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A nonlinear Dirac equation

We consider the spectral stability of stationary solutions ¢.,(x)e~“* to a
nonlinear Dirac equation of the form

10) = Dpp — F(*BY)BY,  ¥(x,t) €CY, x €R", (NLD)

where N is even, f(0) = 0, and D,, is the free Dirac operator:
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A nonlinear Dirac equation

We consider the spectral stability of stationary solutions ¢.,(x)e~“* to a
nonlinear Dirac equation of the form

i0:) = Dmtp — F(*BY)BY,  ¥(x,t) €CV, x €R", (NLD)
where N is even, f(0) = 0, and D,, is the free Dirac operator:

Dp = —ia:V+pBm=> —ia’d, +pm m>0.

7=1
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A nonlinear Dirac equation

We consider the spectral stability of stationary solutions ¢.,(x)e~“* to a
nonlinear Dirac equation of the form

10) = Dpp — F(*BY)BY,  ¥(x,t) €CY, x €R", (NLD)

where N is even, f(0) = 0, and D,, is the free Dirac operator:

Dp = —ia:V+pBm=> —ia’d, +pm m>0.

7=1
The N X N Dirac matrices are hermitian and satisfy 1 < 3,k < n

() =3 =1y, odok+aa? =20y, B+ Ba’ =0.

3
Nabile Boussaid Stability for nonlinear Dirac equations /23‘



A nonlinear Dirac equation

We consider the spectral stability of stationary solutions ¢.,(x)e~“* to a
nonlinear Dirac equation of the form

i0:) = Dmtp — F(*BY)BY,  ¥(x,t) €CV, x €R", (NLD)
where N is even, f(0) = 0, and D,, is the free Dirac operator:

Dp = —ia:V+pBm=> —ia’d, +pm m>0.

J=1
The N X N Dirac matrices are hermitian and satisfy 1 < 3,k < n
(043)2 =32 = Iy, alak + aka? = 20,k ln, a8+ Ba? = 0.
Its spectrum is purely absolutely continuous and given by

R\ (—m, m).
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The nonrelativistic limit

Hypothesis
f € C(R) and there exists k > 0 such that

|£(s) — Is|*| = 0s0(Is*).

Consider the matrix 3 in the form:

_ IN/2 0 :|
= [ 0 —Inp
the matrices (¥)1<j<n are of the form
aj=|:o_0 061:|a 1<j<n,
J

where the (07j)1<j<n are hermitian and satisfies

O'ja': + O'kO'J’-k = 20k, 1<j, k<n.
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We consider the existence of solitary waves of Soler or Wakano type

o (x)e it with [ ” ]
b = v(r)m -

u(r)(e,-o)m
The profiles v and u are real and
1
_ N/2 _ X n _
n = : eC , e = 7 € R", o= (UJ)lfJSH'
0

From (NLD), we deduce

r

Ou+"u+4 (m—w)v = F(v2 — u?)v, r>0
Ov + (m+ w)u = f(v? — v?)u, [

5
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V(t) = uc(|t|) is even, positive,

exponentially decreasing and C? with
n pu—
% +
t

1 . 1
~2m7 = 2m(

1 o 5
at) VvV — V2k+l,

and O(t) = —V'(t)/(2m).
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Theorem

There exist wg and, for w € (wo, M), a solution of the form:
v(r,w) = e [V(er) + V(er, e)} Lu(r,w) = et [U(er) + O(er, )],

where € and w verify € = vVm? — w2, V(t) = uk(|t|) is even, positive,
exponentially decreasing and C? with

n —

t

1 . 1
~2m7 = 2m(

9% +

t

1 o 5
at) VvV — V2k+l,

and O(t) = —V'(t)/(2m).
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Theorem

There exist wg and, for w € (wo, M), a solution of the form:
v(r,w) = e [V(er) + V(er, e)} Lu(r,w) = et [U(er) + O(er, )],

where € and w verify € = vVm? — w2, V(t) = uk(|t|) is even, positive,
exponentially decreasing and C? with

n —

t

1 . 1
~2m7 = 2m(

9% +

t

1 o 5
at) VvV — V2k+l,

and O(t) = —V'(t)/(2m). _ .
There exists 7 > 0 such that V and U verify

e Vi + le™ " Ollm = Ocmso(1)-
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Some remarks

® We have, for U=U+ Uand V=V4+V,
V(IxDI2+U(xD? @
¢:(X)ﬂ¢w(x) — |V(|X|)|2—|U(|X|)|2 > I (|X|)| > | (|X|)| — (2(-0)

Hypothesis

f e and that there are k > 0 and K > k such that

() — I7I¥| = o(I7["), I <L
[Tf'(1) — k|T|*| = O(I7|),  |7| <L

B 0OIfk<2/n ork=2/nand K> 4/n. Then there is w1 < m such that
9,Q(w) <0

for all w € (w1, m).
O If instead k > 2/n, then there is w1 < m such that

0,Q(w) >0

for all w € (w1, m).

Stability for nonlinear Dirac equations
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Linearization and stability
We consider the solution to the nonlinear Dirac equation in the form

¢(X, t) = (¢w(x) + p(X, t))e—iwt’
where ¢, satisfies the stationary equation
wWoy = Do, — f(qbz,ﬁﬁbw)ﬁ(ﬁw’

so that p(x,t) € CN is a “small" perturbation of ¢, (x)e~“t. The
linearization at a solitary wave (the linearized equation on p) is given by

Op = JL(w)p,
where ] = 1/i,
L(w) = Dy — w — f(¢.,80.)8 — 2R(¢.,8 - ) (¢],8¢.)Bd.-

The the solitary wave is called
m spectrally stable if o(JL(w)) C iR,
m spectrally unstable if o(JL(w)) ¢ iR.
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The nonlinear Schrodinger equation

For the ground state solution ¢, (x)e~/*t of the a nonlinear Schrodinger
equation

i0p = —Byp — [P*y,  ¢(x, 1) €C, x€R",  (NLS)
where k > 0, the linearization is given by
Op = jUw)p,

where
where j ~ 1/i,

L (w) = 1_(w) —2kR(do” +)|du* Vo, 1_(v) = —A—w—|¢|*

9
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The nonlinear Schrodinger equation

For the ground state solution ¢, (x)e~/*t of the a nonlinear Schrodinger
equation

0 = —Ayp — 9[>,  P(x,t) €C, x€R", (NLS)
where k > 0, the linearization is given by
O:p = jYw)p,
where
) = (0w
For some ¢ > 0, we have

l(w)po =0 1_(w) > clyr, c>0.

9
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The nonlinear Schrodinger equation

For the ground state solution ¢, (x)e ™t of the a nonlinear Schrodinger
equation

i0p = —Byp — [P*y,  ¢(x, 1) €C, x€R",  (NLS)
where k > 0, the linearization is given by
Op = jUw)p,

where

jUw)p = Ap = L (@)1 (w)p2 = —N?p,
= /1 (W)l (w)y/1_(w)R = —=A%R

for R = /1_(w)p2 where p; is the second component of p.

9
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The nonlinear Schrodinger equation

For the ground state solution ¢, (x)e~/*t of the a nonlinear Schrodinger
equation

i0p = —Byp — [P*y,  ¢(x, 1) €C, x€R",  (NLS)
where k > 0, the linearization is given by

Op = jUw)p,

1 = (e 67)

o(jl(w)) C RUIR.

where

We have

9
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Absence of embedded eigenvalues

Lemma
Let |A| > m + |w|. There are C and Ry > 0 such that

Yu € HX(B(0, Ro)€), 7 > 1, 7¥/?||e""u|| < C|lre™ (JL(w) — A)ul|.

Lemma

The operator JL(w) has no embedded eigenvalues A € iR with
Al > m+ ||
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Proposition (Limiting absorption principle)

Let wg € [—m, m] and such that for wj € [—m, m], wj — wy, there are
C < oo, and € > 0 with

[|{r)**+= V (wo) || oo (R7, End (cvy) < OO,
limj_s o0 [[(r)'* (V(wj) — V(w0)) |lLoo (&7, Ena (cvy) = 0,
Let
Ao € iR, [Xo| > m + |wo, Ao & 0p(J(Dm — w + V(wq)))-

Then, for any s > 1/2, there is an open neighborhood I C [—m, m] of wy
and an open neighborhood U C C of Ag such that for w € I the resolvent
of J(Dm — w + V(w)) at XA € U \ iR extends to a continuous mapping

(J(Dm —w + V(w)) = A)': HZV2(R, CV) — HYZ (R, CV),

—S

which is bounded uniformly in A € U \ iR.
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Theorem (Bifurcation of point eigenvalues)

Let (wj)jen, wj € [-m, m], wj — wo € [—m, m], and assume that V is
hermitian and that there is € > 0 such that

1{r)**=V (wo) || oo (&, Bna (cv)) < 00,

limj o0 [[(r)**e (V(wj) — V(@0)) || oo (rn, Bnd (cvy) = 0.

Let A\j € op(JL(wj)) be a Cauchy sequence such that

RN #0 VjiEN, A —> A €iR, Ao % =Li(m + |wo])-

J—>o0

If wg = £m, additionally assume that

Ao # 0.

Ao € op(JL(w0)).
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Let
L(w) =Dpy — w + V(w),

with V(w) : L2(R",C?N) — L%(R",C2?N) a self-adjoint zero-order
operator

Lemma (Bifurcation of point eigenvalues)

Let J € End (CV) be skew-adjoint and invertible, such that J> = —Ien,
[4, Dm] = 0. Let (wj)jen, wj € [—m, m], be a sequence with
limj_, o wj = £m, and there is € > 0 such that

li 1_{_EV i oo (RN C =V,
Jim () V(@) | ge, Bra vy = 0

Let A\j € op(JL(wj)), j € N, such that lim A\j; = Xg. Then

Ao € {0; £2im} .
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Consider A; # 0. For 6 > 0, let
Us = ]]])5(—2mi) @) DJ(O) ) D5(2mi).

The eigenvalues of J are +i then the operator J(D,, — w) can be
represented as the direct sum of operators i(D,, — w) and —i(Dp, — w).
For any s > 1/2

(J(Dm—w)—2)"': 2(R",CV) = L2 (R",CV),  z € C\(iRUUs)

is bounded uniformly for z € C \ (iR U Us):
For appropriate values of z € C, the resolvent of JL(w) is expressed as

1

w—Z_1= m — W —Z_1
(JL(w) — 2) (J(D. ) )1+JV(J(Dm—w)_Z)

—1°
Thus, the action
(JL(w) — 2)7t : L3R, CM) — L2 (R",CN)

is bounded uniformly in z € C\ (iR U Us) as long as w is sufficiently close
to m.
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Lemma

The operator L(w) corresponding to the linearization at a (one-frequency)
solitary wave has the eigenvalue —2w of geometric multiplicity (at least)

N /2, with the eigenspace containing the subspace
Span {xw,,, i mE (CN/Z}.

The operator JL(w) of the linearization at the solitary wave has eigenvalues
+2wi of geometric multiplicity (at least) N /2.

Forn € CN/2,

—i% . o*u(r,w)n
v(r,w)n 1

One has —2wxw,n = (—ia - Vi + (m — f)B — w)Xw,n-

Notice that ¢, (x)*BXw,n(x) = 0.

Xw,n =

Nabile Boussaid nlinear Dirac equations



Theorem (Bifurcations from £2mi at w = m)
Let (wf)jeN’ wj € (wg, m), be a sequence such that w;j — m and assume
that Aj are eigenvalues of (NLD) linearized at ¢.,,e it such that

Aj — 2mi. Denote

2wj + i)\j
-

€

Zj=

€ C, € = (m* — wf)l/z, JjEN,

and let Zy € C U {oo} be an accumulation point of the sequence (zj)jen.
Then:

2y € {5} Uoa(lo). In particular, Zy # oo.

If the edge of the essential spectrum of 1_ at 1/(2m) is a regular point
of the spectrum of 1_ (neither a resonance nor an eigenvalue), then

Zy #1/(2m).
If Zy = 0, then \j = 2wji for all but finitely many j € N.
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We apply

mo=(1+8)/2, ma=(1-p)/2, 7 =(1Fi])/2
to
(/Do + Bm — wj + JAj + €2 V(wj))W; =0

and obtain

EJ'D()TI';WJ' + (m —wj — i)\j)ﬂ';\l’j + Ej?Tr;VWj =0,

€Domp Wj — (m+ wj +iIN)m, Wj + €m, VW =0,

Do AW + (m — wj + iIN)TEW; + EmiVY; =0,

EjD()Tl';‘Uj — (m + wj — iAj)ﬂ-leJj + EfﬂZVWj =0.
This allow one to express Y := 7w W; in terms of X := 7w~ W; with

I(-, € 2) : L27kK(R", Range 7~) — L>~k(R", Range 7*), which is
analytic in z. What is z 7

17
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Theorem (Bifurcations from the origin at w = m)

Let (wj)jeN' wj € (wo, m), be a sequence such that wj — m, and assume
that \j are eigenvalues of (NLD) linearized at ¢.,,e™'“i* such that

Aj — 0. Denote

€ = (m? — w})l/z, JEN,

and let Ng € C U {oo} be an accumulation point of the sequence (N\j)jen.
Then:

N € o(jl) Uo(il-) Uo(—il_); in particular, Ny # oo. If moreover
N = 2, then Ny € o(jl).

If RX; # 0 for all j € N, then Ay € op(j1) NR.

If RXj # 0 for all j € N, then NAg = 0 is only possible when k = 2/n
and 8,Q(¢.) > 0 for w € (wx, m), with some w, < m. Moreover, in
this case A\j € R for all but finitely many j € N.
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Explicitly, we have

wa(x) = |: AYS :| ’ r= |X|, e (CN/za |€| =1

iu(r,w)*-o¢
We denote
R
== %05 ec™, |F=1
0
We introduce the orthogonal projection onto =:
N==(Z, -)ev € End (CV).
We note that, since B= = =,

Mowmp=mpoll=10N, Moma=mwa0oMN=0.

By means of the Shur complement, in the non relativistic limit, the operator

A
K=_-— — — — u2k(1+ 2kN)
m
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Theorem (Spectral stability of solitary waves of the nonlinear
Dirac equation)

Assume k, K is such that either 0 < k < 2/n, K > k (charge-subcritical
case), or k = 2/n and K > 4/n (charge-critical case).

Further, assume that oq(1—-) = {0}, and that the threshold z = 1/(2m)
of the operator 1_ is a regular point of its spectrum.

Then there is w, € (0, m) such that for each w € (wy, m) the
corresponding solitary wave is spectrally stable.
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Let us assume that there is a sequence w; — m and a family of eigenvalues
A;j of the linearization at solitary waves d)wje_i“’it such that ®A; # 0.

The only accumulation points of the sequence ()‘J')jeN are A = +2mi and
A=0.

As long as o4(l-) = {0} and the threshold of 1_ is a regular point of the
spectrum, A = £2mi can not be an accumulation point of
nonzero-real-part eigenvalues;

If ®A; # 0 and Ag is an accumulation point of the sequence

Aj = X/ (m? — 7)),

then Ag € o,(j1) N R, where jl is the linearization of the NLS in
dimension n with the nonlinear term —||2kp.

For k < 2/n, the spectrum of the linearization of the corresponding NLS at
a solitary wave is purely imaginary: o (jl) C iR.

We conclude that one could only have Ay = 0; this would require that
k=2/nand 8,Q(¢.) > 0 for w < m. On the other hand, as long as

k =2/nand K > 4/n, this yields 9, Q(¢.) < 0 for w < m, hence

Mo = 0 would not be possible. We conclude that there is no family of
eigenvalues (Aj)jen with RA; # 0.
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Lemma

Let n € N, w € R. If v(r), u(r) are real-valued functions such that for
some w € [—m, m] and for any &€ € CN/2, |¢| = 1 the function

P(t,x) = ¢€(X)e_iwt?

st = 8] r=

is a solitary wave solution to (NLD), then for any =, H € CN/?,
|Z|?> — |H|? = 1, the function

A

is a solution to (NLD).
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Lemma

Let n € N, w € R. If v(r), u(r) are real-valued functions such that for
some w € [—m, m] and for any &€ € CN/2, |¢| = 1 the function

P(t,x) = ¢€(X)e_iwt?

st = 8] r=

is a solitary wave solution to (NLD), then for any =, H € CN/?,
|Z|?> — |H|? = 1, the function

{—isg:;zfn] et

, is a solution to (NLD).
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Lemma

Let n € N, w € R. If v(r), u(r) are real-valued functions such that for
some w € [—m, m] and for any &€ € CN/2, |¢| = 1 the function

P(t,x) = ¢€(X)e_iwt?

st = 8] r=

is a solitary wave solution to (NLD), then for any =, H € CN/?,
|Z|?> — |H|? = 1, the function

e = =[G e [

is a solution to (NLD).
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Spectral stability of bifrequency solitary
waves

Theorem
Letn < 4, N =2 or N = 4. The bi-frequency solitary wave

e

is spectrally stable as long as the corresponding one-frequency solitary wave

solution ¢.,(x)e~t is spectrally stable.
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