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A nonlinear Dirac equation

We consider the spectral stability of stationary solutions φω(x)e−iωt to a
nonlinear Dirac equation of the form

i∂tψ = Dmψ − f (ψ∗βψ)βψ, ψ(x, t) ∈ CN , x ∈ Rn, (NLD)

where N is even, f (0) = 0, and Dm is the free Dirac operator:

Dm = −iα · ∇+ βm =
n∑
=1

−iα∂x + βm m > 0.

The N × N Dirac matrices are hermitian and satisfy 1 ≤ , k ≤ n

(α)2 = β2 = IN , ααk + αkα = 2δk IN , αβ + βα = 0.

Its spectrum is purely absolutely continuous and given by

R \ (−m,m).
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The nonrelativistic limit

Hypothesis

f ∈ C(R) and there exists k > 0 such that

|f (s)− |s|k | = os→0(|s|k).

If n ≥ 3 then k < 2/(n − 2).

Consider the matrix β in the form:

β =

[
IN/2 0

0 −IN/2

]
the matrices (αj )1≤j≤n are of the form

αj =

[
0 σ∗j
σj 0

]
, 1 ≤ j ≤ n,

where the (σj )1≤j≤n are hermitian and satisfies

σjσ
∗
k + σkσ

∗
j = 2δjk , 1 ≤ j , k ≤ n.
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We consider the existence of solitary waves of Soler or Wakano type
φω(x)e−iωt with

φω =

[
v(r)n1

u(r) (er · σ) n1

]
.

The profiles v and u are real and

n1 =


1
0
...
0

 ∈ CN/2, er =
x
r
∈ Rn, σ = (σ)1≤≤n.

From (NLD), we deduce{
∂ru + n−1

r u + (m − ω)v = f (v2 − u2)v ,
∂rv + (m + ω)u = f (v2 − u2)u,

r > 0.
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Theorem

There exist ω0 and, for ω ∈ (ω0,m), a solution of the form:

v(r , ω) = ε
1
k

[
V̂ (εr) + Ṽ (εr , ε)

]
, u(r , ω) = ε1+ 1

k

[
Û(εr) + Ũ(εr , ε)

]
,

where ε and ω verify ε =
√

m2 − ω2,

V̂ (t) = uk(|t|) is even, positive,
exponentially decreasing and C 2 with

−
1

2m
V̂ = −

1

2m

(
∂2

t +
n − 1

t
∂t

)
V̂ − V̂ 2k+1,

and Û(t) = −V̂ ′(t)/(2m).

There exists τ > 0 such that Ṽ and Ũ verify

‖eτ〈r〉Ṽ‖H1 + ‖eτ〈r〉Ũ‖H1 = Oε→0(1).
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Some remarks
� We have, for U = Û + Ũ and V = V̂ + Ṽ ,

φ∗ω(x)βφω(x) = |V (|x|)|2−|U(|x|)|2 ≥
|V (|x|)|2 + |U(|x|)|2

2
:=

Q(ω)

2
.

Hypothesis

f ∈ C 1(R \ {0}) ∩ C(R) and that there are k > 0 and K > k such that

|f (τ )− |τ |k | = O(|τ |K ), |τ | ≤ 1;

|τ f ′(τ )− k|τ |k | = O(|τ |K ), |τ | ≤ 1.

� � If k < 2/n, or k = 2/n and K > 4/n. Then there is ω1 < m such that

∂ωQ(ω) < 0

for all ω ∈ (ω1,m).
� If instead k > 2/n, then there is ω1 < m such that

∂ωQ(ω) > 0

for all ω ∈ (ω1,m).
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Linearization and stability
We consider the solution to the nonlinear Dirac equation in the form

ψ(x, t) = (φω(x) + ρ(x, t))e−iωt ,

where φω satisfies the stationary equation

ωφω = Dmφω − f (φ∗ωβφω)βφω,

so that ρ(x, t) ∈ CN is a “small” perturbation of φω(x)e−iωt . The
linearization at a solitary wave (the linearized equation on ρ) is given by

∂tρ = JL(ω)ρ,

where J = 1/i ,

L(ω) = Dm − ω − f (φ∗ωβφω)β − 2<(φ∗ωβ · )f
′(φ∗ωβφω)βφω.

The the solitary wave is called

� spectrally stable if σ(JL(ω)) ⊂ iR,

� spectrally unstable if σ(JL(ω)) 6⊂ iR.
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The nonlinear Schrödinger equation
For the ground state solution φω(x)e−iωt of the a nonlinear Schrödinger
equation

i∂tψ = −∆ψ − |ψ|2kψ, ψ(x, t) ∈ C, x ∈ Rn, (NLS)

where k > 0, the linearization is given by

∂tρ = jl(ω)ρ,

where

jl(ω) :=

(
0 l−(ω)

−l+(ω) 0

)
where j ∼ 1/i,

l+(ω) = l−(ω)−2k<(φω
∗ · )|φω|2(k−1)φω l−(ω) = −∆−ω−|φω|2k
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where k > 0, the linearization is given by

∂tρ = jl(ω)ρ,

where

jl(ω) :=

(
0 l−(ω)
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)
For some c > 0, we have

l−(ω)φω = 0 l−(ω) > cIφ⊥
ω
, c > 0.
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(
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jl(ω)ρ = λρ⇒ l+(ω)l−(ω)ρ2 = −λ2ρ2

⇒
√
l−(ω)l+(ω)

√
l−(ω)R = −λ2R

for R =
√
l−(ω)ρ2 where ρ2 is the second component of ρ.
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The nonlinear Schrödinger equation
For the ground state solution φω(x)e−iωt of the a nonlinear Schrödinger
equation
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where k > 0, the linearization is given by

∂tρ = jl(ω)ρ,

where
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We have

σ(jl(ω)) ⊂ R ∪ iR.
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Absence of embedded eigenvalues

Lemma

Let |λ| > m + |ω|. There are C and R0 > 0 such that

∀u ∈ H1
0(B(0,R0)c), τ ≥ 1, τ 1/2‖eτ ru‖ ≤ C‖reτ r (JL(ω)− λ)u‖.

Lemma

The operator JL(ω) has no embedded eigenvalues λ ∈ iR with
|λ| > m + |ω|.
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Proposition (Limiting absorption principle)

Let ω0 ∈ [−m,m] and such that for ωj ∈ [−m,m], ωj → ω0, there are
C <∞, and ε > 0 with‖〈r〉

1+εV (ω0)‖L∞(Rn,End (CN )) <∞,

limj→∞ ‖〈r〉1+ε (V (ωj )− V (ω0)) ‖L∞(Rn,End (CN )) = 0,

Let

λ0 ∈ iR, |λ0| > m + |ω0|, λ0 6∈ σp

(
J(Dm − ω + V (ω0))

)
.

Then, for any s > 1/2, there is an open neighborhood I ⊂ [−m,m] of ω0

and an open neighborhood U ⊂ C of λ0 such that for ω ∈ I the resolvent
of J(Dm − ω + V (ω)) at λ ∈ U \ iR extends to a continuous mapping(

J(Dm − ω + V (ω))− λ
)−1

: H−1/2
s (Rn,CN)→ H1/2

−s (Rn,CN),

which is bounded uniformly in λ ∈ U \ iR.
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Theorem (Bifurcation of point eigenvalues)

Let (ωj )j∈N, ωj ∈ [−m,m], ωj → ω0 ∈ [−m,m], and assume that V is
hermitian and that there is ε > 0 such that‖〈r〉

1+εV (ω0)‖L∞(Rn,End (CN )) <∞,

limj→∞ ‖〈r〉1+ε (V (ωj )− V (ω0)) ‖L∞(Rn,End (CN )) = 0.

Let λj ∈ σp(JL(ωj )) be a Cauchy sequence such that

<λj 6= 0 ∀j ∈ N, λj −→
j→∞

λ0 ∈ iR, λ0 6= ±i(m + |ω0|).

If ω0 = ±m, additionally assume that

λ0 6= 0.

Then
λ0 ∈ σp(JL(ω0)).
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Let
L(ω) = Dm − ω + V(ω),

with V(ω) : L2(Rn,C2N)→ L2(Rn,C2N) a self-adjoint zero-order
operator

Lemma (Bifurcation of point eigenvalues)

Let J ∈ End (CN) be skew-adjoint and invertible, such that J2 = −ICN ,
[J,Dm] = 0. Let (ωj )j∈N, ωj ∈ [−m,m], be a sequence with
limj→∞ ωj = ±m, and there is ε > 0 such that

lim
j→∞

‖〈r〉1+εV (ωj )‖L∞(Rn,End (CN )) = 0,

Let λj ∈ σp(JL(ωj )), j ∈ N, such that limλj = λ0. Then

λ0 ∈ {0;±2im} .
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Consider <λj 6= 0. For δ > 0, let

Uδ := Dδ(−2mi) ∪ Dδ(0) ∪ Dδ(2mi).

The eigenvalues of J are ±i then the operator J(Dm − ω) can be
represented as the direct sum of operators i(Dm − ω) and −i(Dm − ω).
For any s > 1/2(
J(Dm−ω)−z

)−1
: L2

s (Rn,CN)→ L2
−s(Rn,CN), z ∈ C\(iR∪Uδ)

is bounded uniformly for z ∈ C \ (iR ∪ Uδ):
For appropriate values of z ∈ C, the resolvent of JL(ω) is expressed as

(JL(ω)− z)−1 =
(
J(Dm − ω)− z

)−1 1

1 + JV
(
J(Dm − ω)− z

)−1
.

Thus, the action

(JL(ω)− z)−1 : L2
s (Rn,CN)→ L2

−s(Rn,CN)

is bounded uniformly in z ∈ C \ (iR ∪ Uδ) as long as ω is sufficiently close
to m.
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Lemma

The operator L(ω) corresponding to the linearization at a (one-frequency)
solitary wave has the eigenvalue −2ω of geometric multiplicity (at least)
N/2, with the eigenspace containing the subspace

Span
{
χω,η ; η ∈ CN/2

}
.

The operator JL(ω) of the linearization at the solitary wave has eigenvalues
±2ωi of geometric multiplicity (at least) N/2.

For η ∈ CN/2,

χω,η =

[
−i xr · σ

∗ u(r , ω)η
v(r , ω)η

]
.

One has −2ωχω,η = (−iα · ∇x + (m − f )β − ω)χω,η.
Notice that φω(x)∗βχω,η(x) = 0.
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Theorem (Bifurcations from ±2mi at ω = m)

Let
(
ωj
)
j∈N, ωj ∈ (ω0,m), be a sequence such that ωj → m and assume

that λj are eigenvalues of (NLD) linearized at φωj e−iωj t such that
λj → 2mi. Denote

zj = −
2ωj + iλj

ε2
j

∈ C, εj := (m2 − ω2
j )1/2, j ∈ N,

and let Z0 ∈ C ∪ {∞} be an accumulation point of the sequence (zj )j∈N.
Then:

1. Z0 ∈ { 1
2m} ∪ σd(l−). In particular, Z0 6=∞.

2. If the edge of the essential spectrum of l− at 1/(2m) is a regular point
of the spectrum of l− (neither a resonance nor an eigenvalue), then
Z0 6= 1/(2m).

3. If Z0 = 0, then λj = 2ωj i for all but finitely many j ∈ N.
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We apply

πP = (1 + β)/2, πA = (1− β)/2, π± = (1∓ iJ)/2,

to (
εjD0 + βm − ωj + Jλj + ε2

j V(ωj )
)
Ψj = 0

and obtain

εjD0π
−
A Ψj + (m − ωj − iλj )π

−
P Ψj + ε2

j π
−
P VΨj = 0,

εjD0π
−
P Ψj − (m + ωj + iλj )π

−
A Ψj + ε2

j π
−
A VΨj = 0,

εjD0π
+
A Ψj + (m − ωj + iλj )π

+
P Ψj + ε2

j π
+
PVΨj = 0,

εjD0π
+
P Ψj − (m + ωj − iλj )π

+
A Ψj + ε2

j π
+
AVΨj = 0.

This allow one to express Y := π+Ψj in terms of X := π−Ψj with
ϑ(·, ε, z) : L2,−k(Rn,Range π−)→ L2,−k(Rn,Range π+), which is
analytic in z . What is z ?
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Theorem (Bifurcations from the origin at ω = m)

Let
(
ωj
)
j∈N, ωj ∈ (ω0,m), be a sequence such that ωj → m, and assume

that λj are eigenvalues of (NLD) linearized at φωj e−iωj t such that
λj → 0. Denote

Λj :=
λj

ε2
j
∈ C, εj := (m2 − ω2

j )1/2, j ∈ N,

and let Λ0 ∈ C ∪ {∞} be an accumulation point of the sequence (Λj )j∈N.
Then:

1. Λ0 ∈ σ(jl) ∪ σ(il−) ∪ σ(−il−); in particular, Λ0 6=∞. If moreover
N = 2, then Λ0 ∈ σ(jl).

2. If <λj 6= 0 for all j ∈ N, then Λ0 ∈ σp(jl) ∩ R.

3. If <λj 6= 0 for all j ∈ N, then Λ0 = 0 is only possible when k = 2/n
and ∂ωQ(φω) > 0 for ω ∈ (ω∗,m), with some ω∗ < m. Moreover, in
this case λj ∈ R for all but finitely many j ∈ N.
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Explicitly, we have

φω(x) =

[
v(r , ω)ξ

iu(r , ω) x
r · σ ξ

]
, r = |x|, ξ ∈ CN/2, |ξ| = 1.

We denote

Ξ =


<ξ
0
=ξ
0

 ∈ C2N , |Ξ| = 1.

We introduce the orthogonal projection onto Ξ:

Π = Ξ〈Ξ, · 〉C2N ∈ End (C2N).

We note that, since βΞ = Ξ,

Π ◦ πP = πP ◦ Π = Π, Π ◦ πA = πA ◦ Π = 0.

By means of the Shur complement, in the non relativistic limit, the operator

K =
1

2m
−

∆

2m
− u2k

k (1 + 2kΠ)

appears.
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Theorem (Spectral stability of solitary waves of the nonlinear
Dirac equation)

Assume k, K is such that either 0 < k < 2/n, K > k (charge-subcritical
case), or k = 2/n and K > 4/n (charge-critical case).
Further, assume that σd(l−) = {0}, and that the threshold z = 1/(2m)
of the operator l− is a regular point of its spectrum.
Then there is ω∗ ∈ (0,m) such that for each ω ∈ (ω∗,m) the
corresponding solitary wave is spectrally stable.
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Let us assume that there is a sequence ωj → m and a family of eigenvalues
λj of the linearization at solitary waves φωj e−iωj t such that <λj 6= 0.

The only accumulation points of the sequence
(
λj
)
j∈N are λ = ±2mi and

λ = 0.
As long as σd(l−) = {0} and the threshold of l− is a regular point of the
spectrum, λ = ±2mi can not be an accumulation point of
nonzero-real-part eigenvalues;
If <λj 6= 0 and Λ0 is an accumulation point of the sequence

Λj := λj/(m2 − ω2
j ),

then Λ0 ∈ σp(jl) ∩ R , where jl is the linearization of the NLS in
dimension n with the nonlinear term −|ψ|2kψ.
For k ≤ 2/n, the spectrum of the linearization of the corresponding NLS at
a solitary wave is purely imaginary: σp(jl) ⊂ iR.
We conclude that one could only have Λ0 = 0; this would require that
k = 2/n and ∂ωQ(φω) > 0 for ω . m. On the other hand, as long as
k = 2/n and K > 4/n, this yields ∂ωQ(φω) < 0 for ω . m, hence
Λ0 = 0 would not be possible. We conclude that there is no family of
eigenvalues (λj )j∈N with <λj 6= 0.
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Lemma

Let n ∈ N, ω ∈ R. If v(r), u(r) are real-valued functions such that for
some ω ∈ [−m,m] and for any ξ ∈ CN/2, |ξ| = 1 the function

ψ(t, x) = φξ(x)e−iωt ,

with

φξ(x) =

[
v(r)ξ

iu(r)σrξ

]
, r = |x|,

is a solitary wave solution to (NLD), then for any Ξ, H ∈ CN/2,
|Ξ|2 − |H|2 = 1, the function

θΞ,H(t, x) = |Ξ|

[
v(r)ξ

iu(r)σrξ

]
e−iωt

+ |H|
[
−iu(r)σ∗r η

v(r)η

]
eiωt

,

where ξ = Ξ
|Ξ| and η = H

|H| , is a solution to (NLD).
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v(r)η

]
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where ξ = Ξ
|Ξ| and η = H

|H| , is a solution to (NLD).
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Lemma

Let n ∈ N, ω ∈ R. If v(r), u(r) are real-valued functions such that for
some ω ∈ [−m,m] and for any ξ ∈ CN/2, |ξ| = 1 the function

ψ(t, x) = φξ(x)e−iωt ,

with

φξ(x) =

[
v(r)ξ

iu(r)σrξ

]
, r = |x|,

is a solitary wave solution to (NLD), then for any Ξ, H ∈ CN/2,
|Ξ|2 − |H|2 = 1, the function

θΞ,H(t, x) = |Ξ|
[

v(r)ξ
iu(r)σrξ

]
e−iωt + |H|

[
−iu(r)σ∗r η

v(r)η

]
eiωt ,

where ξ = Ξ
|Ξ| and η = H

|H| , is a solution to (NLD).
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Spectral stability of bifrequency solitary
waves

Theorem
Let n ≤ 4, N = 2 or N = 4. The bi-frequency solitary wave

|Ξ|
[

v(r)ξ
iu(r)σrξ

]
e−iωt + |H|

[
−iu(r)σ∗r η

v(r)η

]
eiωt ,

is spectrally stable as long as the corresponding one-frequency solitary wave
solution φω(x)e−iωt is spectrally stable.
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