := —A + V in L2(R9), can we find conditions on V such that the
theorem applies with A the generator of dilations? Can we prove the
continuity of o(H) in some interval in our set-up? Can we add a compact
error term in the theorems?

Strong mixing for C*-dynamical systems:

Given {A, G,a} with A a C*-algebra, G a locally compact group and « a
strongly continuous representation of G in Aut(.A), can we find conditions
on « in terms of an auxiliary map on A (maybe a derivation of A
replacing the map [A, - | appearing in our set-up) guaranteeing that « is
strong mixing?
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