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Topological edge states in honeycomb lattices

Physical experiments due to [Yu–Ren–Lee ’19].



Equatorial waves

Currents displayed on https://earth.nullschool.net as of Feb. 20th 2019.

Theoretical analysis demonstrate their topological character [Delplace–
Martson–Venaille ’17, Tauber–Delplace–Venaille ’18, Faure ’19] .



Plan of the talk

I An introduction to the bulk-edge correspondence:

I Topological waves as a spectral problem

I The edge index: spectral flow

I The bulk index: Chern number

I Edge states in magnetic graphene:

I Dirac points in honeycombs [Fefferman–Weinstein ’12]

I Conjugation-breaking and spectral gaps [Lee-Thorp–Weinstein–Zhu
’18, D. ’18]

I A quantitative bulk-edge formula [D. ’18, D. ’19]



Floquet–Bloch theory

Let V ∈ C∞(R2,R) and A ∈ C∞(R2,R2) periodic w.r.t Z2:

V (x + n) = V (x), A(x + n) = A(x), x ∈ R2, n ∈ Z2.

Quantum evolution in e.m. field (∇R2V ,∇R2 × A):
P = −(∇R2 + iA)2 + V .

For each ξ ∈ R2 (or ξ ∈ R2/(2πZ)2 = T2), P acts on

L2ξ
def
=
{
u ∈ L2loc

(
R2,C

)
: u(x + n) = e iξ·n · u(x)

}
.

The L2ξ-spectrum of P is ξ-dependent and discrete:

λ1(ξ) ≤ λ2(ξ) ≤ · · · ≤ λj(ξ) ≤ · · · → +∞.

One recovers the L2-spectrum of P:

ΣL2(P) =
∞⋃
j=1

{
λj(ξ) : ξ ∈ R2

}
=
∞⋃
j=1

λj
(
R2
)
.

ΣL2(P) has a band structure, made up intervals λ1(R2), . . . λj(R2), . . .



Example: A = 0, V = 0, dimension 1

L2ξ-spectrum of P = −∆R: eigenvalue problem{ (
−∆R − E

)
u = 0

u(x + 1) = e iξ · u(x)
.

Solutions u(x) = e i(ξ+2mπ)x , E = (ξ + 2πm)2.

Dispersion curves:

λ2(ξ)

λ1(ξ)

ξ

λ



Example: A 6= 0, V 6= 0, dimension 1

L2ξ-spectrum of P = −(∂x + iA)2 + V : eigenvalue problem{
(−(∂x + iA)2 + V − E )u = 0

u(x + 1) = e iξ · u(x)
.

Generically the first gap is open:

ξ

λ

λ2(ξ)

λ1(ξ)

gap

Much more complicated in higher dimensions: no more ODEs!



Robust waves

x2

x1

Each red circle represent the same e.m. field.
We want to explain the following fact:

In favorable conditions, robust (topological) waves propagate along Re2
but not across Re2.



Line defect created by a magnetic field

Schrödinger operator P = −(∇R2 + iA )2 + V , where:

I V ∈ C∞(R2,R) is Z2-periodic;

I A is periodic in x2 and asymptotically periodic in x1:

A (x1, x2 + 1) = A (x1, x2); A (x1, x2) =

{
A(x1, x2), x1 � 1
−A(x1, x2), x1 � −1

with A ∈ C∞(R2,R2) periodic w.r.t. Z2.

1D-analog

•

x

A(x)
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Line defect created by a magnetic field

Schrödinger operator P = −(∇R2 + iA )2 + V , where:

I V ∈ C∞(R2,R) is Z2-periodic;

I A is periodic in x2 and asymptotically periodic in x1:

A (x1, x2 + 1) = A (x1, x2); A (x1, x2) =

{
A(x1, x2), x1 � 1
−A(x1, x2), x1 � −1

with A ∈ C∞(R2,R2) periodic w.r.t. Z2.

Waves propagating along the defect x1 = 0:{
i∂tψ = Pψ

ψ(t, x) = e i(ζx2−Et) · u(x)
, u ∈ L2

(
R2/Ze2

)
.

Associated spectral problem: Pu = Eu on the space

L2[ζ]
def
=
{
u ∈ L2loc(R2), u(x + e2) = e iζ · u(x),

∫
R2/Ze2

|u|2 <∞
}
.



L2[ζ]-spectral theory for P = −(∇R2 + iA )2 + V

{
Pu = Eu

u(x + e2) = e iζ · u(x)
,

∫
R2/Ze2

|u|2 <∞.

Set P± = −(∇R2 ± iA)2 + V , where ±A = A near ±∞. Then

ΣL2[ζ](P) = ΣL2[ζ](P+) ∪ ΣL2[ζ](P−) ∪ ΣL2[ζ],d(P).

Floquet–Bloch theory along ζe2 + Re1:

ΣL2[ζ](P±) =
∞⋃
j=1

λ±,j
(
ζe2 + Re1

)
.

L2[ζ]-spectrum of P: band structure + eigenvalues.

We assume that the first essential L2[ζ]-gap is open:

∀ε, ε′ ∈ {±}, λε,1(ζe2 + Re1) ∩ λε′,2(ζe2 + Re1) = ∅.



Spectral flow for P = −(∇R2 + iA )2 + V

•

0 2π

ζ

•

λ
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Spectral flow for P = −(∇R2 + iA )2 + V

•

0 2π

•

0 2π

••

0 2π

•

ζ

E

• • •

λ

ess. spec

ess. spec

disc. spec

Spectral flow of P at E : signed number of eigenvalue crossings E .

I Sf(P,E ) counts topological waves: the effective conductivity.

I Sf(P,E ) is stable against compact/gap-preserving perturbations.

I Sf(P,E ) depends only on P± = −(∇R2 ± iA)2 + V .



Bulk index

Sf(P,E ) is invariant under compact perturbations
⇒ it depends only on P±.

Write the spectrum of P+ on L2ξ, ξ ∈ T2, as: λ+,1(ξ) ≤ λ+,2(ξ) ≤ . . .
The first L2[ζ]-gap of P is open ⇒ λ+,1(ξ) < λ2,+(ξ).

Define line bundle E+ → T2 with fibers

kerL2
ξ

(
P+ − λ+,1(ξ)

)
⊂ L2ξ.

Topology characterized by first Chern number c1(E+) ∈ Z.

If instead the j-th gap is open, get a rank-j bundle.



Bulk-edge correspondence

Sf(P,E ) = c1(E+)− c1(E−)

Index theorem: “spectral invariant” = “topological invariant”.

Mathematical proofs in:

I Many discrete models: [Hatsugai ’93, Graf–Porta ’11,
Avila–Schulz-Baldes–Villegas-Blas ’11, Shapiro–Tauber ’18, . . . ]

I Some continuous models: [Kellendonk–Schulz-Baldes ’04, Taarabt
’14, Kubota ’17, Bourne–Rennie ’18, . . . ]

Problem: BEC does not address existence of edge states in PDEs.
For that you need to:

I Derive an effective equation (e.g. discrete 2× 2) for the PDE.

I Compute the index of the effective model.

Some previous results: [Nakamura–Belissard ’90] (vanishing Chern
number), [Haldane–Raghu ’08, Bal ’18, Faure ’19] (Dirac operators), [D.
’18] (dislocation systems: explicit formula for 2Z + 1-index).



Continuous graphene [Fefferman–Weinstein ’12]

Let P0 = −∆R2 + V , where V is honeycomb:

I V ∈ C∞(R2,R) is even: V (x) = V (−x);

I V is Zv1 ⊕ Zv2-periodic.

v1

v2

v1

v2
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Continuous graphene [Fefferman–Weinstein ’12]

Let P0 = −∆R2 + V , where V is honeycomb:

I V ∈ C∞(R2,R) is even: V (x) = V (−x);

I V is Zv1 ⊕ Zv2-periodic.

After linear substitution, P0 is Z2-periodic.

On L2ξ, P0 has eigenvalues

λ1(ξ) ≤ · · · ≤ λj(ξ) ≤ . . .



Dirac points of P0 = −∆R2 + V

A Dirac point (ξ?,E?) is a conical singularity in band spectrum:

I E? is a L2ξ? -eigenvalue of multiplicity exactly 2.

I For ξ near ξ?,{
λj(ξ) ∼ E? + b · (ξ − ξ?)− |M(ξ − ξ?)|
λj+1(ξ) ∼ E? + b · (ξ − ξ?) + |M(ξ − ξ?)| .

with b ∈ R2 and M ∈ M2(R) such that |M · ξ| > |b · ξ|.

Example: If V is 2π/3-rotationally invariant, then b = 0, M = ν? · Id2

⇒
{
λj(ξ) ∼ E? − ν?|ξ − ξ?|
λj+1(ξ) ∼ E? − ν?|ξ − ξ?| .



Dirac points of P0 = −∆R2 + V

A Dirac point (ξ?,E?) is a conical singularity in band spectrum:

I E? is a L2ξ? -eigenvalue of multiplicity exactly 2.

I For ξ near ξ?,{
λj(ξ) ∼ E? + b · (ξ − ξ?)− |M(ξ − ξ?)|
λj+1(ξ) ∼ E? + b · (ξ − ξ?) + |M(ξ − ξ?)| .

with b ∈ R2 and M ∈ M2(R) such that |M · ξ| > |b · ξ|.

Simulations of [Hou–Chen ’15] for some tight-binding lattices.



Dirac points of P0 = −∆R2 + V

A Dirac point (ξ?,E?) is a conical singularity in band spectrum:

I E? is a L2ξ? -eigenvalue of multiplicity exactly 2.

I For ξ near ξ?,{
λj(ξ) ∼ E? + b · (ξ − ξ?)− |M(ξ − ξ?)|
λj+1(ξ) ∼ E? + b · (ξ − ξ?) + |M(ξ − ξ?)| .

with b ∈ R2 and M ∈ M2(R) such that |M · ξ| > |b · ξ|.

Theorem
For a large class of honeycomb potentials V :

I P0 has Dirac points (±ξ?,E?) [Fefferman–Weinstein ’12,
Berkolaiko–Comech ’18];

I E? is not a L2ξ eigenvalue of P0 unless ξ = ±ξ?
[Fefferman–Lee-Thorp–Weinstein ’16, ’18].

We now assume that V belongs to that class.



Dirac points of P0 = −∆R2 + V

A Dirac point (ξ?,E?) is a conical singularity in band spectrum:

I E? is a L2ξ? -eigenvalue of multiplicity exactly 2.

I For ξ near ξ?,{
λj(ξ) ∼ E? + b · (ξ − ξ?)− |M(ξ − ξ?)|
λj+1(ξ) ∼ E? + b · (ξ − ξ?) + |M(ξ − ξ?)| .

with b ∈ R2 and M ∈ M2(R) such that |M · ξ| > |b · ξ|.

Interest of Dirac points:

I Wavepackets localized near Dirac points follow an effective Dirac
equation [Fefferman–Weinstein ’14].

I Destroying them provide a framework for novel topological phases.
The change of invariants can be computed via local analysis near
Dirac points.



Breaking conjugation invariance

Dirac point can be traced down to:

I complex conjugation invariance C;

I parity invariance.

Turning on a Z2-periodic magnetic field A breaks C:

P± = −(∇R2 ± iA)2 + V .

Conforming to the BEC setting, we look at P equal to P± as x1 → ±∞:

P = −(∇R2 ± iA )2 + V , A (x1, x2) =

{
A(x1, x2), x1 � 1
−A(x1, x2), x1 � −1

.

1D-analog

•

x

A(x)
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Honeycomb picture for P0
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Honeycomb picture for P+
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Honeycomb picture for P

v1

v2

v1

v2



This arises in nature!



Magnetic realization

Experiments of [Qian–Apigo–Prodan–Barlas–Prodan ’18]



Magnetic realization

Experiments of [Qian–Apigo–Prodan–Barlas–Prodan ’18]



Bulk-edge correspondence for P

P = −(∇R2 ± iA )2 + V , A (x1, x2) =

{
A(x1, x2), x1 � 1
−A(x1, x2), x1 � −1

.

Write kerL2
ξ?

(P0 − E?) = Cφ1 ⊕ Cφ2 with φ2 = φ1(−·). Assume that:

I θ?
def
= 〈φ1, (Aodd · i∇R2 + i∇R2 · Aodd)φ1〉L2

ξ?

6= 0;

I For all t ∈ (0, 1], the j-th L2-gap of −(∇R2 + itA)2 + V is open.

Theorem [D. ’18, ’19]
Let E in the j-th gap of P. Then

Sf(P,E ) = 2 · sgn(θ?) = c1(E+)− c1(E−).

Comments: LHS/RHS

I The assumptions depend only on the at-large behavior of P, not on
the transition from P+ to P−.

I They hold generically for small magnetic fields.



Bulk-edge correspondence for P

P = −(∇R2 ± iA )2 + V , A (x1, x2) =

{
A(x1, x2), x1 � 1
−A(x1, x2), x1 � −1

.

Write kerL2
ξ?

(P0 − E?) = Cφ1 ⊕ Cφ2 with φ2 = φ1(−·). Assume that:

I θ?
def
= 〈φ1, (Aodd · i∇R2 + i∇R2 · Aodd)φ1〉L2

ξ?

6= 0;

I For all t ∈ (0, 1], the j-th L2-gap of −(∇R2 + itA)2 + V is open.

Theorem [D. ’18, ’19]
Let E in the j-th gap of P. Then

Sf(P,E ) = 2 · sgn(θ?) = c1(E+)− c1(E−).

Comments: LHS

I Demonstrates that 2 edge states must exist.

I Very stable: it persists against compact and even gap-preserving
perturbations.



Bulk-edge correspondence for P

P = −(∇R2 ± iA )2 + V , A (x1, x2) =

{
A(x1, x2), x1 � 1
−A(x1, x2), x1 � −1

.

Write kerL2
ξ?

(P0 − E?) = Cφ1 ⊕ Cφ2 with φ2 = φ1(−·). Assume that:

I θ?
def
= 〈φ1, (Aodd · i∇R2 + i∇R2 · Aodd)φ1〉L2

ξ?

6= 0;

I For all t ∈ (0, 1], the j-th L2-gap of −(∇R2 + itA)2 + V is open.

Theorem [D. ’18, ’19]
Let E in the j-th gap of P. Then

Sf(P,E ) = 2 · sgn(θ?) = c1(E+)− c1(E−).

Comments: LHS

I Previously: in a perturbative regime (small A, adiabatic transition
from −A to A), two edge states had been constructed [Fefferman
–Lee-Thorp–Weinstein ’16, Lee-Thorp–Weinstein–Zhu ’18].

I Missing ingredient for topological protection: no other edge states.



Bulk-edge correspondence for P

P = −(∇R2 ± iA )2 + V , A (x1, x2) =

{
A(x1, x2), x1 � 1
−A(x1, x2), x1 � −1

.

Write kerL2
ξ?

(P0 − E?) = Cφ1 ⊕ Cφ2 with φ2 = φ1(−·). Assume that:

I θ?
def
= 〈φ1, (Aodd · i∇R2 + i∇R2 · Aodd)φ1〉L2

ξ?

6= 0;

I For all t ∈ (0, 1], the j-th L2-gap of −(∇R2 + itA)2 + V is open.

Theorem [D. ’18, ’19]
Let E in the j-th gap of P. Then

Sf(P,E ) = 2 · sgn(θ?) = c1(E+)− c1(E−).

Comments: RHS

I [Haldane–Raghu ’08] proved the RHS equality for related Dirac
operator /D± with asymptotically constant coefficients.

I [D ’19] shows that the reduction of P± to /D± holds rigorously.



Principle of proof: deriving effective equations

c1(E+) = sgn(θ?), θ? = 〈φ1, (Aodd · i∇R2 + i∇R2 · Aodd)φ1〉L2
ξ?

.

Topological transition from P0 to Pδ = −(∇R2 ± iδA)2 + V comes
from Dirac points.

Goal: understand Pδ as δ → 0. Say b = 1, M = Id, ξ? = E? = 0.

I For ξ near ξ? = 0, P0 has eigenvalues ±|ξ| near E? = 0.

I In the right basis,

P0 : L2ξ → L2ξ ∼
[

0 ξ1 − iξ2
ξ1 + iξ2 0

]
– in some resolvent sense.

I Turn on magnetic field δA:

Pδ : L2ξ → L2ξ ∼
[

θ?δ ξ1 − iξ2
ξ1 + iξ2 −θ?δ

]
.

I “Chern number” for 2× 2 model: 1
2 sgn(θ?).

I Two Dirac points ⇒ c1(E+) = sgn(θ?).



Edge states

The edge index is harder to compute. Same underlying principle: a Dirac
operator governs the effective dynamics.

Asymptotics of edge states in the perturbative regime of [Fefferman
–Lee-Thorp–Weinstein ’16, Lee-Thorp–Weinstein–Zhu ’18, D. ’18]:

E?

essential spectrum

ζ

E

2π/3 4π/3



Edge states

The edge index is harder to compute. Same underlying principle: a Dirac
operator governs the effective dynamics.

Asymptotics of edge states in the perturbative regime of [Fefferman
–Lee-Thorp–Weinstein ’16, Lee-Thorp–Weinstein–Zhu ’16, D. ’18]:



Remaining questions

I High energy – e.g. semiclassical – edge states?

I Edge states in the absence of gaps?

I Edge states with no translation invariance?

Photonic realization of edge states [Smirnova et al. ’18]

Thank you!


