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Introduction

Consider P = — A +V on R".

V/(x) is potentials of order zero

< V(kx) = V(x) for k,|x|>1
< 0rV(x)=0 for r>1 where
< V(r,0)=V(0) for r>1



Assumption

Let P=—-A+V.

Assumption

(1) V is real valued and smooth.

(2) We can decompose V as V = V, + Vi, where V is real
valued and homogeneous of order zero i.e. V satisfies

Voo(X) = Vo) for |x| > 1 and Vs(x) = o(|x| 1) as |x| — oo.
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Motivation

Localization in direction of Hamiltonian flow
('91 Herbst).

Let (x(t),£(t))

be a solution to the Hamiltonian equation, i.e.

£(t) = —0xV(x)

Then GE& — 0 € Cr(Vy) as t — 0.




Motivation

Localization in direction of Schrodinger operators('91 Herbst, '08
Herbst-Skibsted, '04,'08 Hassell-Melrose-Vasy).
We define g, a space of functions localizes in § € S"~1 by

Ho = {p € L>(R") | (|i| - 9) e ™y s 0ast— ool

Theorem
Suppose V. has finite critical points. Then there exists family
{Hm}n’\le of critical points of Vi, such that H,(P) = EBn’\f:lU{gm.



Question

Can we formulate localization in direction of Schrodinger operators
in terms of microlocal(semiclassical) analysis?



Semiclassical Measures

Consider following Quasimodes problem:

{ (Pn— E)up = Ry
[unll 2y = 1,

where R, =+ 0as h— 0and P, = —h> A +V.

Semiclassical (defect) measure

There exists a sequence of positive number hp, and a finite Radon
measure u such that h,, — 0 as m — oo and

(Uhp, @™ (x, hDx)up,,) (2(mny — adp as m — oo,
T*Rn



Semiclassical Measures

Semiclassical measure p satisfies

> suppy C {(x,€) € T'RY | [¢2 + V(x) — E = 0}

» If ||Rn|| = o(h), w is invariant under Hamiltonian flow.
ldea

Understand localization in direction as a property of the support of
semiclassical measure.



Difficulty and Key idea

Difficulty

=0 if Py is non-trapping!

Key idea

Instead of taking “energy” to infinity, we take “position” to infinity,
= defining a new quantization.



Definition of new quantization

Letj(r)=1ifr>1,=0if r < %
§) =

For ae C°(R x T*S™1), 3(x,£) = j(r)a (p,e,g) e 5(1) ie.

Va,5 € N, sup ]836? i(x,&)| < oo.
(x,6)eT*Rn"

We write Opj(a) = a(hx, D).

Note

We consider T*R" as T*Ryq(, ) x T* 5(”9 1) via polar coordinate
and ignore r variable.



Definition of new semiclassical measures

We write Opj(a) = a(hx, D).
Theorem

For any bounded family vj, in L2(R"), there exist h,, and a finite
Radon measure p; such that h,, — 0 as m — oo and

(Vhms OPj(3) Vi) 12(mr) — ady; as m — oo,
Rx T*Sn—1

for all a € C§°(R x T*S"1).



Assumption (Reuvisit)

Let P=—-A+V.

Assumption

(1) V is real valued and smooth.

(2) We can decompose V as V = V, + Vi, where V is real
valued and homogeneous of order zero i.e. V satisfies

Voo(X) = Vo) for |x| > 1 and Vs(x) = o(|x| 1) as |x| — oo.
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Main Theorem

We consider following asymptotic eigenvalue problem:

{ (P—E)up = Ry
lunll2@ny = 1,

where R, — 0 as h — 0.

Theorem

Let ||Rn[/;2(rr) = o(h) as h — 0. Assume there exists

X € C§°((1,00)) such that

up(x) = x(h|x|)un(x) + “error".

Then one can prove the following:

(1) E € Cv(V).

(2) supp(y;) € {(0,6,0) € R x T*S™ 1|0 € Cr(Va) N VSHE)}.



Sketch of the proof for main theorem

Usual commutator argument yields f(ae2pt) o ®idypjis is
independent of t, where ®; is “Hamiltonian” flow for any
a€ C(R x TS ).

= E € Cv(V) and localization follows.



Remarks on main theorem

» Assumption of main theorem yields we treat modes with
x| ~ b1
x| ~ :
Thus this theorem implies as far as we consider modes with
|x| ~ h~1, they localize in direction.

» Actually, we can construct modes with with |x| ~ h=2 which
localizes in direction of regular points.



Examples

Theorem
(A) Let E € [min(Vs), max(Veo)], 6o € VH(E) € S™* and
k € N"U {0} be such that 9/ Vs, (6g) = 0 for any 0 < |k| < ||.
For any C > 0, there exists uj a solution of (1) such that
1. ”Rh”LQ(]R") = O(h) if k>1and HRh||L2(R”) = O(h) if k= 0, 1
as h—0,
2. j(hr)up(r,8) = up(r,0) further, j(h?r)up(r,0) = up(r,0) if
k=0,
3. supp(up) C {(r,0) € R" | r > 1,dist(6, 8p) < Cr=“k)} for
sufficiently small h > 0,
where £(k) is such that £(k) = k + 1 if k > 0 and £(0) = 3.
Condition 3 yields supppu; = {(0, 60, 0)}.



Examples

Theorem
(B) Let max(Vy.) < E, 6 € S"L. For any C,e > 0, there exists
up a solution of (1) such that
1. ||Rh||L2(R”) = O(h) as h — 0,
2. j(hr)up(r,0) = up(r, ),
3. supp(up) C {(r,0) € R" | r > 1,dist(0, 6p) < Cr—k)} for
sufficiently small h > 0,
where /(k) is the same with (1).
Condition 3 and yields suppy; = {(p,60,0) | p> + V(6o) = E}.



Sketch of the construction

Construct f, € C*°(R) such that
> j(hr)fa(r) = fa(r),
> (0% + n718r)thL2(R:rn—1dr) =o(h) as h— 0.
Construct g € C*°(R) such that
> There exists C > 0 such that |V(#) — E| < Ch“¥ on
supp(gh)-
up(r,0) = Cpfp(r)gn(0) with normalizing constant Cj is what we
want.




Observability

Let Q C R”, we say observability holds on Q if for some T > 0
there exists Co 7 > 0 such that

.
[ull 2qmny < CQ,T/O /Q!e’tpu(x)\2dxdt

for any u € L?(R").



Observability

Theorem
Let Q Cc R" be a domain such that

QN{xeR"||x| > R} CR"\ {(r,0) e R"| r > R,dist(6,6p) < Crff(k)}

for some R, C > 0 and p € S"~1 with 85 V(6o) = 0 for any k < k.
Then the observability on € fails for any T > 0, i.e., there exists
Um € L2(R") such that |umll 2(rry = 1 and

foT fQ |€™ " U (x)[2dxdt — 0 as m — oco.



