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Introduction

Consider P = −△+V on Rn.

V (x) is potentials of order zero

⇔ V (kx) = V (x) for k , |x | ≥ 1

⇔ ∂rV (x) = 0 for r ≥ 1 where r =
∣∣x∣∣

⇔ V (r , θ) = V (θ) for r ≥ 1



Assumption

Let P = −△+V .

Assumption

(1) V is real valued and smooth.
(2) We can decompose V as V = V∞ + Vs , where V∞ is real
valued and homogeneous of order zero i.e. V satisfies
V∞(x) = V∞( x

|x |) for |x | ≥ 1 and Vs(x) = o(|x |−1) as |x | → ∞.



Motivation

Localization in direction of Hamiltonian flow
(’91 Herbst).
Let (x(t), ξ(t))
be a solution to the Hamiltonian equation, i.e.

ẋ(t) = ξ(t)

ξ̇(t) = −∂xV (x)

Then x(t)
|x(t)| → θ∞ ∈ Cr(V∞) as t → ∞.



Motivation

Localization in direction of Schrödinger operators(’91 Herbst, ’08
Herbst-Skibsted, ’04,’08 Hassell-Melrose-Vasy).
We define Hθ, a space of functions localizes in θ ∈ Sn−1 by

Hθ = {φ ∈ L2(Rn) |
(

x

|x |
− θ

)
e−itPφ → 0 as t → ∞}.

Theorem
Suppose V∞ has finite critical points. Then there exists family
{θm}Mm=1 of critical points of V∞ such that Ha.c(P) = ⊕M

m=1Hθm .



Question

Can we formulate localization in direction of Schrödinger operators
in terms of microlocal(semiclassical) analysis?



Semiclassical Measures

Consider following Quasimodes problem:{
(Ph − E )uh = Rh

∥uh∥L2(Rn) = 1,

where Rh → 0 as h → 0 and Ph = −h2 △+V .
Semiclassical (defect) measure
There exists a sequence of positive number hm and a finite Radon
measure µ such that hm → 0 as m → ∞ and

⟨uhm , aw (x , hDx)uhm⟩L2(Rn) →
∫
T∗Rn

adµ as m → ∞,



Semiclassical Measures

Semiclassical measure µ satisfies

▶ suppµ ⊂ {(x , ξ) ∈ T ∗Rn | |ξ|2 + V (x)− E = 0}
▶ If ∥Rh∥ = o(h), µ is invariant under Hamiltonian flow.

Idea
Understand localization in direction as a property of the support of
semiclassical measure.



Difficulty and Key idea

Difficulty
µ = 0 if Ph is non-trapping!
Key idea
Instead of taking “energy” to infinity, we take “position” to infinity,
= defining a new quantization.



Definition of new quantization

Let j(r) = 1 if r ≥ 1,= 0 if r ≤ 1

2
.

For a ∈ C∞
0 (R× T ∗Sn−1), ã(x , ξ) = j(r)a

(
ρ, θ,

η

r

)
∈ S(1) i.e.

∀α, β ∈ Nn, sup
(x ,ξ)∈T∗Rn

|∂α
x ∂

β
ξ ã(x , ξ)| < ∞.

We write Opj(a) = ã(hx ,Dx).
Note
We consider T ∗Rn as T ∗R>0(r ,ρ) × T ∗Sn−1

(θ,η) via polar coordinate
and ignore r variable.



Definition of new semiclassical measures

We write Opj(a) = ã(hx ,Dx).

Theorem
For any bounded family vh in L2(Rn), there exist hm and a finite
Radon measure µj such that hm → 0 as m → ∞ and

⟨vhm ,Opj(a)vhm⟩L2(Rn) →
∫
R×T∗Sn−1

adµj as m → ∞,

for all a ∈ C∞
0 (R× T ∗Sn−1).



Assumption (Revisit)

Let P = −△+V .

Assumption

(1) V is real valued and smooth.
(2) We can decompose V as V = V∞ + Vs , where V∞ is real
valued and homogeneous of order zero i.e. V satisfies
V∞(x) = V∞( x

|x |) for |x | ≥ 1 and Vs(x) = o(|x |−1) as |x | → ∞.



Main Theorem

We consider following asymptotic eigenvalue problem:{
(P − E )uh = Rh

∥uh∥L2(Rn) = 1,
(1)

where Rh → 0 as h → 0.

Theorem
Let ∥Rh∥L2(Rn) = o(h) as h → 0. Assume there exists
χ ∈ C∞

0 ((1,∞)) such that
uh(x) = χ(h|x |)uh(x) + “error”.
Then one can prove the following:
(1) E ∈ Cv(V∞).
(2) supp(µj) ⊂ {(0, θ, 0) ∈ R× T ∗Sn−1 | θ ∈ Cr(V∞) ∩ V−1

∞ (E )}.



Sketch of the proof for main theorem

Usual commutator argument yields
∫
(ae2ρt) ◦ Φtdµj is is

independent of t, where Φt is “Hamiltonian” flow for any
a ∈ C∞

0 (R× T ∗Sn−1).
=⇒ E ∈ Cv(V ) and localization follows.



Remarks on main theorem

▶ Assumption of main theorem yields we treat modes with
|x | ∼ h−1.
Thus this theorem implies as far as we consider modes with
|x | ∼ h−1, they localize in direction.

▶ Actually, we can construct modes with with |x | ∼ h−2 which
localizes in direction of regular points.



Examples

Theorem
(A) Let E ∈ [min(V∞),max(V∞)], θ0 ∈ V−1

∞ (E ) ⊂ Sn−1 and

k ∈ Nn ∪ {0} be such that ∂k̃
θV∞(θ0) = 0 for any 0 < |k̃ | ≤ |k|.

For any C > 0, there exists uh a solution of (1) such that

1. ∥Rh∥L2(Rn) = o(h) if k > 1 and ∥Rh∥L2(Rn) = O(h) if k = 0, 1
as h → 0,

2. j(hr)uh(r , θ) = uh(r , θ) further, j(h
2r)uh(r , θ) = uh(r , θ) if

k = 0,

3. supp(uh) ⊂ {(r , θ) ∈ Rn | r > 1,dist(θ, θ0) < Cr−ℓ(k)} for
sufficiently small h > 0,

where ℓ(k) is such that ℓ(k) = k + 1 if k > 0 and ℓ(0) = 2
3 .

Condition 3 yields suppµj = {(0, θ0, 0)}.



Examples

Theorem
(B) Let max(V∞) < E , θ0 ∈ Sn−1. For any C , ε > 0, there exists
uh a solution of (1) such that

1. ∥Rh∥L2(Rn) = O(h) as h → 0,

2. j(hr)uh(r , θ) = uh(r , θ),

3. supp(uh) ⊂ {(r , θ) ∈ Rn | r > 1,dist(θ, θ0) < Cr−ℓ(k)} for
sufficiently small h > 0,

where ℓ(k) is the same with (1).
Condition 3 and yields suppµj = {(ρ, θ0, 0) | ρ2 + V (θ0) = E}.



Sketch of the construction

Construct fh ∈ C∞(R) such that

▶ j(hr)fh(r) = fh(r),

▶ ∥(∂2
r +

n−1
r ∂r )fh∥L2(R:rn−1dr) = o(h) as h → 0.

Construct gh ∈ C∞(R) such that

▶ There exists C > 0 such that |V (θ)− E | ≤ Chℓ(k) on
supp(gh).

uh(r , θ) = Chfh(r)gh(θ) with normalizing constant Ch is what we
want.



Observability

Let Ω ⊂ Rn, we say observability holds on Ω if for some T > 0
there exists CΩ,T > 0 such that

∥u∥L2(Rn) ≤ CΩ,T

∫ T

0

∫
Ω
|e−itPu(x)|2dxdt

for any u ∈ L2(Rn).



Observability

Theorem
Let Ω ⊂ Rn be a domain such that

Ω ∩ {x ∈ Rn | |x | > R} ⊂ Rn \ {(r , θ) ∈ Rn | r > R,dist(θ, θ0) < Cr−ℓ(k)}

for some R,C > 0 and θ0 ∈ Sn−1 with ∂k̃
θV (θ0) = 0 for any k̃ ≤ k .

Then the observability on Ω fails for any T > 0, i.e., there exists
um ∈ L2(Rn) such that ∥um∥L2(Rn) = 1 and∫ T
0

∫
Ω |e−itPum(x)|2dxdt → 0 as m → ∞.


