Edge states in near-honeycomb structures

Alexis Drouot, Columbia University

March 4th, Himeji conference on PDEs




Topological edge states in honeycomb lattices
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Physical experiments due to [Yu—Ren—Lee '19].



Equatorial waves

Currents displayed on https://earth.nullschool.net as of Feb. 20th 2019.

Theoretical analysis demonstrate their topological character [Delplace—
Martson—Venaille '17, Tauber—Delplace-Venaille 18, Faure '19] .



Plan of the talk

» An introduction to the bulk-edge correspondence:

» Topological waves as a spectral problem
» The edge index: spectral flow
» The bulk index: Chern number

> Edge states in magnetic graphene:

» Dirac points in honeycombs [Fefferman—Weinstein '12]

» Conjugation-breaking and spectral gaps [Lee-Thorp—Weinstein—Zhu
'18, D. '18]

> A quantitative bulk-edge formula [D. '18, D. '19]



Floquet—Bloch theory
Let V € C(R?,R) and A € C*°(R?,R?) periodic w.r.t Z:
V(x+n)=V(x), Alx+n)=A(x), xcR? ncZ.

Quantum evolution in e.m. field (Vg2 V, Vg2 x A):
P = (Vg +iA)? + V.

For each ¢ € R? (or £ € R?/(27Z)? = T?), P acts on
L% = {U € LI20c (sz(c) . U(X + n) = ei§~n . U(X)}.
The Lé—spectrum of P is (-dependent and discrete:
AM(E) S X(é) < <N <o — oo

One recovers the [2-spectrum of P:

Y2 (P) = U (M9 cerR} =N (RY).

j=1
¥,2(P) has a band structure, made up intervals A\ (R?),... \;(R?),...



Example: A=0, V =0, dimension 1

LZ-spectrum of P = —Ag: eigenvalue problem
(= Dg— E)u=0
u(x+1)=e*-u(x)"

Solutions u(x) = e/€+2mmx E — (¢ 4 27m)?.

Dispersion curves:

A2(§)

A1(6)




Example: A# 0, V # 0, dimension 1
L%—spectrum of P = —(0x + iA)?> + V: eigenvalue problem

{(—(ax +iA2+V - E)u=0

u(x +1) = e® - u(x)

Generically the first gap is open:

A

A2(§)

gap
A1(€)

L ]
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Much more complicated in higher dimensions: no more ODEs!



Robust waves

T

Z2

- 0--0- 0o -0 @

Each red circle represent the same e.m. field.
We want to explain the following fact:

In favorable conditions, robust (topological) waves propagate along Re;

but not across Re.



Line defect created by a magnetic field

Schrédinger operator & = —(Vg: +ie/)? + V, where:
> V € C®(R2 R) is Z*-periodic;
» o/ is periodic in x, and asymptotically periodic in x:

A(X17X2), x3>1

(e +1) =) F0ax)= {—A(X1 x2), x1 < —1

with A € C*°(R2 R?) periodic w.r.t. Z2.

1D-analog
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Line defect created by a magnetic field

Schrédinger operator & = —(Vg: +ie/)? + V, where:
> V € C®(R2 R) is Z*-periodic;
» o/ is periodic in x, and asymptotically periodic in x:

. ) . A(X17X2), x3>1
(e +1) =) F0ax)= {—A(X1,x2), x < —1
with A € C*°(R2 R?) periodic w.r.t. Z2.

Waves propagating along the defect x; = 0:

iOvtp = &
{¢(t, X)’:i’(%—g) u(x) Y € 12 (R?/Ze,) .

Associated spectral problem: &Z2u = Eu on the space

L2 = { € L2 (R?), u(x + &) = € - u(x), /RZ/Zez lu® < oo}.



L2[¢]-spectral theory for & = —(Vg: + i/ )?

{ Pu=Eu / uf? < oo
u(x + &) =e u(x)’ R?/Ze, '

Set PL = —(Vge £iA)? + V, where £A = &/ near c0. Then

ZL2[§](=@) = ZL2[<](P+) U ZLZ[C](P,) U ZLz[CLd(f@).

Floquet—Bloch theory along (e, + Rey:
T io(Pe) = U Aij(Cer +Rey).
Jj=1

L2[¢]-spectrum of Z2: band structure + eigenvalues.

We assume that the first essential L?[(]-gap is open:

Ve, e € {£}, Ac1(Cex +Rer) N A a(Cex + Rep) = 0.

+V



Spectral flow for & = —(Vp: + i/ )?> + V

A

€s8. SpCC{

disc. spec ¢

€S8S. spec{

0

2w




Spectral flow for & = —(Vp: + i/ )?> + V
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Spectral flow for & = —(Vp: + i/ )?> + V
A
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Spectral flow for & = —(Vp: + i/ )?> + V
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Spectral flow of & at E: signed number of eigenvalue crossings E.
» Sf(Z, E) counts topological waves: the effective conductivity.
» Sf(Z,E) is stable against compact/gap-preserving perturbations.
> Sf(Z2, E) depends only on Py = —(Vgz & iA)? + V.



Bulk index

Sf(Z, E) is invariant under compact perturbations
= it depends only on P_..

Write the spectrum of P, on LZ, & € T?, as: A 1(€) < Ap2(6) < ...

The first L2[(]-gap of & is open = Ay 1(£) < A4 ().
Define line bundle &, — T? with fibers

ker;2 (Py = A+1(9) C LE.
Topology characterized by first Chern number ¢ (&) € Z.

If instead the j-th gap is open, get a rank-j bundle.



Bulk-edge correspondence
SFH(2,E) = (&) — au(&-)
Index theorem: “spectral invariant” = “topological invariant”.

Mathematical proofs in:

» Many discrete models: [Hatsugai '93, Graf-Porta '11,
Avila—Schulz-Baldes—Villegas-Blas '11, Shapiro-Tauber '18, ...]

» Some continuous models: [Kellendonk—Schulz-Baldes '04, Taarabt
'14, Kubota '17, Bourne—Rennie '18, ...]

Problem: BEC does not address existence of edge states in PDEs.
For that you need to:

» Derive an effective equation (e.g. discrete 2 x 2) for the PDE.
» Compute the index of the effective model.

Some previous results: [Nakamura—Belissard '90] (vanishing Chern
number), [Haldane—Raghu '08, Bal '18, Faure '19] (Dirac operators), [D.
'18] (dislocation systems: explicit formula for 2Z + 1-index).



Continuous graphene [Fefferman—Weinstein "12]
Let Pp = —Agz2 + V, where V is honeycomb:
> Ve C®(R% R) is even: V(x) = V(—x);
» V is Zvi @ Zvy-periodic.
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Continuous graphene [Fefferman—Weinstein

Let Pp = —Agz2 + V, where V is honeycomb:
> Ve C®(R%R) is even: V(x) = V(—x);
» V is Zvy P Zv,-periodic.

After linear substitution, Py is Z?-periodic.

On Lg, Py has eigenvalues

M) < - <N <

'12]



Dirac points of Py = —Ap2+ V

A Dirac point (,, E,) is a conical singularity in band spectrum:
> E, is a L7 -eigenvalue of multiplicity exactly 2.
» For & near &,

{ )\j(f) ~E +b- (g_f*) - |M(§ _5*)|
Aip1(§) ~ Ec+ b (§ = &)+ IM(E = &)

with b € R? and M € My(R) such that |[M - ¢| > |b-¢|.
Example: If V is 27 /3-rotationally invariant, then b=0, M = v, - Id,

= { Aj(f)NE*—V*K—{*‘
)‘j+1(€) ~ E, — V*‘g - f*' )



Dirac points of Py = —Ap2+ V

A Dirac point (&, E,) is a conical singularity in band spectrum:
> E, is a L7 -eigenvalue of multiplicity exactly 2.
» For £ near &,,

{ )‘J'(g) ~E +b- (5_6*) - |M(§_€*)|
Aip1(§) ~ Ec+ b (§ = &)+ IM(E = &)

with b € R? and M € My(R) such that |[M - ¢| > |b-¢|.

KN

Simulations of [Hou—Chen '15] for some tight-binding lattices.



Dirac points of Py = —Ap2+ V

A Dirac point (,, E,) is a conical singularity in band spectrum:
> E, is a L7 -eigenvalue of multiplicity exactly 2.
» For & near &,

{ )‘j(g) ~E +b- (5_5*) - |M(§ _5*)|
Aip1(§) ~ Ec+ b (§ = &)+ IM(E = &)

with b € R? and M € My(R) such that |[M - ¢| > |b-¢|.

Theorem
For a large class of honeycomb potentials V :

» Py has Dirac points (+&,, E,) [Fefferman—Weinstein '12,
Berkolaiko—Comech '18];

» E, isnota L% eigenvalue of Py unless £ = +&£,
[Fefferman—Lee-Thorp—Weinstein '16, '18].

We now assume that V belongs to that class.



Dirac points of Py = —Ap2+ V

A Dirac point (,, E,) is a conical singularity in band spectrum:
> E, isa Lg*—eigenvalue of multiplicity exactly 2.
» For & near &,

{ )\j(f) ~E +b- (g_f*) - |M(§ _5*)|
A+1(§) ~ Ex + b (£ — &) + IM(E = &)

with b € R? and M € My(R) such that |[M - ¢| > |b-¢|.

Interest of Dirac points:

» Wavepackets localized near Dirac points follow an effective Dirac
equation [Fefferman—Weinstein '14].

» Destroying them provide a framework for novel topological phases.
The change of invariants can be computed via local analysis near
Dirac points.



Breaking conjugation invariance

Dirac point can be traced down to:
» complex conjugation invariance C;
> parity invariance.
Turning on a Z?-periodic magnetic field A breaks C:

Py = (Vg £iA)? + V.
Conforming to the BEC setting, we look at & equal to Py as x; — *oo:

A(xt, x2), x1>1

_ 5 . 2 =
P==(Vetid) +V, d(x, x) {—A(xl,xﬁ, xp < —1"

1D-analog
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Honeycomb picture for Py
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Honeycomb picture for P,
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Honeycomb picture for &




This arises in nature!
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Magnetic realization
Experiments of [Qian—Apigo—Prodan—Barlas—Prodan '18]
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Magnetic realization
Experiments of [Qian—Apigo—Prodan—Barlas—Prodan '18]




Bulk-edge correspondence for &

. Alxy, x0), x1>1
F= Ve tid)+ V. o) = {—AEXszgv <1

Write kerLg* (Po — E.) = Co1 ® Copo with ¢ = ¢p1(—-). Assume that:
> 00 = (61, (Aodd + V2 + V2 Acad)dr) iz # O
» For all t € (0,1], the j-th L2-gap of —(Vg + itA)? + V is open.
Theorem [D. ’18, '19]
Let E in the j-th gap of &?. Then

SHZ,E) =2-sgn(b,) = aa(&4) — a(é-).

Comments: LHS/RHS

» The assumptions depend only on the at-large behavior of &2, not on
the transition from P, to P_.

» They hold generically for small magnetic fields.



Bulk-edge correspondence for &

. Alxy, x0), x1>1
P =—(Veexid) +V, %(Xl”q):{—AEXi,Xigv xi < -1

Write kerLg* (Po — E.) = Co1 ® Copo with ¢ = ¢p1(—-). Assume that:
> 00 = (61, (Aodd + V2 + V2 Acad)dr) iz # O
» For all t € (0,1], the j-th L2-gap of —(Vg + itA)? + V is open.
Theorem [D. ’18, '19]
Let E in the j-th gap of &?. Then

SHZ,E) =2-sgn(b,) = aa(&4) — a(é-).

Comments: LHS
» Demonstrates that 2 edge states must exist.

» Very stable: it persists against compact and even gap-preserving
perturbations.



Bulk-edge correspondence for &

. A(x1, x2), >1
R AL R e et

Write kerLg (Po — E.) = Co1 ® Copo with ¢ = ¢p1(—-). Assume that:
> 00 = (61, (Aodd + V2 + V2 Acad)dr) iz # O
» For all t € (0,1], the j-th L2-gap of —(Vg: + itA)? + V is open.

Theorem [D. ’18, '19]
Let E in the j-th gap of &?. Then

SHZ,E) =2-sgn(b,) = aa(&4) — a(é-).

Comments: LHS

» Previously: in a perturbative regime (small A, adiabatic transition
from —A to A), two edge states had been constructed [Fefferman
—Lee-Thorp—Weinstein '16, Lee-Thorp—Weinstein—Zhu '18].

» Missing ingredient for topological protection: no other edge states.



Bulk-edge correspondence for &

. Alxy, x0), x1>1
P =—(Veexid) +V, %(Xl”q):{—AEXi,Xigv xi < -1

Write kerLg* (Po — E.) = Co1 ® Copo with ¢ = ¢p1(—-). Assume that:
> 00 = (61, (Aodd + V2 + V2 Acad)dr) iz # O
» For all t € (0,1], the j-th L2-gap of —(Vg + itA)? + V is open.
Theorem [D. ’18, '19]
Let E in the j-th gap of &?. Then

SHZ,E) =2-sgn(b,) = aa(&4) — a(é-).

Comments: RHS

» [Haldane—Raghu '08] proved the RHS equality for related Dirac
operator [) with asymptotically constant coefficients.

» [D '19] shows that the reduction of P, to [). holds rigorously.



Principle of proof: deriving effective equations

Cl(éa+) = Sgn(e*), 0, = <(;51, (Aodd - iVR2 + iVpe 'Aodd)¢1>[_§ .

Topological transition from Py to Ps = —(Vg: + idA)? + V comes
from Dirac points.

Goal: understand Psas § - 0. Say b=1, M =1d, & = E, = 0.
» For & near & =0, Py has eigenvalues £|¢| near E, = 0.
» In the right basis,

0 & — 06

1+i& 0
» Turn on magnetic field §A:

Py : Lg — Lg ~ [6 } — in some resolvent sense.

§Sit+i&  —0.0
> “Chern number” for 2 x 2 model: 1 sgn(6.).
» Two Dirac points = ¢(&}) = sgn(6.).

Ps:Lf— L} ~{ 0 51_’52].



Edge states

The edge index is harder to compute. Same underlying principle: a Dirac
operator governs the effective dynamics.

Asymptotics of edge states in the perturbative regime of [Fefferman
—Lee-Thorp—Weinstein '16, Lee-Thorp—Weinstein—Zhu '18, D. '18]:

27/3
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Remaining questions

» High energy — e.g. semiclassical — edge states?
» Edge states in the absence of gaps?
» Edge states with no translation invariance?

Photonic realization of edge states [Smirnova et al. '18]

il

Thank you!



